
Discrete Distribution Estimation under
Local Privacy
Peter Kairouz, Keith Bonawitz, Daniel Ramage
Accepted to ICML 2016
Paper: go/private-distributions-paper
Slides: go/private-distributions-slides

http://go/private-distributions-paper
http://go/private-distributions-slides

Distribution Estimation
Under Local Privacy

Private histograms

We need to understand patterns across large groups
but do not need to look at any individual.

Differential Privacy:

Provably limit the information gathered about individual users by
carefully injecting noise

Private histograms

We need to understand patterns across large groups
but do not need to look at any individual.

Private histogram intuition
True population
distribution:

One user's
value:

Many users'
contributions:

Aggregate:

Height, Income, Blood
Pressure, etc.

us

er
s

Private histogram intuition
True population
distribution:

One user's
value:

Many users'
contributions:

Aggregate:

Th
e

Ne
tw

or
k

On

De
vic

e
Go

og
le

Se

rv
er

s

Private histogram intuition
True population
distribution:

One user's
value:

Many users'
contributions:

Aggregate:

Th
e

Ne
tw

or
k

On

De
vic

e
Go

og
le

Se

rv
er

s

Attacks targeting the log database
● Accidental / Incidental
● Authorized user goes rogue
● Break in

Attacks targeting log entries during logging:
● Ineffective crypto
● Rogue code

● Government compulsion
● Change of ownership

Private histogram intuition: Add noise before logging
True population
distribution:

One user's
value:

Many users'
contributions:

Aggregate:

Th
e

Ne
tw

or
k

On

De
vic

e
Go

og
le

Se

rv
er

s

Add noise:

Infer / Denoise /
Sharpen:

True population
distribution:

One user's
value:

Many users'
contributions:

Aggregate:

Th
e

Ne
tw

or
k

On

De
vic

e
Go

og
le

Se

rv
er

s

Add noise:

Infer / Denoise /
Sharpen:

Less Noise: Less Privacy
More Noise: More Privacy

Less Noise: Easier to denoise
More Noise: More data required

Private histogram intuition: Add noise before logging

Local Differential Privacy

Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

QX Y

Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

Q is ε-locally differentially private if Q(Y|X) ≤ eε Q(Y|X') for all X, X', Y

QX

Y

QX'

Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

Q is ε-locally differentially private if

QX

Y

QX'

≤ eε for all X, X', YQ(Y|X')
Q(Y|X)

Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

Q is ε-locally differentially private if

QX

Y

QX'

Worst
Case

≤ eε for all X, X', YQ(Y|X')
Q(Y|X)

Binary Alphabets

Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)

Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)

100% P → η say yes
0% P → (1-η) say yes

Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)

ε-locally differentially private, for eε = η / (1-η)

Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

m=pQ

p(x): distribution over inputs
m(y): distribution over outputs

row vectors

Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

Decoding: m=pQ, so pest=mobsQ
-1

p(x): distribution over inputs
m(y): distribution over outputs

Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

p: probability of predicate P
T: number of "Yes" reports
n: number of reports (total)

W-RR offers
optimal utility for
binary alphabets.

Warner's Randomized Response, 1965 ("W-RR")

k-ary Alphabets

Two different ways to extend to k-ary alphabets

1. k-RR modifies the mechanism
2. k-RAPPOR modifies the encoding

k-RR modifies the mechanism

ɑ +(1-ɑ) =

:QW-RR

ɑ = eε-1
eε+1

k-RR modifies the mechanism

ɑ +(1-ɑ) =

:Qk-RR

k-RR modifies the mechanism

ɑ +(1-ɑ) =

:Qk-RR

k-RR modifies the mechanism

:Qk-RR

Decoding: m=pQ, so pest=mobsQ
-1

p(x): distribution over inputs
m(y): distribution over outputs

k-RR modifies the mechanism

:Qk-RR

p(x): distribution over inputs
m(y): distribution over outputs

k-RAPPOR modifies the encoding

0 1 0 0 0

X = 1 ∈ {0...4}

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

k-RAPPOR modifies the encoding

0 1 0 0 0

X = 1 ∈ {0...4}

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

k-RAPPOR modifies the encoding

0 1 0 0 0

X = 1 ∈ {0...4}

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

2 bits different between any X, X'

k-RAPPOR modifies the encoding

0 1 0 0 0

X = 1 ∈ {0...4}

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

Decode each bit independently:

pj: probability of X=j
Tj: number of reports with yj=1
N: number of reports (total)

Utility (Bounds on Expected Loss)

No Privatization

Utility (Bounds on Expected Loss)

No Privatization

k-RR

k-RAPPOR

Utility (Bounds on Expected Loss)

No Privatization

Effective Samples

n

k-RR

k-RAPPOR

Utility (Effective Samples)

No Privatization

General

n

k-RR

k-RAPPOR

Utility (Effective Samples)

No Privatization

k-RR

k-RAPPOR

General

n

ε ≈ ln(k)
(Low Privacy)

n

n/4

n/sqrt(k)

For k-ary alphabets:
k-RR is order-optimal for
low privacy (and k-RAPPOR
is sub-optimal)

Utility (Effective Samples)

No Privatization

k-RR

k-RAPPOR

General

n

Small ε
(High Privacy)

n

nε2/k2

nε2/4k

ε ≈ ln(k)
(Low Privacy)

n

n/4

n/sqrt(k)

For k-ary alphabets:
k-RAPPOR is order-optimal
for high privacy
(and k-RR is sub-optimal)

Constraining to the Simplex
Probability vectors sum to 1 and all elements are non-negative.

Constraining to the Simplex
Probability vectors sum to 1 and all elements are non-negative.

1. Do nothing.
2. Truncate and renormalize.
3. Project onto the nearest point on the simplex.
4. Something else creative (e.g. a different decoder)

Constraining to the Simplex
k-RR k-RAPPOR

For skewed distributions, the
projected estimator offers
the best utility.

Open Alphabets

Open Alphabets
● What if we don't know the set of input symbols ahead of time?
● Can we want to avoid penalties for having large k?

Hashing (Sketches)
Instead of encoding x directly...

QX Y

Hashing (Sketches)
Instead of encoding x directly, we encode hash(x) mod k.

QX YHash(k)

Hashing (Sketches)
Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?

QX YHash(k)

Hashing (Sketches)
Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?
Multiple Hash Functions → Independent Views (Sketches)

QX YHashc
(k)

Uniform[C] C

Hashing (Sketches)

QX YHashc
(k)

Uniform[C] C

Stable for each user

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?
Multiple Hash Functions → Independent Views (Sketches)

O-RR

Qk-RR
X YHashc

(k)

Uniform[C] C

O-RR

Qk-RR
X YHashc

(k)

Uniform[C] C

O-RR

p(s): distribution over inputs
m(y): distribution over outputs

Decoding:

O-RR

p(s): distribution over inputs
m(y): distribution over outputs

Decoding: (H not invertible: solve via least squares)

O-RAPPOR

0 0 0 1 0

x

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

Hash(k)

O-RAPPOR

0 1 0 1 0

x

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

Hash0
(k) Hash1

(k)

More bits in output: Bloom filter!

O-RAPPOR

0 1 0 1 0

x

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

Hash0,c
(k) Hash1,c

(k)

Uniform[C]

C

Stable for each user

Empirical Comparison

106 users
S=256;
Geometric with
 mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16

Empirical Comparison

L1 loss = 0.20;
S=256;
Geometric with
 mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16

O-RR meets or exceeds
utility of O-RAPPOR over
wide range of privacy
settings.

Closed Alphabets, revisited

Minimal Perfect Hash Functions

A Minimal Perfect Hash Function maps m keys to m
consecutive integers.

If the m keys are the same set of consecutive integers, this is
just a permutation.

Minimal Perfect Hash Functions

For Closed Sets: Modify O-RR and O-RAPPOR to use Minimal
Perfect Hash Functions.

Note that with C=1 and h=1, we recover k-RR and k-RAPPOR
(modulo a permutation of the output symbols).

106 users
S=256;
Geometric with
 mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16

Empirical Comparison

L1 loss = 0.20;
S=256;
Geometric with
 mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16

O-RR meets or exceeds
utility of O-RAPPOR over
wide range of privacy
settings (for k-ary alphabets)

Understanding Parameters

Open Set Decoding: Output Alphabet Size

Open Set Decoding: # Cohorts

Open Set Decoding: # Hashes in Bloom Filter

O-RR (open):
Alphabet size should match
expected input size.
Cohorts matter more for
high privacy, but always ≥2.

O-RAPPOR (open):
Bloom Filters don't help.
Use 2 cohorts and make the
alphabet large.

Closed Set Decoding: Output Alphabet Size

Closed Set Decoding: # Cohorts

Closed Set Decoding: # Hashes in Bloom Filter

O-RR (closed):
Alphabet size should match
expected input size.
Cohorts matter for high
privacy.

O-RAPPOR (closed):
Bloom Filters and Cohorts
don't help. Just use k-
RAPPOR and make the
alphabet large.

