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Distribution estimation

true population 
distribution:

one user's value:

many users' 
contributions:

aggregate:

height, income, blood 
pressure, etc.
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Private distribution estimation: add noise before logging
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Less Noise: Less Privacy

More Noise: More Privacy

Less Noise: Easier to denoise

More Noise: More data required

Private distribution estimation: add noise before logging



Local Differential Privacy



Local differential privacy [Dwork 2006, Duchi et. al. 2012]

● If true answer is x, say y with probability:

● Q is locally differentially private if:

QX

Y

QX'



Privacy utility tradeoff



Privacy utility tradeoff

What privacy mechanisms achieve the fundamental 
privacy-utility tradeoff for various privacy levels and 

alphabet sizes?  



Binary alphabets



“Have you ever used illegal drugs?”

answer truthfully w.p. lie w.p.

Warner’s randomized response [Warner 1965]



W-RR offers 
optimal utility for 
binary alphabets.



k-ary Alphabets



Two different ways to extend to k-ary alphabets

1. Modify the mechanism

2. Modify the encoding



lie w.p.answer truthfully w.p.

k-RR modifies the mechanism [Kairouz et. al. 2014]



For k-ary alphabets:
k-RR is order-optimal for 
low privacy (and strictly sub-
optimal for high privacy)
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2 bits different between any X, X'

k-RAPPOR modifies the encoding [Erlingsson et. al. 2014]



For k-ary alphabets:
k-RAPPOR is order-optimal 
for high privacy
(and strictly sub-optimal for 
low privacy)



Utility (sample complexity)



Open alphabets



Open alphabets

1. What if we don’t know the set of input symbols ahead of time?

2. Can we avoid penalties for having large k?



Hashing (Sketches)

Instead of encoding x directly, we encode hash(x) mod k.

QX YHash(k)



Hashing (Sketches)

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?  

Multiple Hash Functions → Independent Views (Sketches)

QX YHashc
(k)

Uniform[C] C



O-RR

Qk-RR
X YHashc

(k)

Uniform[C] C



O-RAPPOR [Erlingsson et. al. 2014]
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Empirical Comparison

L1 loss = 0.20

S = size of 

alphabet = 256

Geometric with 

mean=S/5

2 ≤ k ≤ 4096

1 ≤ c ≤ 1024

1 ≤ h ≤ 16



O-RR meets or exceeds 
utility of O-RAPPOR over 
wide range of privacy 
settings.



Closed Alphabets, revisited



Minimal perfect hash functions

A Minimal Perfect Hash Function maps m keys to m 

consecutive integers.

For Closed Sets: Modify O-RR and O-RAPPOR to use Minimal 

Perfect Hash Functions.

Note that with C=1 and h=1, we recover k-RR and k-RAPPOR 

(modulo a permutation of the output symbols).



L1 loss = 0.20

S = size of 

alphabet = 256

Geometric with 

mean=S/5

2 ≤ k ≤ 4096

1 ≤ c ≤ 1024

1 ≤ h ≤ 16



O-RR meets or exceeds 
utility of O-RAPPOR over 
wide range of privacy 
settings (for k-ary alphabets)



Thank you! 


