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Problem 1
To derive xa(t) (Xa(Ω)) from Xd(ω), we first need to get rid of the repeated frequency component in Xd(ω). Thus, multiply an
ideal LPF on both sides.

Ga(Ω) =

{
T |Ω| < π

T
0 else

⇒ ga(t) = sinc
( π
T
t
)

Therefore,

⇒ Xa

(ω
T

)
= Xd(ω)Ga(Ω)

⇒ Xa(Ω) = Xd(ω)Ga(Ω)

⇒ xa(t) = x(nT ) ∗ ga(t)

⇒ xa(t) =

∞∑

n=−∞
x[n]sinc

( π
T

(t− nT )
)

Problem 2

(a) The Nyquist sampling rate is given by,

TNyquist =
1

(12 · 103)(2)
= 0.000042 sec = 0.042 ms

∴ fNyquist =
1

TNyquist
= 24 kHz

(b)

ωmax = TNyquist · (2π)(6000) =
π

2

ωmin = TNyquist · (2π)(300) =
π

40

The sketch of the frequency response of the discrete-time filter, when sampling at the Nyquist rate is shown in Fig. 1

(c) Some aliasing of the input signal is allowed with the condition that the minimum aliasing frequency is greater than the cutoff
frequency of the filter.

2π − 2π · 12000Tmax1 ≥ 2π · 6000Tmax1

1 ≥ 18000Tmax1

Tmax1 =
1

18000
sec

Also, the maximum frequency of Hd,2(ω) should be less than or equal to π.

ωmax = Tmax2(2π)(6000) ≤ π

Tmax2 =
1

12000
sec

Therefore, T = min (Tmax1, Tmax2) = Tmax1 = 1
18000 sec
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1. To derive xa(t) (Xa(Ω)) from Xd(ω), we first need to get rid of the repeated frequency component
in Xd(ω). Thus, multiply an ideal LPF on both sides.

LPF : Ga(Ω) =

{
T |Ω| < π

T

0 else
, ga(t) = sinc

(π

T
t
)

⇒ Xa

(ω
T

)
= Xd(ω)Ga(Ω)

⇒ Xa(Ω) = Xd(ω)Ga(Ω)

⇒ xa(t) = x(nT ) ∗ ga(t)

⇒ xa(t) =
∞∑

n=−∞
x[n]sinc

(π

T
(t− nT )

)

2. (a)

TNyquist =
1

(12 · 103)(2) = 0.000042 sec = 0.042 ms

∴ fNyquist =
1

TNyquist
= 24 kHz

(b)

ωmax = TNyquist · (2π)(6000) =
π

2

ωmin = TNyquist · (2π)(300) =
π

40

The sketch of the frequency response of the discrete-time filter, when sampling at the Nyquist
rate is given below

1
Figure 1: Figure for Problem 2(b)

(d)

ωmax =
1

18000
· (2π)(6000) =

2π

3

ωmin =
1

18000
· (2π)(300) =

π

30

The sketch of the frequency response of the discrete-time filter, when sampling at the maximum rate is shown in Fig. 2

(c) Some aliasing of the input signal is allowed with the condition that the minimum aliasing
frequency is greater than the cutoff frequency of the filter.

2π − 2π · 12000Tmax1 ≥ 2π · 6000Tmax1

1 ≥ 18000Tmax1

Tmax1 =
1

18000
sec

Also, the maximum frequency of Hd,2(ω) should be less than or equal to π.

ωmax = Tmax2(2π)(6000) ≤ π

Tmax2 =
1

12000
sec

Therefore, T = min (Tmax1, Tmax2) = Tmax1 =
1

18000 sec

(d)

ωmax =
1

18000
· (2π)(6000) = 2π

3

ωmin =
1

18000
· (2π)(300) = π

30

The sketch of the frequency response of the discrete-time filter, when sampling at the maximum
rate is given below

3. (a) The Nyquist rate is twice the highest frequency component, fs ≥ 10 kHz.
Therefore, Tmax = 1

10000 sec.

(b)

ω = ΩT

π

8
=

1

10000
Ω

Ω = 2π · 625
f = 625 Hz

(c)

ω = ΩT

π

8
=

1

20000
Ω

Ω = 2π · 1250
f = 1250 Hz

2

Figure 2: Figure for Problem 2(d)

Problem 3

(a) The Nyquist rate is twice the highest frequency component, fs ≥ 10 kHz.
Therefore, Tmax = 1

10000 sec.

(b)

ω = ΩT

π

8
=

1

10000
Ω

Ω = 2π · 625

f = 625 Hz

(c)

ω = ΩT

π

8
=

1

20000
Ω

Ω = 2π · 1250

f = 1250 Hz
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Problem 4

(a) The sketches for Xd(ω), Yd(ω), and Ya(Ω) are given below4. (a) The sketches for Xd(ω), Yd(ω), and Ya(Ω) are given below

(b)

Pa(Ω) =

∫ T

0
1 · e−jΩtdt

= T · e−j ΩT
2 sinc

(
ΩT

2

)

∴ Ya(Ω) = Te−j ΩT
2 sinc

(
ΩT

2

)
Yd(ΩT )

The sketch of the magnitude of Ya(Ω) is given below:

3

Figure 3: Figure for Problem 4(a)

(b)

Pa(Ω) =

∫ T

0

1 · e−jΩtdt

= T · e−j ΩT
2 sinc

(
ΩT

2

)

∴ Ya(Ω) = Te−j
ΩT
2 sinc

(
ΩT

2

)
Yd(ΩT )

The sketch of the magnitude of Ya(Ω) is given in Fig. 4: The component of Ya(Ω) for |Ω| > π
T = 2000π is due to the nonideal

D/A. The highest amplitude of this unwanted component of Ya(Ω) is at Ω = 2500π rad/sec and

|Ya(2500π)| = Yd

(
5π

4

)
· T · sinc

(
2500πT

2

)
= 0.2353

as shown in the figure above.

Problem 5
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The component of Ya(Ω) for |Ω| > π
T = 2000π is due to the nonideal D/A. The highest

amplitude of this unwanted component of Ya(Ω) is at Ω = 2500π rad/sec and

|Ya(2500π)| = Yd

(
5π

4

)
· T · sinc

(
2500πT

2

)
= 0.2353

as shown in the figure above.

5. (a)

X0(Ω) = P0(Ω)Xd(ΩT )

X1(Ω) = P1(Ω)Xd(ΩT )

∴ H(Ω) =
X1(Ω)

X0(Ω)
=

P1(Ω)

P0(Ω)

For zero-order hold:

P0(Ω) =

∫ T

0
1 · e−jΩtdt = Te−j ΩT

2 sinc

(
ΩT

2

)

For first-order hold:

p1(t) =
1

T
rect

(
t

T

)
∗ rect

(
t

T

)
=

1√
T
p0

(
t+

T

2

)
∗ 1√

T
p0

(
t+

T

2

)

∴ P1(Ω) =

(
1√
T
Te−j ΩT

2 sinc

(
ΩT

2

)
ej

ΩT
2

)2

= T sinc2
(
ΩT

2

)

∴ H(Ω) =
T sinc2

(
ΩT
2

)

Te−j ΩT
2 sinc

(
ΩT
2

) = ej
ΩT
2 sinc

(
ΩT

2

)

(b) For an ideal D/A, Ya(Ω) = Gideal(Ω)Yd(ΩT ) where:

Gideal(Ω) =

{
T, |Ω| ≤ π

T

0, otherwise

4

Figure 4: Figure for Problem 4(b)

(a )

X0(Ω) = P0(Ω)Xd(ΩT )

X1(Ω) = P1(Ω)Xd(ΩT )

∴ H(Ω) = X1(Ω)
X0(Ω) = P1(Ω)

P0(Ω)

For zero-order hold:

P0(Ω) =

∫ T

0

1 · e−jΩtdt = Te−j
ΩT
2 sinc

(
ΩT

2

)

For first-order hold:

p1(t) =
1

T
rect

(
t

T

)
∗ rect

(
t

T

)
=

1√
T
p0

(
t+

T

2

)
∗ 1√

T
p0

(
t+

T

2

)

∴ P1(Ω) =

(
1√
T
Te−j

ΩT
2 sinc

(
ΩT

2

)
ej

ΩT
2

)2

= Tsinc2
(

ΩT

2

)

∴ H(Ω) =
Tsinc2

(
ΩT
2

)

Te−j
ΩT
2 sinc

(
ΩT
2

) = ej
ΩT
2 sinc

(
ΩT

2

)

(b) For an ideal D/A, Ya(Ω) = Gideal(Ω)Yd(ΩT ) where:

Gideal(Ω) =

{
T, |Ω| ≤ π

T

0, otherwise
For the FOH, to form an ideal D/A, Ya(Ω) = F1(Ω)P1(Ω)Yd(ΩT ) where F1(Ω) is an analog filter

that follows the FOH and

F1(Ω) =

{
T

P1(Ω) = 1

sinc2( ΩT
2 )
, |Ω| ≤ π

T

0, otherwise

(c) Suppose F0(Ω) and F1(Ω) are the analog filters that follow the ZOH and FOH, respectively. For reference, the frequency
responses of the ZOH and FOH and their subsequent filters are given in Fig. 5. The cutoff frequency for both F0(Ω) and
F1(Ω) is Ω = π

T . The magnitudes of these LPFs are

|F0(Ω)| =

∣∣∣∣ 1

sinc( ΩT
2 )

∣∣∣∣

|F1(Ω)| =

∣∣∣∣ 1

sinc2( ΩT
2 )

∣∣∣∣
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For the FOH, to form an ideal D/A, Ya(Ω) = F1(Ω)P1(Ω)Yd(ΩT ) where F1(Ω) is an analog
filter that follows the FOH and

F1(Ω) =





T
P1(Ω) =

1
sinc2(ΩT

2 )
, |Ω| ≤ π

T

0, otherwise

(c) Suppose F0(Ω) and F1(Ω) are the analog filters that follow the ZOH and FOH, respectively.
For reference, the frequency responses of the ZOH and FOH and their subsequent filters are
given below.
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0
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|F

0
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1
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The cutoff frequency for both F0(Ω) and F1(Ω) is Ω = π
T . The magnitudes of these LPFs are

|F0(Ω)| =
∣∣∣∣∣

1

sinc
(
ΩT
2

)
∣∣∣∣∣

|F1(Ω)| =
∣∣∣∣∣

1

sinc2
(
ΩT
2

)
∣∣∣∣∣

|F1(Ω)| has a frequency response which is steeper that |F0(Ω)|. Therefore, the FOH (linear
interpolation) might interpolate y[n] more precisely than a ZOH (piecewise constant interpo-
lation) at a cost of a more complicated/expensive analog filter that follows the FOH.
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Figure 5: Figure for Problem 5(c)

|F1(Ω)| has a frequency response which is steeper that |F0(Ω)|. Therefore, the FOH (linear interpolation) might interpolate
y[n] more precisely than a ZOH (piecewise constant interpolation) at a cost of a more complicated/expensive analog filter
that follows the FOH.

Problem 6

(a) It is given that
ya(t) = xa(t) + αxa(t− τd) + β xa(t− 2τd)

Applying the Fourier transform on both sides, we have:

Ya(Ω) = Xa(Ω) + αXa(Ω)e−jΩτd + βXa(Ω)e−j2Ωτd

Ha(Ω) =
Ya(Ω)

Xa(Ω)
= 1 + αe−jΩτd + βe−j2Ωτd

(b) Taking appropriate sampling period to mean the Nyquist sampling period:

T0 =
1

2fmax
=

1

2× 20× 103
= 25 µs

(c) With the sampling period T0 = 25 µs there is no aliasing in the system. With an ideal D/C, the digital filter we need is:

Hd(ω) = Ha(
ω

T0
) = 1 + αe−jωτd/T0 + βe−j2ωτd/T0 (∗)

= 1 + αe−j40000ωτd + βe−j80000ωτd

(d) With τd = 100T0, Equation (∗) above simplifies as:

Hd(ω) = 1 + αe−100jω + βe−200jω

By substituting z = ejω, we obtain the following transfer function:

H(z) = 1 + αz−100 + βz−200,

which can be implemented using the block diagram below.
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Figure 6: Figure for Problem 6(d)

Problem 7 The Fourier transform of yc(t) is sketched in Fig. 7,

Figure 7: Figure for Problem 7

Problem 8

(a) H(z) is not a polynomial in z or z−1 the system is IIR.

(b) H(z) is not a polynomial in z or z−1 the system is IIR.

(c) H(z) is a polynomial of z−1 the system is an FIR filter.
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