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Distribution Estimation
Under Local Privacy



Private histograms

We need to understand patterns across large groups 
but do not need to look at any individual.



Differential Privacy:

Provably limit the information gathered about individual users by 
carefully injecting noise
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Private histogram intuition
True population 
distribution:
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value:

Many users' 
contributions:

Aggregate:
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Attacks targeting the log database 
● Accidental / Incidental
● Authorized user goes rogue
● Break in

Attacks targeting log entries during logging:
● Ineffective crypto
● Rogue code

● Government compulsion
● Change of ownership



Private histogram intuition: Add noise before logging
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Sharpen:
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Add noise:

Infer / Denoise / 
Sharpen:

Less Noise: Less Privacy
More Noise: More Privacy

Less Noise: Easier to denoise
More Noise: More data required

Private histogram intuition: Add noise before logging



Local Differential Privacy



Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

QX Y
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Local Differential Privacy Definition

Let Q(Y | X) be a privatization mechanism.

Q is ε-locally differentially private if

QX

Y

QX'

Worst 
Case

≤ eε for all X, X', YQ(Y|X')
Q(Y|X)



Binary Alphabets



Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)



Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)

100% P → η say yes 
0% P → (1-η) say yes 



Warner's Randomized Response, 1965 ("W-RR")

Is ￢P true? (1-η)Is P true? (η)

ε-locally differentially private, for eε = η / (1-η)



Warner's Randomized Response, 1965 ("W-RR")

:QW-RR



Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

m=pQ

p(x): distribution over inputs
m(y): distribution over outputs

row vectors



Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

Decoding: m=pQ, so pest=mobsQ
-1

p(x): distribution over inputs
m(y): distribution over outputs



Warner's Randomized Response, 1965 ("W-RR")

:QW-RR

p: probability of predicate P
T: number of "Yes" reports
n: number of reports (total)



W-RR offers 
optimal utility for 
binary alphabets.



Warner's Randomized Response, 1965 ("W-RR")



k-ary Alphabets



Two different ways to extend to k-ary alphabets

1. k-RR modifies the mechanism
2. k-RAPPOR modifies the encoding



k-RR modifies the mechanism

ɑ +(1-ɑ) =

:QW-RR

ɑ = eε-1
eε+1
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k-RR modifies the mechanism

:Qk-RR

Decoding: m=pQ, so pest=mobsQ
-1

p(x): distribution over inputs
m(y): distribution over outputs



k-RR modifies the mechanism

:Qk-RR

p(x): distribution over inputs
m(y): distribution over outputs



k-RAPPOR modifies the encoding
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2 bits different between any X, X'



k-RAPPOR modifies the encoding

0 1 0 0 0

X = 1 ∈ {0...4}

Q
W

-RR

y0 y1 y2 y3 y4

Q
W

-RR

Q
W

-RR

Q
W

-RR

Q
W

-RR

Decode each bit independently:

pj: probability of X=j
Tj: number of reports with yj=1
N: number of reports (total)



Utility (Bounds on Expected Loss)

No Privatization
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Utility (Bounds on Expected Loss)

No Privatization

Effective Samples
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Utility (Effective Samples)

No Privatization

k-RR

k-RAPPOR

General

n

ε ≈ ln(k) 
(Low Privacy)

n

n/4

n/sqrt(k)



For k-ary alphabets:
k-RR is order-optimal for 
low privacy (and k-RAPPOR 
is sub-optimal)



Utility (Effective Samples)

No Privatization

k-RR

k-RAPPOR

General

n

Small ε 
(High Privacy)

n

nε2/k2

nε2/4k

ε ≈ ln(k) 
(Low Privacy)

n

n/4

n/sqrt(k)



For k-ary alphabets:
k-RAPPOR is order-optimal 
for high privacy 
(and k-RR is sub-optimal)



Constraining to the Simplex
Probability vectors sum to 1 and all elements are non-negative.



Constraining to the Simplex
Probability vectors sum to 1 and all elements are non-negative.

1. Do nothing.
2. Truncate and renormalize.
3. Project onto the nearest point on the simplex.
4. Something else creative (e.g. a different decoder)



Constraining to the Simplex
k-RR k-RAPPOR



For skewed distributions, the 
projected estimator offers 
the best utility.



Open Alphabets



Open Alphabets
● What if we don't know the set of input symbols ahead of time?
● Can we want to avoid penalties for having large k?



Hashing (Sketches)
Instead of encoding x directly...

QX Y
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Hashing (Sketches)
Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?  
Multiple Hash Functions → Independent Views (Sketches)

QX YHashc
(k)

Uniform[C] C



Hashing (Sketches)

QX YHashc
(k)

Uniform[C] C

Stable for each user

Instead of encoding x directly, we encode hash(x) mod k.

But what about collisions?  
Multiple Hash Functions → Independent Views (Sketches)



O-RR

Qk-RR
X YHashc

(k)

Uniform[C] C



O-RR

Qk-RR
X YHashc

(k)

Uniform[C] C



O-RR

p(s): distribution over inputs
m(y): distribution over outputs

Decoding:



O-RR

p(s): distribution over inputs
m(y): distribution over outputs

Decoding:  (H not invertible: solve via least squares)



O-RAPPOR

0 0 0 1 0
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O-RAPPOR
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Hash0
(k) Hash1

(k)

More bits in output: Bloom filter!



O-RAPPOR
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Hash0,c
(k) Hash1,c

(k)

Uniform[C]

C

Stable for each user



Empirical Comparison



106 users
S=256; 
Geometric with 
    mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16



Empirical Comparison

L1 loss = 0.20;
S=256; 
Geometric with 
    mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16



O-RR meets or exceeds 
utility of O-RAPPOR over 
wide range of privacy 
settings.



Closed Alphabets, revisited



Minimal Perfect Hash Functions

A Minimal Perfect Hash Function maps m keys to m 
consecutive integers.

If the m keys are the same set of consecutive integers, this is 
just a permutation.



Minimal Perfect Hash Functions

For Closed Sets: Modify O-RR and O-RAPPOR to use Minimal 
Perfect Hash Functions.

Note that with C=1 and h=1, we recover k-RR and k-RAPPOR 
(modulo a permutation of the output symbols).
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Geometric with 
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1 ≤ h ≤ 16



Empirical Comparison

L1 loss = 0.20;
S=256; 
Geometric with 
    mean=S/5
2 ≤ k ≤ 4096
1 ≤ c ≤ 1024
1 ≤ h ≤ 16



O-RR meets or exceeds 
utility of O-RAPPOR over 
wide range of privacy 
settings (for k-ary alphabets)



Understanding Parameters



Open Set Decoding: Output Alphabet Size



Open Set Decoding: # Cohorts



Open Set Decoding: # Hashes in Bloom Filter



O-RR (open): 
Alphabet size should match 
expected input size.  
Cohorts matter more for 
high privacy, but always ≥2.



O-RAPPOR (open): 
Bloom Filters don't help.  
Use 2 cohorts and make the 
alphabet large.



Closed Set Decoding: Output Alphabet Size



Closed Set Decoding: # Cohorts



Closed Set Decoding: # Hashes in Bloom Filter



O-RR (closed): 
Alphabet size should match 
expected input size.  
Cohorts matter for high 
privacy.



O-RAPPOR (closed): 
Bloom Filters and Cohorts 
don't help.  Just use k-
RAPPOR and make the 
alphabet large.


