University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

PROBLEM SET 2: SOLUTIONS
Chandra Radhakrishnan Peter Kairouz

Problem 1

i. $\quad y[n-2]=x^{2}[n]+3 y[n]$

Non-linear, non-causal, shift-invariant.
ii. $\quad y[n]=x[-n+2]$

Linear, non-causal, shift-varying.
iii. $\quad y[n]=\left(\frac{1}{4}\right)^{|n|} x[n]$

Linear, causal, shift-varying.
iv. $y[n]=\sum_{m=-\infty}^{n+1} x[m]$

Linear, non-causal, shift-invariant.
v. $y[n]=\frac{x[n]}{x[2]}$

Nonlinear, non-causal, shift-varying
vi. $\quad y[n-1]=x[n-1]+\tan (4) x[n]-\cos (0.4 \pi n) y[n]$

Linear, non-causal, shift-varying.
vii. $y[n]=x[12 n]$

Linear, non-causal, shift-varying.

Problem 2

a) The inverse DFT of the sequence $X[k]=\left\{1, e^{-j \pi / 2}, 0, e^{j \pi / 2}\right\}$, where the first entry of $X[k]$ corresponds to $k=0$ is given by

$$
\begin{aligned}
x[n] & =\frac{1}{N} \sum_{k=0}^{N-1} e^{j \frac{2 \pi n k}{N}} \\
& =\frac{1}{4}\left(X[0]+X[1] e^{j \frac{\pi}{2}}+X[2] e^{j \pi n}+X[3] e^{j \frac{3 \pi}{2}}\right) \text { for } n=0,1,2,3 \\
& =\frac{1}{4}\left(1+2 \cos \left(\frac{\pi}{2}(n-1)\right)\right)
\end{aligned}
$$

Hence $x[0]=\frac{1}{4}, x[1]=\frac{3}{4}, x[2]=\frac{1}{4}, x[3]=\frac{-1}{4}$
b) Using the circular time shift property of the DFT

$$
\begin{aligned}
Y[k] & =X[k] e^{\frac{-j \pi k}{2}} \\
y[n] & =\frac{1}{4} \sum_{k=0}^{3} Y[k] e^{\frac{2 \pi n k}{4}} \\
& =\frac{1}{4} \sum_{k=0}^{3} X[k] e^{\frac{-j \pi k}{2}} e^{\frac{2 \pi n k}{4}} \\
& =\frac{1}{4} \sum_{k=0}^{3} X[k] e^{\frac{2 \pi(n-1) k}{4}} \\
& =x\left[<n-1>_{4}\right]
\end{aligned}
$$

Problem 3

a) Using circular time shift property

$$
\begin{aligned}
x_{1}[n] & =x\left[<n-5>_{8}\right] \\
X_{1}[k] & =X[k] e^{\frac{-j 2 \pi 5 k}{8}} \\
& =X[k] e^{\frac{-j 5 \pi k}{4}}
\end{aligned}
$$

b)

$$
\begin{aligned}
x_{2}[n] & =x\left[<n-3>_{8}\right] \\
X_{2}[k] & =X[k] e^{\frac{-j 2 \pi 3 k}{8}} \\
& =X[k] e^{\frac{-j 3 \pi k}{4}}
\end{aligned}
$$

Problem 4

a. $\quad y_{1}[n]=x[n] * h[n]$, where $h[n]=(0.7)^{n} u[n]$

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=-\infty}^{\infty} h[n-k] x[k] \\
& =\sum_{k=-\infty}^{\infty}(0.7)^{n-k} u[n-k](0.9)^{k} u[k] \\
& =(0.7)^{n} \sum_{k=0}^{n}(0.7)^{-k}(0.9)^{k} u[n] \\
& =(0.7)^{n} \frac{1-(0.9 / 0.7)^{n+1}}{1-0.9 / 0.7} u[n] \\
& =\frac{(0.7)^{n+1}-(0.9)^{n+1}}{0.7-0.9} u[n] \\
& =5\left(0.9^{n+1}-0.7^{n+1}\right) u[n] \\
& =\left[4.5(0.9)^{n}-3.5(0.7)^{n}\right] u[n]
\end{aligned}
$$

b. $\quad y_{2}[n]=x[n] * w[n]$, where $w[n]=u[n]-u[n-10]$

Using graphical convolution, it is easy to see that there are three distinct cases:

- for $n<0$

$$
y_{2}[n]=0
$$

- for $0 \leq n \leq 9$

$$
\begin{aligned}
y_{2}[n] & =\sum_{k=0}^{n}(0.9)^{k} \\
& =\sum_{k=0}^{\infty}(0.9)^{k}-\sum_{k=n+1}^{\infty}(0.9)^{k} \\
& =\frac{1-0.9^{n+1}}{1-0.9} \\
& =10\left(1-0.9^{n+1}\right)
\end{aligned}
$$

- for $n \geq 10$

$$
\begin{aligned}
y_{2}[n] & =\sum_{k=n-9}^{n}(0.9)^{k} \\
& =\frac{(0.9)^{n-9}-(0.9)^{n+1}}{1-0.9} \\
& =10(0.9)^{n-9}\left[1-(0.9)^{10}\right]
\end{aligned}
$$

c. $y[n]=x[n] * v[n]$, where $v[n]=\frac{1}{5} h[n-1]+\frac{1}{10} w[n+9]$

$$
\begin{aligned}
y[n] & =x[n] * v[n] \\
& =\frac{1}{5}(x[n] * h[n-1])+\frac{1}{10}(x[n] * w[n+9]) \\
& =\frac{1}{5} y_{1}[n-1]+\frac{1}{10} y_{2}[n+9]
\end{aligned}
$$

Now from parts (a) and (b) we have,

$$
\begin{gathered}
\frac{1}{5} y_{1}[n-1]=\left\{\begin{array}{cc}
0, & n<1 \\
(0.9)^{n}-(0.7)^{n}, & n \geq 1
\end{array}\right. \\
\frac{1}{10} y_{2}[n+9]=\left\{\begin{array}{cc}
0, & n<-9 \\
\left(1-(0.9)^{n+10}\right), & -9 \leq n \leq 0 \\
(0.9)^{n}\left(1-(0.9)^{10}\right), & n \geq 1
\end{array}\right.
\end{gathered}
$$

Combining the above two results together we have,

$$
y[n]=\left\{\begin{array}{cc}
0, & n<-9 \\
\left(1-(0.9)^{n+10}\right), & -9 \leq n \leq 0 \\
(0.9)^{n}\left(2-(0.9)^{10}\right)-0.7^{n}, & n \geq 1
\end{array}\right.
$$

d. $y_{0}[n]=s[n] * t[n]$, where $s[n]=x[n-3]$ and $t[n]=h[n+1]$

$$
\begin{aligned}
y_{0}[n] & =s[n] * h[n] \\
& =x[n-3] * h[n+1] \\
& =y_{1}[n-3+1] \\
& =y_{1}[n-2]
\end{aligned}
$$

which yields,

$$
y_{0}[n]=5\left[(0.9)^{n-1}-(0.7)^{n-1}\right] u[n-2]
$$

therefore,

$$
y_{0}[n]=\left\{\begin{array}{cc}
0, & n<2 \\
5\left[(0.9)^{n-1}-(0.7)^{n-1}\right], & n \geq 2
\end{array}\right.
$$

Problem 5

For $x[n]=\delta[n]$ we have,

$$
\begin{aligned}
& y[n]-\frac{1}{4} y[n-1]=4 x[n]+3 x[n-1] \\
& y[n]-\frac{1}{4} y[n-1]=4 \delta[n]+3 \delta[n-1]
\end{aligned}
$$

Consider the following cases:

1. $n=0$,

$$
\begin{aligned}
h[0]-\frac{1}{4} h[-1] & =4 \\
h[0] & =4
\end{aligned}
$$

2. $n=1$,

$$
\begin{aligned}
h[1]-\frac{1}{4} h[0] & =3 \\
h[1] & =4
\end{aligned}
$$

3. $n \geq 2$

$$
\begin{aligned}
& h[n]-\frac{1}{4} h[n-1]=0 \\
& h[n]=\frac{1}{4} h[n-1]
\end{aligned}
$$

Hence the solution is of the form,

$$
h[n]=K\left(\frac{1}{4}\right)^{n}
$$

We can find K by using $h[1]$

$$
\begin{aligned}
h[1] & =K\left(\frac{1}{4}\right)^{1}=4 \\
K & =16
\end{aligned}
$$

Therefore,

$$
h[n]=\left\{\begin{array}{cc}
4, & n=0 \\
16\left(\frac{1}{4}\right)^{n}, & n \geq 1
\end{array}\right.
$$

or

$$
h[n]=-12 \delta[n]+16\left(\frac{1}{4}\right)^{n} u[n]
$$

Problem 6

The system can be represented as,

$$
y[n]-\frac{1}{4} y[n-1]=4 x[n]+3 x[n-1]
$$

this is the same difference equation as in Problem 5. Therefore the system output is given by,

$$
\begin{aligned}
y[n] & =h[n] * x[n] \\
& =\sum_{k=-\infty}^{\infty}(0.5)^{k} u[k-2]\left(-12 \delta[n-k]+16\left(\frac{1}{4}\right)^{n-k} u[n-k]\right) \\
& =-12\left((0.5)^{n} u[n-2]\right)+\sum_{k=-\infty}^{\infty}(0.5)^{k} u[k-2]\left[16\left(\frac{1}{4}\right)^{n-k} u[n-k]\right] \\
& =-12\left((0.5)^{n} u[n-2]\right)+16 \sum_{k=-\infty}^{\infty}(0.5)^{k} u[k-2]\left(\frac{1}{4}\right)^{n-k} u[n-k] \\
& =-12\left((0.5)^{n} u[n-2]\right)+16\left(\frac{1}{4}\right)^{n} \sum_{k=-\infty}^{\infty}\left(0.5^{k}\right) u[k-2]\left(\frac{1}{4}\right)^{-k} u[n-k] \\
& =-12\left((0.5)^{n} u[n-2]\right)+16\left(\frac{1}{4}\right)^{n} \sum_{k=2}^{\infty} 2^{k} u[n-k] \\
& =-12\left((0.5)^{n} u[n-2]\right)+16\left(\frac{1}{4}\right)^{n} \sum_{k=2}^{n} 2^{k} u[n-2]
\end{aligned}
$$

The sum $\sum_{k=2}^{n} 2^{k}$ can be written as,

$$
\sum_{k=2}^{n} 2^{k}=\sum_{m=0}^{n-2} 2^{m+2}=4 \frac{1-2^{n-1}}{1-2}=4\left(2^{n-1}-1\right)
$$

Therefore,

$$
\begin{aligned}
y[n] & =-12\left((0.5)^{n} u[n-2]\right)+64\left(\frac{1}{4}\right)^{n}\left(2^{n-1}-1\right) u[n-2] \\
& =\left(-12 .(0.5)^{n}+16 .(0.5)^{n}-\left(\frac{1}{4}\right)^{n-3}\right) u[n-2] \\
& =\left(4 .(0.5)^{n}-\left(\frac{1}{4}\right)^{n-3}\right) u[n-2]
\end{aligned}
$$

Problem 7

a. The DTFT is shown in Fig. 1 and Fig. 2 respectively,

Figure 1: Problem 7.DTFT for Sampling Frequency $F_{s}=3000 \mathrm{~Hz}$

Figure 2: Problem 7.DTFT for Sampling Frequency $F_{s}=2000 \mathrm{~Hz}$
b. The minimum sampling rate to avoid aliasing is given by the Nyquist rate $f_{s} \geq \frac{1}{T_{m a x}}$. For our given signal, this occurs at the sampling rate $T=1000$ seconds. This Nyquist rate is 2000 Hz .

Problem 8

a. The highest frequency in the signal is $F=2 H z$. Therefore, the Nyquist frequency is $F_{\text {Nyquist }}=4 H z$
b. - Let $X_{d}(\omega)$ denote the DTFT of the signal. The 512 point DFT is given by,

$$
X[k]=X_{d}\left(\frac{2 \pi k}{N}\right)
$$

where $N=512$.
i.e ω is sampled at 512 equally spaced point,

$$
\omega_{k}=\frac{2 \pi k}{512}
$$

which yields,

$$
k=\frac{\omega_{k} N}{2 \pi}
$$

We will observe a peak at $\omega_{k}=\frac{4 \pi}{10}$ (which corresponds to the discrete frequency of the term $\left.\cos (4 \pi t)\right)$ and its second copy at $\omega_{k}^{\prime}=2 \pi-\frac{4 \pi}{10}=\frac{16 \pi}{10}$ due to the symmetry and periodicity of the spectrum. Hence the largest amplitude of DFT are at,

$$
k=\left\lfloor\frac{4 \pi}{10(2 \pi)} \times 512\right\rfloor=102
$$

and

$$
k^{\prime}=\left\lfloor\frac{16 \pi}{10(2 \pi)} \times 512\right\rfloor=409
$$

c. We cannot use 50% overlap criteria as the small peak may completely merge into the larger. We will use the no overlap method,

$$
\begin{aligned}
N & >\frac{4 \pi}{\left(\Omega_{1}-\Omega_{0}\right) T} \\
N & >\frac{4 \pi \times 10}{4 \pi-\frac{63 \pi}{16}} \\
& =\frac{4 \pi \times 10 \times 16}{\pi}
\end{aligned}
$$

Therefore $N>640$
d. Larger T will give better resolution, as all frequencies are farther apart. The Nyquist frequency will give the best resolution,

$$
\left(\Omega_{1}-\Omega_{0}\right)>\frac{4 \pi \times 4}{640}=\frac{\pi}{40} \mathrm{rad} / \mathrm{s}
$$

Hence $f=\frac{1}{80} \mathrm{~Hz}$.
e. As f_{s} is increased, all analog frequencies are squeezed in and therefore come closer to each other in the spectral analysis and this degrades the resolution capability of the spectral analysis method.

Problem 9

a. We must have $x[n]=x_{a}(n T)$ where T is the sampling period. From the given expressions of $x[n]$ and $x_{a}(n T)$ we have,

$$
\begin{aligned}
\frac{\pi n}{5} & =15 \pi n T \\
\frac{6 \pi n}{5} & =90 \pi n T
\end{aligned}
$$

Hence $T=\frac{1}{75}$.
b. The choice is not unique. We can have,

$$
\begin{aligned}
\frac{\pi n}{5}+2 \pi k n & =15 \pi n T \\
\frac{6 \pi n}{5}+2 \pi k n & =90 \pi n T
\end{aligned}
$$

Hence any solution of the form $T=\frac{1+10 k}{75}, k=0,1,2, \ldots$ will work.

Problem 10

a. The sampled signal is,

$$
x[n]=x_{a}(n T)=\cos (450 \pi n T)
$$

Let $X_{c}(\Omega)$ be the Fourier Transform of $x_{a}(t)$, then we have,

$$
\begin{aligned}
X_{c}(\Omega) & =\frac{1}{2} F\left[e^{j 450 \pi t}+e^{-j 450 \pi t}\right] \\
& =\frac{1}{2}[2 \pi \delta(\Omega-450 \pi)+2 \pi \delta(\Omega+450 \pi)] \\
& =\pi[\delta(\Omega-450 \pi)+\delta(\Omega+450 \pi)]
\end{aligned}
$$

The Fourier Transform of $X_{a}(t)$ is shown in Fig. 3. The Nyquist sampling rate is $T_{s}=\frac{\pi}{\Omega_{\max }}=\frac{\pi}{450 \pi}=2.2 \mathrm{~ms}$. Now,

Figure 3: Problem 10. Fourier Transform of $x_{a}(t)$.
$T=1 m s<T_{s}$. By the sampling theorem we have,

$$
X_{d}(\omega)=\frac{1}{T} \sum_{n=-\infty}^{\infty} X_{c}\left(\frac{\omega+2 n \pi}{T}\right)
$$

where $\omega=\Omega T=0.45 \pi$. The DTFT of $x[n]$ for $T=1 m s$ is shown in Fig. 4 . When $T=2.5 m s>T_{s}$ we will have aliasing.

Figure 4: Problem 10. Fourier Transform of $x[n]$ for $T=1 \mathrm{~ms}$.
$\omega=\Omega T=450 \pi \times 2.5(\mathrm{~ms})=1.125 \pi$. The Fourier Transform is shown in Fig. 5.
b. Since the Nyquist sampling rate $T_{s}=\frac{1}{450} \mathrm{~s}$. The maximum sampling period $T_{\max }=T_{s}=\frac{1}{450} \mathrm{~s}$, such that no aliasing occurs.

Problem 11 The difference equation is

$$
\begin{equation*}
y[n]=A y[n-1]+B y[n-2] \tag{1}
\end{equation*}
$$

where $A=1 / 3, B=-2 / 3$ In general solution of the form

$$
y[n]=c r^{n}
$$

Figure 5: Problem 10. Fourier Transform of $x[n]$ for $T=2.5 \mathrm{~ms}$.

Replacing $y[n]$ in (1) and simplifying:

$$
\begin{aligned}
c r^{n} & =A c r^{n-1}+B c r^{n-2} \\
r^{n} & =A r^{n-1}+B r^{n-2} \\
r^{n-2} r^{2} & =r^{n-2}(A r+B) \\
r^{2} & =A r+B
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
r^{2}-A r-B=0 \tag{2}
\end{equation*}
$$

Solving for the roots of (2) we get the roots as $r_{1}=\alpha+j \beta$ and $r_{2}=\alpha-j \beta$, where $\alpha=\frac{-1}{6}$ and $\beta=\frac{\sqrt{23}}{6}$. $y[n]$ can now be written as,

$$
\begin{align*}
y[n] & =c r_{1}^{n}+d r_{2}^{n} \\
& =c(\alpha+j \beta)^{n}+d(\alpha+j \beta)^{n} \\
& =\left(\sqrt{\alpha^{2}+\beta^{2}}\right)^{n}\left(c e^{-j \theta n}+d e^{j \theta n}\right) \tag{3}\\
& =2\left(\sqrt{\alpha^{2}+\beta^{2}}\right)^{n}(E \cos (\theta n)+F \sin (\theta n))
\end{align*}
$$

where, $c=E+j F, d=E-j F, \theta=\tan ^{-1} \frac{\beta}{\alpha}$ Now substituting the values of α, β we get,

$$
y[n]=2\left(\frac{\sqrt{6}}{3}\right)^{n}(E \cos (78.22 n)+F \sin (78.22 n))
$$

We can now use initial conditions, $y[-1]$ and $y[-2]$ to solve for E and F

$$
\begin{aligned}
1 & =2\left(\frac{\sqrt{6}}{3}\right)(E \cos (78.22)+F \sin (78.22)) \\
-1 & =2\left(\frac{\sqrt{6}}{3}\right)^{2}(E \cos (78.22 * 2)+F \sin (78.22 * 2))
\end{aligned}
$$

Solving we get $E=0.5$ and $F=-0.3127$ hence the solution is

$$
y[n]=2\left(\frac{\sqrt{6}}{3}\right)^{n}(0.5 \cos (78.22 n)-0.3127 \sin (78.22 n))
$$

