University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

ECE 310: Digital Signal Processing I Chandra Radhakrishnan Peter Kairouz

Problem Set 4 Summer 2011

Reading: Chapter 5: Sections 5.10-5.14, Chapter 8: Frequency response of LSI systems

Problem 1

Determine whether each of the following represents a BIBO stable system:

- 1. $H(z) = \frac{z-7}{z^2+1/9}$, causal
- 2. $H(z) = \frac{z-7}{z^2+1/9}$, anticausal
- 3. $H(z) = \frac{z}{(z-0.7)(z^2+z+1)}, h[n]$ is two-sided
- 4. $H(z) = \frac{z+1}{z-1}$, causal
- 5. $H(z) = \frac{z-1}{z^2+j}$, causal

For each case in which the system is determined to be unstable, find a bounded real-valued input that will produce an unbounded output.

Problem 2

For the block diagram shown in Fig. 1:

Figure 1: System for Problem 2

a. write down the difference equation.

b. draw the block-diagram of a direct-form II architecture that implements the same function as the block diagram shown above.

For each case in which the system is determined to be unstable, find a real-valued input that will produce an unbounded output.

Problem 3

For the difference equation 0 = 2y[n+2] - 2y[n] + 4x[n+2] + 2x[n+1],

- a. Put the difference equation in standard causal form $y[n] = \cdots$
- b. Draw a block diagram (i.e., flow diagram, or digital filter structure) implementing this difference equation.
- c. For the input $x[n] = \delta[n]$ and the system at rest (i.e., zero initial conditions), compute y[-1], y[0], y[1], y[2], and y[3] by hand directly from the difference equation.
- d. Find the transfer function H(z).
- e. Compute the unit pulse response, h[n], via inverse z-transform. Confirm that h[-1] through h[3] are identical to the samples of the unit pulse response computed above via direct iteration of the difference equation.

Problem 4

An LSI system is described by the difference equation

$$y[n] = x[n] + x[n-10]$$

- 1. Compute and sketch its magnitude and phase response
- 2. Determine its output to inputs
 - (a) $x[n] = \cos \frac{\pi}{10}n + 3\sin \left(\frac{\pi}{3}n + \frac{\pi}{10}\right)$
 - (b) $x[n] = 10 + 5\cos\left(\frac{2\pi}{5}n + \frac{\pi}{2}\right)$

Problem 5

Two systems with unit-pulse responses

$$h_1[n] = \frac{4}{7}(2)^{n-1}u[-n] + \frac{11}{7}\left(\frac{1}{4}\right)^{n-1}u[n-1], \qquad h_2[n] = \delta[n] - 3^{n-1}u[-n]$$

are connected in cascade. For each of the individual systems, as well as for the cascade, determine whether it is causal and/or BIBO stable.

Problem 6

The response of a real LSI system for input

$$x[n] = 3 + \cos\left(\frac{\pi}{4}n + 10^{\circ}\right) + \sin\left(\frac{\pi}{3}n + 25^{\circ}\right)$$

is

$$y[n] = 9 + 2\sin\left(\frac{\pi}{4}n + 10^{\circ}\right)$$
.

Determine the system response $\tilde{y}[n]$ for input

$$\tilde{x}[n] = 5 + 2\sin\left(\frac{\pi}{4}n + 15^{\circ}\right) + 10\cos\left(-\frac{\pi}{3}n + 25^{\circ}\right)$$
.

Problem 7

The frequency response of an LSI system is

$$H_d(\omega) = \omega e^{j\sin(\omega)}, \qquad |\omega| \le \pi$$

Determine the system output y[n] for the following inputs:

- a. $x[n] = 5 + 10e^{j(\frac{\pi}{4}n + 45^\circ)} + j^n$
- b. $x[n] = 5 + 10\cos(\frac{\pi}{4}n + 45^\circ) + j^n$.

Problem 8

The input $x[n] = 2^n (u[n] - 3u[n-1])$ to an unknown LSI system produces output $y[n] = (3^n - 2^n)u[n]$.

- a. Determine the unit pulse response h[n].
- b. Is the solution unique? What if the system is known to be unstable? What if it is causal?

Problem 9

Consider a filter with the system function

$$H(z) = b_0 \frac{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})}{(1 - re^{j\omega_0} z^{-1})(1 - re^{-j\omega_0} z^{-1})}$$

- a. Sketch the pole-zero pattern.
- b. From the pole-zero pattern, using geometric arguments, show that for $r \approx 1$, the system is a notch filter and provide a rough sketch of its magnitude response if $\omega_0 = 60^\circ$.
- c. For $\omega_0 = 60^\circ$ choose b_0 so that the maximum value of $|H(\omega)|$ is 1.
- d. Draw a direct form II realization of the system.

Problem 10

There are three causal systems with the following difference equations labeled (1), (2), and (3):

$$\frac{3}{2}y[n] - \frac{7}{2}y[n-1] + y[n-2] = 2x[n] + x[n-1]$$
(1)

$$4y[n] + 2y[n-1] = x[n] - \frac{7}{12}x[n-1] + \frac{1}{12}x[n-2]$$
(2)

$$-y[n] + \frac{3}{10}y[n-1] + \frac{1}{10}y[n-2] = 2x[n] - 4x[n-1]$$
(3)

- a. Find the expression for the transfer function of the all three systems, $H_1(z)$, $H_2(z)$, $H_3(z)$, and plot their pole-zero graphs, and determine whether each of them is BIBO stable or not.
- b. Two of these Filters are then connected in cascade, so that the cascaded system is BIBO stable. Select the two systems that will result in a BIBO stable system when connected in cascade. Find the expression for this system's transfer function, and then plot its pole-zero graph.
- c. Find the difference equation of the cascaded system.

Problem 11 The pole-zero plots of four causal systems labeled A, B, C, and D are plotted in Figures on the pages attached. Zeros are marked with an 'o' and poles are marked with an 'x'.

- a. Without finding the expressions of the transfer functions of the systems, determine which of the systems are BIBO stable.
- b. Find the expressions for all the transfer functions $H_A(z)$, $H_B(z)$; $H_C(z)$; and $H_D(z)$.
- c. Cascade the two systems B and C. Find the expression of the transfer function $H_B(z)H_C(z)$, determine whether it is BIBO stable, and find its inverse z-transform, $h_{BC}[n]$.

Figure 3: System B for Problem 11

d. Cascade the two systems A and D. Find the expression of the transfer function $H_A(z)H_D(z)$, determine whether it is BIBO stable, and find its inverse z-transform, $h_{AD}[n]$.

Figure 5: System D for Problem 11

*Reminder - Homework is due on 07/15/2011 at 5:00 PM - place your assignments in the <u>ECE 410</u> homework drop box in Everitt Hall!