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1 Overview

In this lab we will use MATLAB to study the frequency response of LSI systems. We will look at the relationship
between pole-zero locations and frequency response of a LSI system.

2 Frequency Response

Response of any relaxed LTI/LSI system to an arbitrary input signal x[n], is given by the convolution sum formula:

y[n] =
∞∑

k=−∞
h[k]x[n− k] (1)

In this input-output relationship,the system is characterized in the time domain by its unit impulse response (h[n],−∞ ≤
n ≤ ∞).
To develop a frequency-domain characterization of the system, we excite the system with the complex exponential

x[n] = Aejω0n, −∞ < n <∞ (2)

where A is the amplitude and ω0 is an arbitrary frequency confined to the frequency interval [−π, π]. By substituting
(1) into (2), we obtain the response

y[n] =

k=∞∑
k=−∞

h[k]
[
Aejω0(n−k)

]

= A

[
k=∞∑
k=−∞

h[k]e−jω0k

]
ejω0n

(3)

The term in the brackets in (3) is a function of the frequency variable ω0 and is the Fourier transform of the unit impulse
response h[k] of the system. Hence we denote this function as,

H(ω0) =

∞∑
k=−∞

h[k]e−jω0k
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Note that the function H(ω) exists if the system is BIBO stable,

H(ω) =

∞∑
k=−∞

h[k]e−jωk

The response of the system to the complex exponential x[n] = Aejω0n is given by,

y[n] = AH(ω0)e
jω0n

The response is also a complex exponential with the same frequency as the input and is scaled by a constant factor
H(ω0). In general, H(ω0) is a complex-valued function of the variable ω0 and can be written as,

H(ω0) = |H(ω0)|e∠H(ω0)

The system response to a complex input can now be written as,

y[n] = A|H(ω0)|ejω0nej∠H(ω0).

Note that |H(ω0)| and ∠H(ω0) completely characterize the effect of the system on exponential input signal of any
arbitrary frequency. Since H(ω0) determines the response of the system in the frequency domain, it is called the
frequency response and the quantities |H(ω0)| and ∠H(ω0) are respectively called the magnitude and phase response of
the system.

3 Geometric Interpretation of the Discrete-Time Frequency Response

Recall that the system function of an LTI system can be obtained by taking the z- transform of the unit impulse response
of the system h[n]. The system function can be factored in the form,

H(z) = A

∏K
k=1(z − zk)∏M
m=1(z − pm)

, (4)

where the zk are the K zeros and the pm are the M poles. The contribution of each pole and each zero to |H(ω)|
depends on the length of the vector from the pole or zero to the point ejω. Taking the magnitude of (4) and evaluating
it at z = ejω yields,

H(z) = |A|
∏K

k=1 |ejω − zk|∏M
m=1 |ejω − pm|

. (5)

Thus the overall magnitude of the frequency response is the magnitude of the constant A times the product of the
lengths of the zero vectors divided by the product of the lengths of the pole vectors. Similarly, the contribution of each
pole or zero to the phase of the frequency response (∠H(ω)) is angle formed by the real axis and the vector between
the pole or zero and the point ejω. Taking the phase of (5) we have,

∠Hd(ω) = ∠A+
K∑
k=1

∠(ejω − zk)−
M∑

m=1

∠(ejω − pm).

From this, the total phase is the phase of the constant A plus the sum of the angle contributions from the zeros minus
the sum of the angle contributions from the poles.
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4 Homework - Due 07/19/2011 at 5:00 PM

1. Consider the simple second-order discrete-time system whose system function is

H1(z) =
1

1− 0.9z−1 + 0.81z−2
, |z| > 0.9

(a) Define b1 and a1 to contain the coefficients of the numerator and denominator polynomials of H1(z) in the
format required by filter. Find the poles and zeros for H1(z).

(b) Define omega = [0:511]*pi/256 and unitcirc = exp(j*omega) to get the 512 equally spaced points on
the unit circle where you will evaluate the frequency response H1(ω). Define polevectors1 to be a 2× 512
matrix where each row contains the complex numbers that result from subtracting one of the pole locations
from the corresponding column of unitcirc. If ps1 is a column vector containing the pole locations, you can
do this using

>> polevectors1 = ones(2,1)*unitcirc - ps1*ones(1,512);

Use abs and atan2 to define polelength1 and poleangle1 as the magnitude and angle of each element of
polevectors1.

(c) Define zerovectors1 analogously to polevectors1 so that it is the 2 × 512 matrix containing the vectors
from zero locations to the elements of unitcirc. Define zerolength1 and zeroangle1 to be the magnitude
and the phase for these vectors, respectively.

(d) Plot polelength1 and zerolength1 against omega. Based on these plots, where do you expect |H1(ω)| to
have its maxima and minima?

(e) Use polelength1 and zerolength1 to compute |H1(ω)| and store the result in geomH1mag. Use poleangle1

and zeroangle1 to compute ∠H1(ω) and store the result in geomH1phase (you may find the functions prod
and sum useful). Plot the geometrically derived magnitude and phase, and compare them with those you
obtain by computing:

>>H1 = freqz(b1,a1,512,’whole’);

2. Consider the following transfer function,

H1(z) =
1− 0.5z−1

1− 0.9z−1 + 0.81z−2
, |z| > 0.9

(a) Find and plot the poles and zeros for H2(z). How do you expect the polevectors2 or zerovectors2 for this
system to be different than they were for H1(z)?

(b) Compute the polevectors2 and zerovectors2 for H2(z), as well as the magnitudes and angles for all the
vectors. Plot the magnitudes and angles against omega. Was your prediction in Part (a) correct?

(c) Based on changes to the zeros, predict how H2(ω) will differ from H1(ω). Compute and plot H2 using freqz

to confirm your answer.

3. Consider the following transfer function,

H3(z) =
0.25− (

√
3/2)z−1 + z−2

1− (
√

3/2)z−1 + 0.25z−2
, |z| > 0.5

(a) Find and plot the poles and zeros of H3(z). How are the poles and zero locations related?
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(b) Define polevectors3 and zerovectors3 analogously to the way you did in parts (a) and (b). Define
polelength3 and zerolength3 to be the magnitudes of these complex numbers. Plot all of these mag-
nitudes, i.e., the magnitude of each row of polelength3 and zerolength3 on same set of axes. How are
these magnitudes related? Based on this, how do you expect the frequency response magnitude |H3(ω)| to
vary with frequency? Use the lengths to compute the frequency response magnitude and store it in geomH3mag.
Plot geomH3mag against omega.

(c) Compute H3 using freqz and confirm your answer.

4. For a LTI system described by the difference equation,

y[n] =
M∑

m=0

bmx[n−M ]−
N∑
l=0

aly[n− l]

the frequency-response function is given by,

H(ω) =

∑M
m=0 bme

−jωm

1 +
∑N

l=1 ale
−jωl

Write a MATLAB function freqresp to implement this relation. The format should be

function [H ] = freqresp(b,a,w)

% frequency response function

% [H] = freqresp(b,a,w)

% b = numerator coefficients

% a = denominator coefficients a(1)=1

% w = frequency location vector.

Use the function to compute and plot the magnitude and phase response of the following transfer functions,

H1(z) = 1 + z−1

H2(z) = 1− z−1

Deliverables

• Email your code, figures, calculation and answers as a .pdf or .doc file to ece311lab.uiuc@gmail.com. Be sure
to name your document in the form- ECE311Lab5 firstname lastname.doc/pdf.

• Late reports will reduce the grade by 20% per day.

• Make sure to present a clear and concise report having figures labeled and centered.

• Reminder: Homework is due on 07/19/2011
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