University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

ECE 310: Digital Signal Processing I
Chandra Radhakrishnan
Peter Kairouz

Problem Set 1

Summer 2011

Reading: Chapter 1, Chapter 2, Appendices A and D

Problem 1

Evaluate and represent your final answer in both Cartesian and Polar forms. Try to simplify as far as you can by hand, without using a calculator or computer.

1. $\left(3 \angle 150^{\circ}\right)+\left(5 \angle-60^{\circ}\right)+\left(4 \angle 120^{\circ}\right)$
2. $\frac{(-1+j)^{5}}{1+j}$
3. $\frac{5 \angle 60^{\circ}}{2 j}+\frac{\sqrt{2} e^{j \pi}}{2-j}$
4. $\left(\frac{-1+j 3}{1-j}+\frac{3+j}{1-j 2}\right)^{n}$

Problem 2

Sketch the following functions ($u[n]$ is the step function in the discrete time domain):

1. $n(u[n]-u[n-5])$
2. $u[n+2] u[n-3]$
3. $u[n-1]+n u[n-4]$

Problem 3

Compute the following:

1. Determine the roots of the equation $2 z^{3}+1=0$.
2. Use the roots to factor the polynomial $G(z)=2 z^{3}+1$ as a product of first order polynomials in z.
3. Express $G(z)$ as a product of first and second order factors with real coefficients.

Problem 4

Evaluate the following integrals:

1. $\int_{-\infty}^{\infty}\left(t^{2}+5 t+6\right) \delta(t) d t$
2. $\int_{-\infty}^{-3}\left(t^{2}+5 t+6\right) \delta(t) d t$
3. $\int_{-3}^{\infty}\left(t^{2}+5 t+6\right) \delta(t) d t$
4. $\int_{-\infty}^{\infty}\left(t^{2}+5 t+6\right) \delta(t-3) d t$
5. $\int_{-\infty}^{\infty}\left(t^{2}+5 t+6\right) \delta(3 t-2) d t$
6. $\left[e^{-t} u(t)\right] * \delta(3 t-2)$, where $*$ is convolution

Problem 5

Determine the Fourier transforms. Please note that $u(t)$ denotes the unit step in continuous time. [hint: do not explicitly solve for $X(\omega)$; make use of the continuous time Fourier transform properties]

1. $\delta(2 t-3)$
2. $e^{-2 \alpha t} u(t)$
3. $u(t)-u(t-T)$
4. $\sin \left(2 \Omega_{0} t+\phi\right)$

Problem 6

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental (smallest) period.

1. $x[n]=\cos \left(\frac{\pi n}{3}\right)$
2. $x[n]=\cos \left(\frac{3 \pi n}{11}+1\right)$
3. $x[n]=\sin \left(\frac{4 \pi n}{3}\right)$
4. $x[n]=e^{\left(\frac{j \pi n}{4}\right)}$
5. $x[n]=\sin \left(\frac{3 n}{4}\right)$
6. $x[n]=\sin (2 \pi n)$
7. $x[n]=e^{j \pi n}$

Problem 7

The continuous-time Fourier transform is given by the following relation:

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t .
$$

For the signal, $x(t)=e^{-4 t}(u(t)-u(t-2))$, determine the continuous-time Fourier transform of each of the following signals.

1. $x(t) e^{j 5 t}$
2. $x(t)+x(t+2)$
3. $x(t) \cos (2 t)$
4. $t x(t)$

Problem 8

Suppose that $g(t)=x(t) * \frac{1}{\pi} \operatorname{sinc}(t)$ (where $*$ denotes convolution) and that the Fourier transform is given by

$$
G(\omega)=\left\{\begin{array}{cc}
1-|\omega|, & |\omega| \leq 1 \\
0, & \text { else. }
\end{array}\right.
$$

1. Sketch $|G(\omega)|$ and $\angle G(\omega)$ each on their own plot over the region $|\omega|<2$.
2. Determine $X(\omega)$ and then the corresponding $\mathrm{x}(\mathrm{t})$. Assume that $X(\omega)=0$ for $|\omega|>1$.
3. Determine $\int_{-\infty}^{\infty}|g(t)|^{2} d t$.

Problem 9

Consider the following discrete-time system. If $y[-1]=1$ and $y[-2]=-1$, write a difference equation for $y[n]$.

Problem 10

The discrete-time Fourier transform (DTFT) of a sequence $x[n]$ is given by the following relation:

$$
X_{d}(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

For each of the following sequences, determine the corresponding DTFT. [hint: do not solve any of the summations]

1. $x[n]=u[n+3]-u[n-5]$
2. $x[n]=2 \delta[n+3]+2 \delta[n-3]$
3. $x[n]=\left(\frac{1}{3}\right)^{n-4} u[n-4]$
4. $x[n]=(1-n) 2^{n} u[n]$
5. Sketch the magnitude and phase for $\omega \in[-\pi, \pi]$ for parts (a) and (b).

Problem 11

The DTFT of $x[n]$ is given for $\omega \in[-\pi, \pi]$. Determine the signal $x[n]$ corresponding to each of the following:

1. $X_{d}(\omega)=2+3 e^{-j \omega}+2 e^{-3 j \omega}-e^{-5 j \omega}$
2. $X_{d}(\omega)= \begin{cases}0, & 0 \leq|\omega| \leq \omega_{0} \\ 1, & \omega_{0} \leq|\omega| \leq \pi\end{cases}$
3.

4. [hint: make use of the following property, $\left.\mathcal{F}^{-1}\left\{X_{1}(\omega) \star X_{2}(\omega)\right\}=x_{1}[n] x_{2}[n]\right]$

Problem 12

Let $X_{d}(\omega)$ denote the DTFT of the complex valued signal $x[n]$, where the real and imaginary parts of $x[n]$ are given below. [hint: you can perform the following calculations without explicitly evaluating $X_{d}(\omega)$]

1. Evaluate $\left.X_{d}(\omega)\right|_{\omega=0}$
2. Evaluate $\left.X_{d}(\omega)\right|_{\omega=\pi}$
3. Evaluate $\int_{-\pi}^{\pi} X_{d}(\omega) d \omega$
4. Determine and sketch the signal whose DTFT is $X_{d}^{*}(-\omega)$

Problem 13

The discrete Fourier transform (DFT) of a finite-length sequence $x[n]$, defined only over the range $0 \leq n \leq N-1$, is given by

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}, \quad 0 \leq k \leq N-1
$$

For each of the following finite length sequences, determine the corresponding DFT, $X[k]$.

1. $x[n]=\delta[n-3], 0 \leq n \leq 3$
2. $x[n]= \begin{cases}1 & 0 \leq n \leq 2 \\ 0 & 3 \leq n \leq 5\end{cases}$
3. $x[n]=\cos \left(\frac{\pi n}{4}\right), 0 \leq n \leq 7$
4. $x[n]=\left\{\begin{array}{lll}1 \quad n \text { even, } & 0 \leq n \leq 6 \\ 0 \quad n \text { odd, } & 0 \leq n \leq 6\end{array}\right.$
5. Sketch the magnitude and phase for parts (a) and (b).
*Reminder - Homework is due on $06 / 24 / 2011$ at 3:00 PM - place your assignments in the ECE 410 homework drop box in Everitt Hall!
