University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

ECE 310: Digital Signal Processing I

Chandra Radhakrishnan
Peter Kairouz

Problem Set 6
Summer 2011
Reading: Chapter 10-13: FIR Filter Design, IIR Filter Design, Digital Interpolation

Problem 1

Determine the coefficients of a linear-phase FIR filter

$$
y[n]=h_{0} x[n]+h_{1} x[n-1]+h_{2} x[n-2]
$$

such that (i) it rejects any frequency component at $\omega_{0}=5 \pi / 6$, and (ii) its frequency response is normalized so that $H_{d}(0)=1$.

Problem 2

The frequency response of a GLP filter can be expressed as $H_{d}(\omega)=R(\omega) e^{j(\alpha-M \omega)}$ where $R(\omega)$ is a real function. For each of the following filters, determine whether it is a GLP filter. If it is, find $R(\omega), M$, and α, and indicate whether it is also a linear phase filter.

1. $\left\{h_{n}\right\}_{n=0}^{2}=\{2,1,1\}$
2. $\left\{h_{n}\right\}_{n=0}^{2}=\{1,2,3\}$
3. $\left\{h_{n}\right\}_{n=0}^{2}=\{-1,3,1\}$
4. $\left\{h_{n}\right\}_{n=0}^{4}=\{1,1,1,-1,-1\}$
5. $\left\{h_{n}\right\}_{n=0}^{2}=\{1,0,-1\}$
6. $\left\{h_{n}\right\}_{n=0}^{3}=\{2,1,1,2\}$

In each case, the remaining terms of the unit pulse response of the filter are zero.

Problem 3

(a) Determine whether the system is FIR or IIR? If the system is FIR, sketch its $h[n]$.
(b) If the system is FIR, determine whether $h[n]$ is of even or odd length.
(c) If the system is FIR, determine whether $h[n]$ has even or odd symmetry, or neither.
(d) Determine whether its $H_{d}(\omega)$ has linear phase. If it does not, determine whether it has Type I or Type II generalized linear phase (GLP), or neither.
(e) The frequency response of a GLP filter can be expressed as $H_{d}(\omega)=R_{d}(\omega) e^{j(\alpha-M \omega)}$, where $R_{d}(\omega)$ is a real function. For systems that have a GLP or linear phase, find $R_{d}(\omega), M$, and α.
(i) $y[n]=\frac{2}{5} x[n]-x[n-1]+x[n-2]-\frac{2}{5} x[n-3]$
(ii) $y[n]=\frac{1}{3} x[n]+x[n-1]-\frac{3}{4} x[n-2]$
(iii) $y[n]=x[n]+x[n-2]+x[n-4]$

Problem 4

Use the windowing method to design a length- N low-pass, generalized linear phase FIR filter with cut-off frequency $\pi / 4$.

1. Find an expression for the filter coefficients $\left\{h_{n}\right\}_{n=0}^{N-1}$ if the rectangular window is used for the design.
2. Find an expression for the filter coefficients $\left\{h_{n}\right\}_{n=0}^{N-1}$ if the Hamming window is used for the design.

Problem 5

Use the frequency sampling method to design a length-100 FIR high-pass filter having cutoff frequency $3 \pi / 4$.

1. Should the filter have type-1 GLP or type-2 GLP?
2. Find an expression for the filter coefficients $\left\{h_{n}\right\}_{n=0}^{99}$.

Problem 6

The bilinear transform is to be used with the analog prototype $H_{L}(s)=\frac{s}{s+2}$ to determine the transfer function $H(z)$ of a digital HPF with 3 dB cutoff $\pi / 3$ (i.e., $\left|H_{d}(\pi / 3)\right|^{2}=0.5$).

1. Determine the 3 dB cutoff for the analog prototype Ω_{c}.
2. Find $H(z)$ in closed form.

Problem 7

For the following bilinear transformation

$$
s=\frac{1-z^{-1}}{1+z^{-1}} \quad \text { or } \quad z=\frac{1+s}{1-s}
$$

four points are given in the s-plane as follows: (a) $s_{1}=j$, (b) $s_{2}=2$, (c) $s_{3}=-2$, and (d) $s_{4}=0$. Find the corresponding z-plane points and mark their locations in the z-plane.

Problem 8

The transformation $s=2\left(1-z^{-1}\right) /\left(z^{-1}+1\right)$ was applied to an analog prototype to design a HPF with a cutoff at $3 \pi / 5$. The width of the transition band of the resulting digital filter, from stopband edge to cutoff, is $\pi / 10$. What is the corresponding transition bandwidth of the analog prototype?
Problem 9 An ideal analog integrator is described by the system function $H_{L}(s)=1 / s$. A digital integrator with system function $H(z)$ can be obtained using the bilinear transformation, that is,

$$
H(z)=\frac{T}{2}\left(\frac{1+z^{-1}}{1-z^{-1}}\right)=\left.H_{L}(s)\right|_{s=(2 / T)\left(1-z^{-1}\right) /\left(1+z^{-1}\right)}
$$

1. Write the difference equation for the digital integrator relating the input $x[n]$ to the output $y[n]$.
2. Roughly sketch the magnitude $\left|H_{a}(\Omega)\right|$ and phase $\angle H_{a}(\Omega)$ of the analog integrator.
3. Show that the frequency response of the digital integrator is

$$
H_{d}(\omega)=-j \frac{T}{2}\left(\frac{\cos (\omega / 2)}{\sin (\omega / 2)}\right)=-j \frac{T}{2} \operatorname{ctan}\left(\frac{\omega}{2}\right)
$$

4. The digital integrator has a pole at $z=1$. If you implement this filter on a digital computer, what restrictions might you place on the input signal sequence $x(n)$ to avoid computational difficulties?
5. $H_{L}(s)$ only has a pole. This pole was mapped by the BLT to a pole in $H(z)$. Where did the zero in $H(z)$ come from?

Problem 10

A compact disc player reproduces an audio signal having a 20 kHz bandwidth from samples collected at the rate of 44,100 samples per second. If the D / A converter uses oversampling by a factor of L, then for each value of L below, determine the maximum allowed width of the transition band of the required analog filter, such as might be used after a zero-order hold (ZOH) interpolator, for: (a) $L=1$, i.e., a standard D/A; (b) $L=2$ and (c) $L=4$

Problem 11

Consider the system illustrated in Fig. 1. The frequency response $H_{d}(\omega)$ is given by,

Figure 1: System for Problem 10

$$
H_{d}(\omega)= \begin{cases}1 & |\omega| \leq \pi / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Find the output $y[n]$ for the following input sequences,
(a) $x[n]=\cos \left(\frac{\pi}{4} n\right)$
(b) $x[n]=\cos \left(\frac{3 \pi}{4} n\right)$
(c) $x[n]=\frac{\sin \left(\frac{\pi}{8}\right)}{\pi n}$

Problem 12
Given an input $x[n]$, let $v[n]$ be the output of a sample rate expander by an integer factor L, and $w[n]$ be the output of a sample rate compressor by an integer factor D. That is, $w[n]=x[n D]$, and

$$
v[n]=\left\{\begin{array}{cc}
x[k] & n=L k \\
0 & \text { otherwise }
\end{array}\right.
$$

Given that,

$$
X_{d}(\omega)=\left\{\begin{array}{cc}
1-\frac{4|\omega|}{\pi} & |\omega| \leq \pi / 4 \\
0 & \pi / 4 \leq|\omega| \leq \pi
\end{array}\right.
$$

1. Sketch $V_{d}(\omega)$ for $L=2$.
2. Sketch $V_{d}(\omega)$ for $L=3$.
3. Sketch $V_{d}(\omega)$ for $D=4$.

*Reminder - Homework is due on 08/03/2011 at 5:00 PM - place your assignments in the ECE 410 homework drop box in Everitt Hall!

