

Discrete Distribution Estimation under Local Privacy

Peter Kairouz, Keith Bonawitz, Daniel Ramage Accepted to ICML 2016 Paper: <u>go/private-distributions-paper</u> Slides: <u>go/private-distributions-slides</u>

Distribution Estimation Under Local Privacy

Private histograms

We need to understand **patterns across large groups** but **do not need to look at any individual**.

Private histograms

We need to understand **patterns across large groups** but **do not need to look at any individual**.

Differential Privacy:

Provably **limit the information gathered about individual** users by **carefully injecting noise**

Private histogram intuition

Private histogram intuition

Private histogram intuition

Google

Private histogram intuition: Add noise before logging

Google

Private histogram intuition: Add noise before logging

Google

Local Differential Privacy

Let Q(Y | X) be a privatization mechanism.

Let Q(Y | X) be a privatization mechanism.

Q is ε -locally differentially private if Q(Y|X) $\leq e^{\varepsilon}$ Q(Y|X') for all X, X', Y

Let Q(Y | X) be a privatization mechanism. Q is ε -locally differentially private if $\frac{Q(Y|X)}{Q(Y|X')} \le e^{\varepsilon}$ for all X, X', Y

Binary Alphabets

100% P \rightarrow η say yes 0% P \rightarrow (1-η) say yes

ε-locally differentially private, for $e^{\epsilon} = \eta / (1-\eta)$

•

p(x): distribution over inputs m(y): distribution over outputs

p(x): distribution over inputs m(y): distribution over outputs

$$\hat{p} = \left(\frac{e^{\varepsilon} + 1}{e^{\varepsilon} - 1}\right) \frac{T}{n} - \frac{1}{e^{\varepsilon} - 1}$$

p: probability of predicate PT: number of "Yes" reportsn: number of reports (total)

W-RR offers **optimal utility** for binary alphabets.

Theorem 2 For all binary distributions p, all loss functions ℓ , and all privacy levels ε , Q_{WRR} is the optimal solution to the private minimax distribution estimation problem

k-ary Alphabets

Two different ways to extend to k-ary alphabets

- 1. k-RR modifies the mechanism
- 2. k-RAPPOR modifies the encoding

a

$$\mathsf{Q}_{\mathsf{W} ext{-}\mathsf{R} ext{R}} : \ oldsymbol{Q}_{\mathsf{W} ext{-}\mathsf{R}} = rac{1}{e^{arepsilon}+1} \left\{ egin{array}{c} e^arepsilon & ext{if } y=x, \ 1 & ext{if } y\neq x. \end{array}
ight.$$

$$a = \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$

$$\mathsf{Q}_{\mathsf{k}\operatorname{\mathsf{-RR}}} : \qquad \mathbf{Q}_{\mathsf{KRR}}(y|x) = \frac{1}{k-1+e^{\varepsilon}} \left\{ \begin{array}{cc} e^{\varepsilon} & \text{if } y = x, \\ 1 & \text{if } y \neq x. \end{array} \right.$$

$$\mathsf{Q}_{\mathsf{k}\operatorname{\mathsf{-RR}}} \quad : \quad \mathbf{Q}_{\mathsf{KRR}}(y|x) \, = \, \frac{1}{k-1+e^{\varepsilon}} \left\{ \begin{array}{cc} e^{\varepsilon} & \text{if } y=x, \\ 1 & \text{if } y\neq x. \end{array} \right.$$

p(x): distribution over inputs m(y): distribution over outputs

•

$$oldsymbol{Q}_{ ext{KRR}}(y|x) \,=\, rac{1}{k-1+e^arepsilon} \left\{ egin{array}{cc} e^arepsilon & ext{if } y=x, \ 1 & ext{if } y
eq x. \end{array}
ight.$$

$$egin{array}{rcl} \hat{m{p}} &=& \hat{m{m}}m{Q}_{ ext{KRR}}^{-1} \ &=& rac{e^arepsilon+k-1}{e^arepsilon-1}\hat{m{m}}-rac{1}{e^arepsilon-1} \end{array}$$

p(x): distribution over inputs m(y): distribution over outputs

$$Y^{(j)} = \begin{cases} \tilde{X}^{(j)} & \text{with probability } \frac{e^{\varepsilon/2}}{1 + e^{\varepsilon/2}} \\ 1 - \tilde{X}^{(j)} & \text{with probability } \frac{1}{1 + e^{\varepsilon/2}} \end{cases}$$

Decode each bit independently:

$$\hat{p}_j = \left(\frac{e^{\varepsilon/2} + 1}{e^{\varepsilon/2} - 1}\right) \frac{T_j}{n} - \frac{1}{e^{\varepsilon/2} - 1}$$

p_j: probability of X=j T_j: number of reports with y^j=1 N: number of reports (total)

Utility (Bounds on Expected Loss)

$$\mathbb{E} \|\hat{\boldsymbol{p}} - \boldsymbol{p}\|_{1} \qquad \mathbb{E} \|\hat{\boldsymbol{p}} - \boldsymbol{p}\|_{2}^{2}$$

$$\sqrt{\frac{2(k-1)}{\pi n}} \qquad \frac{1 - \frac{1}{k}}{n}$$

No Privatization
Utility (Bounds on Expected Loss)

$$\mathbb{E} \| \hat{p} - p \|_{1} \qquad \mathbb{E} \| \hat{p} - p \|_{2}^{2}$$
No Privatization
$$\sqrt{\frac{2(k-1)}{\pi n}} \qquad \frac{1 - \frac{1}{k}}{n}$$

$$k-RR \qquad \left(\frac{e^{\varepsilon} + k - 1}{e^{\varepsilon} - 1}\right) \sqrt{\frac{2(k-1)}{\pi n}} \qquad \left(\frac{e^{\varepsilon} + k - 1}{e^{\varepsilon} - 1}\right)^{2} \frac{1 - \frac{1}{k}}{n}$$

$$k-RAPPOR \qquad \sqrt{\frac{2(e^{\varepsilon/2} + k - 1)(e^{\varepsilon/2}(k-1) + 1)}{(e^{\varepsilon/2} - 1)^{2}\pi n}} \qquad \frac{1 - \frac{1}{k}}{n} \left(1 + \frac{k^{2}e^{\varepsilon/2}}{(k-1)(e^{\varepsilon/2} - 1)^{2}}\right)$$

Utility (Bounds on Expected Loss)

Utility (Effective Samples)

No Privatization

k-RR

k-RAPPOR

n

General

$$\begin{split} &n\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+k-1}\right)\\ &n\left(\frac{(k-1)(e^{\varepsilon/2}-1)^2}{(k-1)(e^{\varepsilon/2}-1)^2+k^2e^{\varepsilon}}\right) \end{split}$$

Utility (Effective Samples)

General

n

For k-ary alphabets: k-RR is order-optimal for low privacy (and k-RAPPOR is sub-optimal)

Utility (Effective Samples)

For k-ary alphabets: k-RAPPOR is order-optimal for high privacy (and k-RR is sub-optimal)

Constraining to the Simplex

Probability vectors sum to 1 and all elements are non-negative.

Constraining to the Simplex

Probability vectors sum to 1 and all elements are non-negative.

- 1. Do nothing.
- 2. Truncate and renormalize.
- 3. Project onto the nearest point on the simplex.
- 4. Something else creative (e.g. a different decoder)

Constraining to the Simplex *k*-RR

		$(\mathrm{RR}_{\mathrm{pr}})$	$_{ m ojected} l_1$	$- RR_{nex}$	$_{\text{totest}} l_1)$	@ 30000) users,	p = geon	netric(k	(5)
	512	-0.246	-0.312	-0.305	-0.278	-0.242	-0.202	-0.162	-0.124	-0.092
	256	-0.193	-0.211	-0.195	-0.171	-0.142	-0.114	-0.087	-0.065	-0.047
	128	-0.134	-0.132	-0.117	-0.098	-0.078	-0.060	-0.044	-0.032	-0.023
	64	-0.084	-0.077	-0.065	-0.052	-0.040	-0.030	-0.021	-0.015	-0.011
Κ	32	-0.047	-0.041	-0.033	-0.026	-0.019	-0.014	-0.010	-0.007	-0.005
	16	-0.024	-0.020	-0.015	-0.011	-0.008	-0.006	-0.004	-0.003	-0.002
	8	-0.010	-0.008	-0.006	-0.004	-0.003	-0.002	-0.001	-0.001	-0.001
	4	-0.003	-0.002	-0.001	-0.001	-0.001	-0.001	-0.000	-0.000	-0.000
	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		In2	Inda	1118	11/16)	11132	Inter	11128	111256	111522

 ϵ

k-RAPPOR

	(RA	$PPOR_{pr}$	$_{ m ojected}$ l_1	- RAP	POR _{next}	$l_{1})$	@ 30000	users, p	= geom	etric(k/
	512	-1.468	-1.211	-1.015	-0.770	-0.591	-0.467	-0.377	-0.308	-0.254
	256	-1.185	-0.805	-0.522	-0.379	-0.291	-0.230	-0.185	-0.152	-0.125
	128	-0.794	-0.390	-0.254	-0.184	-0.141	-0.111	-0.090	-0.074	-0.061
	64	-0.378	-0.185	-0.121	-0.087	-0.067	-0.053	-0.043	-0.035	-0.029
K	32	-0.173	-0.086	-0.055	-0.040	-0.031	-0.025	-0.020	-0.016	-0.013
	16	-0.076	-0.038	-0.024	-0.018	-0.014	-0.011	-0.009	-0.007	-0.006
	8	-0.033	-0.016	-0.010	-0.007	-0.006	-0.005	-0.004	-0.003	-0.002
	4	-0.015	-0.007	-0.005	-0.003	-0.003	-0.002	-0.002	-0.001	-0.001
	2	-0.003	-0.002	-0.001	-0.001	-0.001	-0.001	-0.000	-0.000	-0.000
		In22	Inla	111/8)	In 16	10132	Inter	1112281	111256	1015221

 ϵ

For skewed distributions, the **projected estimator offers the best utility**.

Open Alphabets

Open Alphabets

- What if we don't know the set of input symbols ahead of time?
- Can we want to avoid penalties for having large *k*?

Instead of encoding x directly...

Instead of encoding x directly, we encode hash(x) mod k.

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions? Multiple Hash Functions → Independent Views (Sketches)

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions? Multiple Hash Functions → Independent Views (Sketches)

O-RR
$$Q_{\text{ORR}} = \frac{1}{C} \frac{1}{e^{\varepsilon} + k - 1} \left(\mathbf{1} + (e^{\varepsilon} - 1) \mathbf{H} \right)$$
where:
$$\mathbf{H}(y, c|s) = \mathbb{1}_{\{\text{HASH}_c^{(k)}(s) = y\}}$$

Decoding:

$$\hat{p}_{\text{ORR}}H = rac{1}{e^{arepsilon}-1}\left(C(e^{arepsilon}+k-1)\hat{m}-1
ight)$$

p(s): distribution over inputs m(y): distribution over outputs

O-RR
$$Q_{ORR} = \frac{1}{C} \frac{1}{e^{\varepsilon} + k - 1} \left(\mathbf{1} + (e^{\varepsilon} - 1) \mathbf{H} \right)$$
where:
$$\mathbf{H}(y, c|s) = \mathbb{1}_{\{u \in \mathcal{U}^{(k)}(s) = u\}}$$

Decoding: (H not invertible: solve via least squares)

$$\hat{p}_{ORR}H = \frac{1}{e^{\varepsilon} - 1} \left(C(e^{\varepsilon} + k - 1)\hat{m} - 1 \right)$$

p(s): distribution over inputs m(y): distribution over outputs

O-RAPPOR

More bits in output: Bloom filter!

Empirical Comparison

 ε

O-RR meets or exceeds utility of O-RAPPOR over wide range of privacy settings.

Closed Alphabets, revisited

Minimal Perfect Hash Functions

A **Minimal Perfect Hash Function** maps m keys to m consecutive integers.

If the m keys are the same set of consecutive integers, this is just a permutation.

Minimal Perfect Hash Functions

For Closed Sets: Modify O-RR and O-RAPPOR to use Minimal Perfect Hash Functions.

Note that with C=1 and h=1, we recover k-RR and k-RAPPOR (modulo a permutation of the output symbols).

 ${\mathcal E}$

O-RR meets or exceeds utility of O-RAPPOR over wide range of privacy settings (for k-ary alphabets)

Understanding Parameters
Open Set Decoding: Output Alphabet Size

(a) O-RR varying k

Open Set Decoding: # Cohorts

Open Set Decoding: # Hashes in Bloom Filter

(e) O-RAPPOR varying h

O-RR (open): Alphabet size should match expected input size. Cohorts matter more for high privacy, but always ≥ 2 .

O-RAPPOR (open): Bloom Filters don't help. Use 2 cohorts and make the alphabet large.

Closed Set Decoding: Output Alphabet Size

Closed Set Decoding: # Cohorts

Closed Set Decoding: # Hashes in Bloom Filter

O-RR (closed): Alphabet size should match expected input size. Cohorts matter for high privacy.

O-RAPPOR (closed): **Bloom Filters and Cohorts** don't help. Just use k-RAPPOR and make the alphabet large.