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1 Overview

In this lab we will use MATLAB to design FIR filters using truncation, windowing, and frequency sampling.

2 FIR Filter Design

While designing frequency selective filters, we look at the desired filter characteristics in the frequency domain in terms
of the desired magnitude and phase response of the filter. In filter design we determine the coefficients of a FIR or IIR
filter that closely approximates the desired frequency response specifications. The choice between FIR or an IIR filter
depends on the nature of the problem and the desired frequency response. Usually FIR filters are employed in filtering
problems where there is a requirement of linear phase characteristic in the passband of the filter. If there is no such
requirement one can design either an FIR or an IIR filter. However it must be noted that in general an IIR filter has
lower sidelobes in the stopband than an FIR filter having the same number of parameters. In this lab we will focus on
FIR filter. FIR filters are described by the following difference equation,

y[n] =
M∑
m=0

b[m]x[n−m]

where y[n] is the filtered signal, b[m] are the numerator coefficients of the transfer function.

3 Ideal and non-ideal filter characteristics

Consider the impulse h(n) of an ideal lowpass filter with frequency response characteristic

H(ω) =

{
1, |ω| ≤ |ωc|
0, |ωc| ≤ ω ≤ π

The impulse response of this filter is shown below,

h[n] =

{
ωc
π , n = 0

ωc
π

sinωcn
ωcn

, n 6= 0

Consider the above expression for ωc = π
4 . Is the impulse response physically realizable. How will you will plot this

function in MATLAB?
We will truncate this function to the interval (−100, 100). Now plot the truncated sinc(.) function.
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n = [-100:100]

x = (1/4)*n;

plot(n,sinc(x));

Is the truncated impulse response physically realizable?

3.1 Causality

It is clear that the ideal low pass filter and its truncated version are not causal and cannot be realized in practice. One
possible solution is to introduce a large delay n0 in h[n] and arbitrarily to set h[n] = 0 for n < n0. This makes the filter
causal. Causality results in important implications in filter design,

• The frequency response of H(ω) cannot be zero except at a finite set of points in frequency.

• Magnitude |H(ω)| cannot be constant in any finite range of frequencies and the transition from pass-band to
stop-band cannot be infinitely sharp.

• The real and imaginary parts of |H(ω)| are interdependent and hence the |H(ω)| and ∠H(ω) cannot be arbitrarily
chosen.

The realizable magnitude response is shown in Fig. 1.

Figure 1: Realizable Magnitude response

4 Linear Phase Filters

A filter whose impulse response is symmetric or antisymmetric about its midpoint is called a (generalized) linear phase
filter. That is,

h[n]←→ H(ω) = |H(ω)|ejkω

For such filters the phase of the filtered signal will vary linearly with frequency ω. The phase delay (kω/ω) and ( d
dω )

will be equal and constant. What is the phase and group delay for an order n linear phase FIR filter? Consider the
following FIR filter,

y[n] =
1

2
(x[n] + x[n− 1] + x[n− 2] + x[n− 3] + x[n− 4]) ;

Try the following
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h = 0.2*ones(1,5)

freqz(h);

Is the FIR filter linear phase?
A system is referred to as generalized linear-phase system if its frequency response can be expressed in the form,

Hd(ω) = |Hd(ω)|e−jα+jβ

where α and β are constants. The symmetric impulse response of a linear phase filter can have an odd or even number
of points, and can have an odd or even symmetry about the midpoint, leading to four filter types:

1. Type I :

• Even Symmetry : h[n] = h[M − n], 0 ≤ n ≤M
• M is an even integer

2. Type II :

• Even Symmetry : h[n] = h[M − n], 0 ≤ n ≤M
• M is an odd integer

• Hd(π) = 0

3. Type III :

• Odd Symmetry : h[n] = −h[M − n], 0 ≤ n ≤M
• M is an even integer

• Hd(0) = 0

• Hd(π) = 0

4. Type IV :

• Even Symmetry : h[n] = −h[M − n], 0 ≤ n ≤M
• M is an odd integer

• Hd(0) = 0

4.1 FIR filter design by windowing

In this method we begin with desired frequency response specification Hd(ω) and determine the corresponding unit
sample response hd[n]. |Hd(ω)| and hd[n] are related by the following Fourier transform relation,

Hd(ω) =
∞∑
n=0

hd[n]e−jωn (1)

hd[n] =
1

2π

π∫
−π

Hd(ω)ejωndω (2)

As mentioned earlier, the unit sample response hd[n] obtained from (2) is infinite in duration and must be truncated at
some point, say n = M − 1, to yield a FIR filter of length M . Truncation of hd[n] to a length M − 1 is equivalent to
multiplying hd[n] by a ‘rectangular window’ defined as,

w[n] =

{
1, n = 0, 1, . . . ,M − 1
0, otherwise
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The Fourier transform of the rectangular window is,

W (ω) = e−j
ω(M−1)

2 sin
ωM
2
ω
2

Plot on the same figure the magnitude and phase response of the window function for window lengths M = 31 and M =
121. What happens to the main lobe? What happens to the side-lobes? What can you say about the phase response?

The characteristics of the rectangular window play a significant role in determining the resulting frequency response
of the FIR filter obtained by truncating hd[n] to length M . Recall applying a window function in the time domain
is equivalent to convolution in the frequency domain and has the effect of smoothing Hd(ω).As M is increased, W (ω)
becomes narrower and the smoothing action of W (ω) is reduced. On the other had large side-lobes of W (ω) has the
effect undesirable ringing effects. The undesirable ringing effects in FIR filters can be reduced by using windows that
do now have abrupt discontinuities in their time-domain characteristics. Table 1 lists some window functions, Using

Table 1: Window Functions for FIR filter design
Window Time Domain Sequence

Hamming 0.54− 0.46cos 2πn
M−1

Blackman 0.42− 0.5cos 2πn
M−1 + 0.08cos 4πn

M−1

Hanning 1
2

(
1− cos 2πn

M−1

)

Kaiser
I0

[
α
√

(M−1
2 )

2−(n−fracM−12)2
]

I0[α(M−1
2 )]

MATLAB plot the magnitude and phase response of of the Hamming, Blackman and Hanning windows. Use Window
length of N = 31, 121. Compare your results to those obtained by rectangular window. Matlab has several window
functions. You can see them by typing help window. Matlab also has several functions to design filters. The function
fir1 can be used to design a M th order FIR digital filter. Try the following

help fir1

h = fir1(31,1/2,’low’);

freqz(h);

h = fir1(31,1/2,’high’);

freqz(h);

h = fir1(31,1/2,hamming(32));

freqz(h);

Some other filter design functions are, fir2, firpm, fircls1, firls.

4.2 Filter Design by Frequency Sampling

In frequency sampling method of FIT filter design, we specify the desired frequency response Hd(ω) at a set of equally
spaced frequencies, namely,

H(
2πk

15
) =


1, k = 0, 1, 2, 3

0.4, k = 4
0, k = 5, 6, 7
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We then solve for unit sample response hd[n] of the filter from these equally spaced specifications. To reduce side-lobes,
it is desirable to optimize the frequency specification in the transition band of the filter. The optimization can be done
by on computer using linear programming techniques.

5 Homework - Due 07/26/2011 at 5:00 PM

1. You desire to design a generalized linear phase (GLP) FIR low-pass filter with ωc = π/4 using a truncation

(windowing) method. Beginning with an ideal LPF hLPF [n] =
sin(π

4
n)

πn , we can design a FIR filter by shifting
hLPF [n] by N−1

2 and multiplying by window function w′[n],

h[n] =
sin
(
π
4

(
n− N−1

2

))
π
(
n− N−1

2

) w′[n], n = 0, 1, . . . , N − 1.

(a) For a rectangular window with length N = 21, plot h[n], |Hd(ω)|, and ∠Hd(ω) in MATLAB. Check the cut-off
frequency of this filter from the graph of |Hd(ω)|. Use 4096-point DFT to generate |Hd(ω)| and ∠Hd(ω).
Show these plots over the range of [0, π].

(b) Consider a hamming window of with length N = 21, i.e., w′[n] = 0.54− 0.46cos
(

2πn
N−1

)
. Do the same thing

as in (b) and compare the results.

(c) Consider rectangular window with length N = 121. Do the same things as in (b) and compare the results.

2. You desire to design a 121- tap generalized linear phase (GLP) FIR low-pass filter with ωc = π
4 using frequency

sampling method.

(a) Write down the sampled frequency response Hd(ω) at ω = 2πk
N for 0 ≤ k ≤ N − 1 (hint: consider generalized

linear phase)

(b) Determine the impulse response of this LPF using inverse-fft in MATLAB (ifft). Plot h[n], |Hd(ω)| and
∠Hd(ω) in MATLAB. Use a 4096 -point fft to generate |Hd(ω)| and ∠Hd(ω). Show the plots over a range of
[0, π].

(c) Construct a high-pass filter (HPF) from this filter using modulation property. Plot h[n], |Hd(ω)|, and ∠H(ω)
of this HPF with MATLAB.

3. The expression for the coefficients {hn}310 of a length-32 FIR low-pass filter having cutoff at wc = π
4 radians using

the window design method with Hamming window is given by,

{hn}310 =
1

4
sinc

[
π

4

(
n− 31

2

)][
0.54− 0.46cos

(
2πn

31

)]
(3)

(a) Design the same filter using MATLAB command fir1.

(b) Plot both the magnitude and phase of the frequency response. Comment on the plots in relation to the
frequency response of an ideal low-pass filter. What are the pass-band ripple and stop band attenuations of
your filter in dB? What is the transition bandwidth?

(c) Generate an input signal consisting of sum of two sinusoids with ω = π
6 and ω = π

3 . Convolve this signal with
the filter specified in (3). Explain the results based on frequency response of the filter.

4. This problem requires you to work with three different low-pass filters which are specified by the coefficient vectors
stored in the file phdist.mat, on the course website. Load the the file using the load command. If this file has
been loaded correctly, then typing who should result in
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>>who

Your variables are:

a1 a3 b2 xnoise

a2 b1 b3

The vectors a1 through a3 and b1 through b3 contain the coefficient vectors for three discrete-time filters in the
format required by freqz and filter. The vector xnoise contains the speech signal with some high-frequency
noise added. The original speech signal is in the file orig.mat on the course website. Once you load the orig.mat

file the uncorrupted version of the speech signal will be in the vector x.

(a) Use freqz to compute the frequency response of all the three filters at 1024 evenly spaced points on the
interval 0 ≤ ω ≤ π. Plot the frequency response magnitude of all three filters. Suppose you used the same
speech signal as input to all three filters, based on the magnitudes of the frequency responses, which two of
the output signals would you expect to sound most similar?

(b) Generate appropriately labeled plots of the phase of the frequency response for all three systems. The
function angle will return angles between −π and π. If just plot the output of angle, you may find it hard
to understand some of the plots., since phase will ”wrap around” from the top to the bottom of the graph
every time it passes π and −π. The function unwrap takes the output of angle and removes the ‘’wrap
around” effect to obtain a more continuous phase function. For example, if H contains the samples of the
frequency response at frequencies specified in omega then plot plot(omega/pi,unwrap(angle(H))) displays
the unwrapped phase. Which two filters are most alike in phase response?

(c) Define the vectors y1 through y3 to be the output of the filters when they are applied to the clean speech
signal in x using filter. Play each speech signal using soundsc. Is the speech still easy to understand in each
case? Which two speech signals sound most alike? Based on your results for this input signal, would you say
that the magnitude or phase of these filters is more important?

(d) Play both x and xnoise using sound to hear the difference between clean and corrupted speech signals.

(e) Use fft to compute the DTFT of x and xnoise at 8192 evenly spaced samples in ω and store these values X
and Xn. Plot the magnitude of the DTFT for each signal. Can you see the high frequency noise in the DTFT
of the corrupted signal?

(f) Let yn1 and yn3 be the result of filtering xnoise with each of the three filters. Listen to all three of these
signals. Which filter best eliminated the noise?

(g) Use fft to compute the DTFT of the filtered speech signals at 8192 evenly spaced points in ω and store
them in Yn1 through Yn3. Make appropriately labeled plots of the magnitude of the DTFT for each signal.
Comment on your results.

Deliverables

• Email your code, figures, calculation and answers as a .pdf or .doc file to ece311lab.uiuc@gmail.com. Be sure
to name your document in the form- ECE311Lab6 firstname lastname.doc/pdf.

• Late reports will reduce the grade by 20% per day.

• Make sure to present a clear and concise report having figures labeled and centered.

• Reminder: Homework is due on 07/26/2011
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