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Problem 1
From the difference equation:

y[n] = h0x[n] + h1x[n− 1] + h2x[n− 2]

⇒ Y (z) = h0X(z) + h1z
−1X(z) + h2z

−2X(z)

∴ H(z) = h0 + h1z
−1 + h2z

−2

Hd(ω) = h0 + h1e
−jω + h2e

−j2ω

From the problem, the filter is given as linear-phase FIR. Therefore, the FIR filter must be type-1 or type-2 generalized linear
phase. Also, the problem asks you design a bandstop filter (Hd

(
5π
6

)
= 0). Since an FIR filter with even symmetry (type-1 GLP)

and N odd is the only type of FIR filter that can fulfill the bandstop and linear-phase requirements, h0 = h2 and

Hd(ω) = h0 + h1e
−jω + h0e

−j2ω

Plugging in the two conditions that Hd(0) = 1 and Hd

(
5π
6

)
= 0, a system of equations is obtained:

1 = 2h0 + h1

0 =
3

2
h0 −

√
3

2
h1 + j

(√
3

2
h0 −

1

2
h1

)

This systems of equations is overdetermined (more equations than unknowns) since both the imaginary and real parts of the second
equation must be zero. Solving this system of equations, it is obtained that

h0 = 2−
√

3

h1 = 2
√

3− 3

h2 = h0 = 2−
√

3

Problem 2 For any GLP filter, Hd(ω) = R(ω)ej(α−Mω), where R(ω) is real.

1. {hn}2n=0 = {2, 1, 1}

Since h[n] has no symmetry, the filter is not GLP.

2. {hn}2n=0 = {1, 2, 3}

Since h[n] has no symmetry, the filter is not GLP.

3. {hn}2n=0 = {−1, 3, 1}

The unit-pulse response h[n] is asymmetric but the middle coefficient is nonzero, which prevents Hd(ω) from being expressed
as Hd(ω) = R(ω)ej(α−Mω) where R(ω) is real. Therefore, the filter is not GLP.

4. {hn}4n=0 = {1, 1, 1,−1,−1}

Since h[n] has no symmetry, the filter is not GLP.
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5. {hn}2n=0 = {1, 0,−1}

The given filter is asymmetric about its midpoint and the middle coefficient (h[1] = 0) is zero. Therefore, the filter is a type-2
GLP filter. Hence, M = N−1

2 = 1. Following the same procedure in (a) to determine R(ω), which also will determine α,

Hd(ω) = 1− 2e−j2ω = e−jω(ejω − e−jω) = e−jω(2j sin (ω)) = ej(
π
2−ω)(2 sin (ω))

Therefore, R(ω) = 2 sin (ω), α = π
2 , and M is verified. Taking a look at the phase of Hd(ω) to determine if the filter is

linear-phase:

∠Hd(ω) =

{
π
2 − ω, 2 sin (ω) > 0⇒ 0 < ω < π
3π
2 − ω, 2 sin (ω) < 0⇒ −π < |ω| < 0

Since Hd(ω) has a π jump at ω = 0, the filter is not linear-phase.

6. {hn}3n=0 = {2, 1, 1, 2}

The given filter is symmetric. Therefore, this filter is a type-1 GLP filter. Hence, α = 0 and M = N−1
2 = 3

2 . Following the
same procedure in (a) to determine R(ω),

Hd(ω) = 2 + e−jω + e−j2ω + 2e−j3ω

= e−j
3ω
2 (2ej

3ω
2 + ej

ω
2 + e−j

ω
2 + 2e−j

3ω
2 )

= e−j
3ω
2

(
4 cos

(
3ω

2

)
+ 2 cos

(ω
2

))
Therefore, R(ω) = 4 cos

(
3ω
2

)
+ 2 cos

(
ω
2

)
, and α and M are verified.

Taking a look at the phase of Hd(ω) to determine if the filter is linear-phase:

∠Hd(ω) =

{
− 3ω

2 , R(ω) > 0

− 3ω
2 + π, R(ω) < 0

Since R(ω) changes sign at ω = ±0.41π, the filter is not linear-phase.

Problem 3

(i) y[n] = 2
5x[n]− x[n− 1] + x[n− 2]− 2

5x[n− 3]
Similarly to (a), the unit pulse response is: h[n] = 2

5δ[n]− δ[n− 1] + δ[n− 2]− 2
5δ[n− 3] FIR system.

The unit pulse response h[n] has even length and odd symmetry, thus it has Type II GLP. Further,

Hd(ω) =
2

5
− e−jω + e−j2ω − 2

5
e−j3ω

=
2

5
e−j3ω/2

(
ej3ω/2 − e−j3ω/2

)
− e−j3ω/2

(
ejω/2 − e−jω/2

)
=

2

5
e−j3ω/2

(
2j sin(3ω/2)

)
− e−j3ω/2

(
2j sin(ω/2)

)
= e−j3ω/2

(
4

5
j sin(3ω/2)− 2j sin(ω/2)

)
= ej(

π
2−3ω/2)

(
4

5
sin(3ω/2)− 2 sin(ω/2)

)
From the equation above, R(ω) = 4

5 sin(3ω/2)− 2 sin(ω/2), α = π
2 ,M = 3

2 . Since R(ω) changes sign at ω = 0, the filter does
not have linear phase. (In general, filters with antisymmetric coefficients cannot have linear phase.)

(ii) The unit pulse response is: h[n] = 1
3δ[n] + δ[n− 1]− 3

4δ[n− 2] FIR system.

There is no symmetry for this h[n], therefore it does not have GLP.
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(iii) y[n] = x[n] + x[n− 2] + x[n− 4]

The unit pulse response is: h[n] = δ[n] + δ[n− 2] + δ[n− 4] FIR system.

Since h[n] has odd length and even symmetry, it has Type I GLP. Also,

Hd(ω) = 1 + e−j2ω + e−j4ω Hd(ω) = e−j2ω
(
2 cos(2ω) + 1

)
Therefore, we have R(ω) = 2 cos(2ω) + 1,M = 2, α = 0.
Since R(ω) changes sign in the range −π ≤ ω < π, the filter does not have linear phase.

Problem 4

1. The frequency response of the length-N low-pass, generalized linear phase filter with cutoff frequency ωc of π
3 is

Hd(ω) =

{
e−j(

N−1
2 )ω, |ω| ≤ ωc

0, otherwise

Let M = N−1
2 ,

h[n] =
1

2π

∫ ωc

−ωc
e−jMωejωndω

=
1

2π

∫ ωc

−ωc
ej(n−M)ωdω

=
1

2π

1

j(n−M)

(
ej(n−M)ωc − e−j(n−M)ωc

)
=

1

π(n−M)
sin ((n−M)ωc)

=
ωc
π
sinc((n−M)ωc)

Since ωc = π
3 ,

{hn}∞n=−∞ =
1

3
sinc

(
π

3

(
n− N − 1

2

))
With the rectangular window, the filter coefficients are

hrect[n] =


1

3
sinc

(
π

3

(
n− N − 1

2

))
, 0 ≤ n ≤ N − 1

0, otherwise

2. Replacing the rectangular window with the hamming window,

hhamming[n] =


(

0.54− 0.46 cos

(
2πn

N − 1

))
1

3
sinc

(
π

3

(
n− N − 1

2

))
, 0 ≤ n ≤ N − 1

0, otherwise

Problem 5

1. Since the filter has an even number of coefficients, the coefficients need to be antisymmetric in order to realize a high-pass
filter. Therefore, the filter is type-2 GLP.

2. One can verify that Hd(ω) has the same expression for 3π
4 ≤ ω ≤ π and π ≤ ω ≤ 5π

4 using the anti-symmetry and the 2π
shift in the real part of the frequency response. Therefore,

Hd(ω) =

{
ej(

π
2−

99
2 ω), 3π

4 ≤ ω ≤
5π
4

0, otherwise
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In order to use the frequency sampling method, the inverse DFT of H[m] is needed,

H[m] =

{
ej(

π
2−

99
2

2π
100m), 38 ≤ m ≤ 62

0, otherwise

h[n] =
1

100

62∑
m=38

ej(
π
2−

99
2

2π
100m)ej

2π
100mn

=
ej

π
2

100

62∑
m=38

ej
2π
100 (n− 99

2 )m

=
ej

π
2

100

24∑
k=0

ej
2π
100 (n− 99

2 )(k+38)

=
ej

π
2

100
ej

2π
100 (n− 99

2 )38
24∑
k=0

ej
2π
100 (n− 99

2 )k

=
ej

π
2

100
ej

2π
100 (n− 99

2 )38 · 1− ej 2π
100 (n− 99

2 )25

1− ej 2π
100 (n− 99

2 )

=
ej

π
2

100
ej

2π
100 (n− 99

2 )38 · e
j π
100 (n− 99

2 )25

ej
π

100 (n− 99
2 )
· e
−j π

100 (n− 99
2 )25 − ej π

100 (n− 99
2 )25

e−j
π

100 (n− 99
2 ) − ej π

100 (n− 99
2 )

=
ej

π
2

100
ej

π
100 (n− 99

2 )(76+25−1) sin(25 π
100 (n− 99

2 ))

sin( π
100 (n− 99

2 ))

=
ej

π
2

100
ejπ(n− 99

2 ) sin(25 π
100 (n− 99

2 ))

sin( π
100 (n− 99

2 ))

= − (−1)n

100

sin(25 π
100 (n− 99

2 ))

sin( π
100 (n− 99

2 ))

Problem 6

1. Procedure to determine the 3dB cutoff is as follows:

|H(Ω)|2 = HL(jΩ)H∗L(jΩ) =

(
jΩ

jΩ + 2

)(
−jΩ
−jΩ + 2

)
=

Ω2

Ω2 + 4

|H(Ωc)|2 =
1

2
⇒ 2Ω2

c = Ω2
c + 4 ⇒ Ωc = 2

rad

sec

Ωc = α tan (ωc/2) ⇒ α =
2

tan (π/6)
= 2
√

3

2.

H(z) = HL(s)

∣∣∣∣
s=α 1−z−1

1+z−1

H(z) =
α
(

1−z−1

1+z−1

)
α
(

1−z−1

1+z−1

)
+ 2

=
α(1− z−1)

α(1− z−1) + 2(1 + z−1)
=

α− αz−1

(2 + α) + (2− α)z−1

H(z) =

√
3−
√

3z−1

(1 +
√

3) + (1−
√

3)z−1
, |z| > 1

2 +
√

3
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Problem 7

1. z1 =
1 + s1

1− s1
=

1 + j

1− j
=

(1 + j)2

(1− j)(1 + j)
= j

2. z2 =
1 + s2

1− s2
=

1 + 2

1− 2
= −3

3. z3 =
1 + s3

1− s3
=

1 + (−2)

1− (−2)
= −1

3

4. z4 =
1 + s4

1− s4
=

1 + 0

1− 0
= 1
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Note that a point in the left-half plane of the s-plane is mapped to within the unit circle in the z-plane, and a point in the right-half
plane of the s-plane is mapped to outside the unit circle in the z-plane. Also, note that the points on the imaginary axis in the
s-plane are mapped to the unit circle in the z-plane.
Problem 8
Note that α = 2. The mapping between frequency domains is Ω = 2 tan(ω/2). Thus,

Ωc = 2 tan(ωc/2) = 2 tan(3π/10) = 2.7528 rad/sec

Ωs = 2 tan(ωs/2) = 2 tan((6π − π)/20) = 2 rad/sec

Thus, (Ωc − Ωs) = 0.7528 rad/sec

Problem 9

1.

H(z) =
Y (z)

X(z)
=

(T/2)(1 + z−1)

1− z−1
⇒ Y (z)− z−1Y (z) = (T/2)(X(z) + z−1X(z))

y[n] =
T

2
(x[n] + x[n− 1]) + y[n− 1]

2. Ha(Ω) = HL(jΩ) = 1
jΩ

|Ha(Ω)| = 1

|Ω|
∠Ha(Ω) =

{
−π/2, Ω > 0

π/2, Ω < 0
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3.

Hd(ω) = H(z)
∣∣
z=ejω

=
T

2

(
1 + e−jω

1− e−jω

)
= −j T

2

(
cos(ω/2)

sin(ω/2)

)
= −j T

2
ctan

(ω
2

)

4. The pole at z = 1 implies that inputs are of the form x[n] = cu[n], where c is a non-zero constant, which will lead to an
unbounded output. Thus, the input x[n] should contain no term of this form.

5. H(z) has a zero at z = −1. Consider an arbitrary point in the s-plane of the form s0 = σ0 + jΩ0. With α = 2/T , this point
is mapped to:

z0 =
α+ s0

α− s0
=
α+ σ0 + jΩ0

α− σ0 − jΩ0

where |z0| =
(

(α+ σ0)2 + Ω2
0

(α− σ0)2 + Ω2
0

)
Thus, the point s0 from the s-plane is mapped onto the unit circle if and only if σ0 = 0. Therefore, the point corresponding
to the zero at z = −1 must lie on the imaginary axis in the s-plane. Further, note that

lim
Ω→∞

α+ Ω

α− Ω
= lim

Ω→−∞

α+ Ω

α− Ω
= −1

Thus, the zero in H(z) at z = −1 corresponds to Ω = ±∞ .

The solutions to problems 10 - 12 are sketched below,
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