
Asynchronous and Noncoherent Neighbor
Discovery for the IoT Using Sparse-Graph Codes

Kabir Chandrasekher1, Kangwook Lee2, Peter Kairouz3, Ramtin Pedarsani4, and Kannan Ramchandran1

1Electrical Engineering and Computer Science, University of California, Berkeley
2Electrical Engineering, KAIST

3Electrical Engineering, Stanford University
4Electrical and Computer Engineering, University of California, Santa Barbara

Abstract—In this paper, we design a fast and efficient
energy-based and asynchronous neighbor discovery protocol
for the Internet of Things (IoT). In our solution, we relax
the assumption of frame-level synchronization. We formulate
a novel asynchronous group testing scheme and apply it to the
neighbor discovery problem. We then show that our proposed
scheme is able to detect the set of K active neighbors1 among
a network of n nodes with codeword length and decoding com-
plexity of Θ(K log (K) log (n)). Finally, we provide extensive
simulation results to verify our theoretical guarantees.

I. INTRODUCTION

Network self-organization is becoming increasingly im-
portant with the emergence of the Internet of Things (IoT).
In an IoT setting, there is an explosion of devices capa-
ble of collecting data and transmitting information. Many
problems posed by this network of devices such as service
recovery and energy management depend heavily on the
knowledge of the local connectivity structure. For this
reason, it is important that each device, henceforth referred
to as a node, has knowledge of its adjacent nodes with which
it can communicate [1]. Thus, often the neighbor discovery
phase, a procedure during which nodes determine their
neighboring nodes, precedes network self-organization. Tra-
ditional cellular random access schemes which are presently
used to discover new devices do not scale to networks with
potentially thousands of nodes per cell [2]. We propose a

Fig. 1: Spatial layout of neighbor discovery. Consider the green
nodes within a radius R of the ith node to be “active” among all
of the nodes. Ki is the label of the ith active neighbor.

noncoherent, group testing based framework to bypass the
need for large-scale channel estimation.

Multiple access and the neighborhood discovery problem
have been studied in the literature from the group testing
perspective [4], [5]. However, most research efforts have so
far assumed that the nodes are tightly synchronized relative

1We note that while our scheme is designed for exact knowledge of K,
it suffices to use an upper bound on K which can be estimated beforehand

to each other and the base station prior to transmission.
This assumption is rarely fulfilled in practice. The cost of
synchronization is particularly significant in the IoT setting
because the nodes are ultra-small, ultra-energy efficient and
hence do not have access to a precise crystal oscillator. They
instead have to rely on inaccurate and noisy clocks [6].
Furthermore, in the 60 GHz band, propagation delays can
lead to significant frame level asynchronism even when the
nodes are only tens of centimeters apart. Therefore, in this
work, we relax the assumption that transmissions coming
from various nodes are perfectly aligned and allow for frame
level asynchronicity.

Of the existing works on asynchronous neighbor discov-
ery, much effort has gone into designing protocols with
energy-efficient schedules for duty cycles [7], [8]. Our work
investigates a different problem, attempting to minimize
discovery phase, assuming nodes are awake. Additionally,
whereas there have been other works studying the problem
from a random access point of view [9], [10], we focus
primarily on efficient protocols utilizing a key assumption
that the number of active neighbors can be sparse [11], and
apply our proposed asynchronous group testing framework
to solve the problem. We additionally note that sparse
graph codes have been previously applied in the neighbor
discovery and multiple access settings, however these works
do not view the problem through the group testing point of
view [12], [13].

The main contribution of the paper is as follows: We
make essential use of the recently proposed SAFFRON
(Sparse-grAph codes Framework For gROup testiNg) [14]
algorithm for group testing, and robustify it to asyn-
chronicity of the codewords, while maintaining its sample
complexity and decoding complexity. Assuming that the
maximum offset between the transmissions of the nodes
is ∆, we show that under some mild assumptions, using
asynchronous SAFFRON, a node is able to recover all
its active neighbors with a communication overhead of
∆ + cK log (K) log (n) bits, where c is a constant that can
be precisely characterized.

The outline of the paper is as follows:
• In Section II, we present the problem formulation, de-

scribing the noncoherent neighbor discovery as group
testing.

• In Section III, we briefly review the results and meth-
ods of the SAFFRON scheme and apply it to the
neighbor discovery problem.

• In Section IV, we extend the SAFFRON scheme to
asynchrony at the bit level. We robustify the Asyn-

chronous SAFFRON scheme to noise and provide
extensive simulation results.

We also summarize the notation used in the paper as
follows:

TABLE I: Notation
Notation Description
n Total number of nodes in the network
K Total number of active users in range
m Codeword length
M Number of right nodes
∆ Maximum delay of any node in the system
δi Delay of node i
ck m-length codeword of user k
U Signature matrix
bi The dlog2 ne-bits representation of i
[N] {1, 2, . . . , N}

II. NEIGHBOR DISCOVERY AS GROUP TESTING

In this section, we formulate the problem of detecting
K active neighbors among n total nodes in the network
through m bits of communication. We first consider the
synchronous case where each active neighbor broadcasts a
binary codeword of length m bits while each node in the
network listens for the discovery period, assuming that the
codewords are perfectly aligned. We then consider a more
realistic scenario, which we call asynchronous neighbor
discovery, where the transmissions of nodes are delayed,
and the delays are unknown at the receiver.

A. Synchronous Neighbor Discovery

Let n be the number of nodes in the network (or devices
in the IoT), and K be the number of active neighbors.
Our approach to neighbor discovery is to judiciously design
distinct codewords of length m bits for the nodes so that
the receiver can identify the neighboring nodes from the
received signal. active neighbors. Let ck = [ck(i)]mi=1 ∈
{0, 1}m be the codeword of user k. Let S = {i1, i2, ..., iK}
be the set of active users. Suppose that each bit corresponds
to a time sub-slot. An active node transmits its codeword
in m sub-slots. The receiver performs a simple energy-
based non-coherent detection at each sub-slot, and detects
whether at least one user has transmitted signal (bit 1) in
that sub-slot or not (bit 0). This corresponds to a bit-level
OR channel as follows: the ith component of the received
signal y ∈ {0, 1}m is

yi =
∨
k∈S

ck(i), (1)

where ∨ is the boolean OR operator. The goal is to design
the codewords {ck}nk=1 such that the receiver is able to
recover any K active neighbors using as few number of bits,
m, as possible, and the receiver has low decoding complex-
ity. It is clear that the above formulation is equivalent to the
classical group testing problem, where yi, 1 ≤ i ≤ m is the
result of each test, and the K active neighbors correspond
to the K defective items in group testing. Thus, by carefully
designing the codewords of the n users, we determine which
(active) users transmit an on signal (bit 1) in a sub-slot. This
is equivalent to designing which items will be pooled in a
single test of a group testing problem. See Figure 2 for an
illustration.

Fig. 2: Schedule induced by random graph. Each of the colored
nodes represents an active node, whose signature is transmitted
at the indicated slot on the right. The receiving node sees the
concatenation of the bins on the right as a contiguous bit string.

B. Asynchronous Neighbor Discovery

The formulation is similar to what was explained before,
with the difference that the users are not perfectly synchro-
nized due to different path delays that makes synchronizing
all the users a complex task. This is particularly the case in
communication systems that are energy-limited such as the
IoT. We assume that active user k’s codeword is received
with a delay of δk bits. We further assume that δk is
uniformly distributed in the set {0, 1, . . . ,∆}, where ∆ is
the maximum delay offset between the users. Thus, the
receiver detects a signal of m+ ∆ bits, where

yi =
∨
k∈S

ck(i− δk) (2)

for i = 1, . . . ,∆ + m, where ∆ + m is the maximum
transmission length. We note that ck(i) = 0 if i > m. The
goal is still to design the codewords ck such that the receiver
(access point) is able to recover any K active users using
as few number of bits m as possible, and the receiver has
low decoding complexity. Note that δis are not known to
the access point, i.e., for decoding, the access point should
not require the estimate of what the delay of each user is.

III. OVERVIEW OF THE SAFFRON ALGORITHM FOR
SYNCHRONOUS NEIGHBOR DISCOVERY

In this section, we give a brief overview of the SAFFRON
algorithm for group testing. We first describe the noiseless
algorithms and later robustify them in Section IV-A. The key
idea of SAFFRON is to design the tests based on sparse-
graph codes, and recover the active users using a simple
peeling-based iterative algorithm.

We now describe how the tests in the SAFFRON scheme
are designed, and how the decoder finds the active users.
Consider a bipartite graph with n left nodes and M right
nodes. Here, the n left nodes correspond to the n items, and
the M right nodes corresponds to the M bundles of test
results. We design a bipartite graph based on a random left-
regular construction. That is, each left node is connected to
constant number d of the right nodes uniformly at random,
independently of the other nodes.

We denote the incidence matrix of a bipartite graph G
by TG ∈ {0, 1}M×n , or simply T if G is clear from the
context. Let ti be the ith row of TG . We associate each left
node with a carefully designed signature (column) vector u
of length h, i.e., u ∈ {0, 1}h . Note that the signature vector
of a user (left node) is different from the codeword of the

user. Let us denote the signature vector of item i by ui. We
define the signature matrix

U
def
=
[
u1 u2 . . . un−1 un

]
∈ {0, 1}h×n

Let the testing matrix A ∈ {0, 1}m×n be the matrix
constructed by n column vectors that are codewords of the
users. Given a graph G and a signature matrix U , we design
the testing matrix A to be a row tensor product of TG and
U , which is defined as

A = TG ⊗ U
def
=
[
AT1 AT2 . . . ATM

]T ∈ {0, 1}hM×n
where Ai = Udiag(ti) ∈ {0, 1}h×n , and diag(·) is the
diagonal matrix constructed by the input vector. As an
example, the row tensor product of matrices:

T =

0 1 0
1 1 0
0 0 1

 and U =

[
1 0 1
0 1 1

]
(3)

is

A = T ⊗ U =


0 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1

 (4)

For notational simplicity, we define the measurement vector
corresponding to right node i as zi

def
= y(i−1)h+1:ih for 1 ≤

i ≤M . In other words, zi is the bitwise logical ORing of all
the signature vectors of the active users that are connected
to right node i.

Our decoding algorithm simply iterates through all the
right node measurement vectors {zi}Mi=1 , and checks
whether a right node is resolvable or not. A right node
is resolvable if exactly one new (not previously detected)
active user can be detected by processing the measurement
of the right node. The decoding algorithm is terminated
when there are no more resolvable right nodes.

To precisely explain our decoding algorithm, we present
the following terminology. A right node that is connected
to one and only one active left node is called a singleton. A
right node that is connected to two active left nodes is called
a doubleton. In the following, we explain how a singleton
and its corresponding active user can be detected.
Consider the signature matrix where the ith column is a
vertical concatenation of bi and its complement b̄i, where
bi is the L = dlog2 ne-bits binary representation of i − 1,
for i ∈ [n].

We now show that a singleton can be detected and
resolved with the aid of this signature matrix. First, note
that the sum of the weight of any binary vector and the
weight of its complement is always the length of the vector,
L. Thus, given a singleton, the weight of the measurement
vector is L. Furthermore, if the right node is connected to
zero or more than one active neighbor, the weight of the
measurement vector is not L. Therefore, by just checking
the weight of the right-node measurement vector, one can
simply detect whether the right node is a singleton or not.
Further, one can also read the first half of the measurement
vector of the detected singleton to find the corresponding
active user. In [14], it is also shown that doubletons can
also be detected, recovering a new active user. This can be

achieved by expanding the signature matrix. We refer the
readers to [14] for the details of how the signature matrix
is expanded, and how the doubletons can be recovered. Our
main result on the synchronous active user detection is the
following theorem that is identical to Theorem 4.1. in [14].

Theorem 1. With codewords of length m = C(ε)K log2 n,
the SAFFRON scheme recovers at least (1 − ε)K active
users with probability 1−O(Kn2), where ε is an arbitrarily-
close-to-zero constant, and C(ε) is a constant that depends
only on ε. Table II shows some pairs of ε and C(ε).
The computational complexity of the decoding algorithm is
linear in the length of the codewords, i.e., O(K log (n)),
that is order-optimal.

TABLE II: Pairs of ε and C(ε)

Error floor, ε 10−3 10−4 10−5 10−6 10−7 10−8

C(ε) 36.78 47.28 57.78 68.16 78.60 89.04

IV. ASYNCHRONOUS SAFFRON FOR NEIGHBOR
DISCOVERY

In this section, we explain how one can adapt the SAF-
FRON scheme to address the case that the codewords of
the active users are not synchronized. Recall that in the
asynchronous case, the i-th bit that the decoder receives is
yi = ck(i − δk). We maintain the k ∈ S framework of
designing the codewords of the users based on a sparse-
graph codes construction. A key observation about the
decoder of SAFFRON that helps us tackle the asynchronous
case is as follows. For detecting whether a right node of
the bipartite graph is a singleton or not, the decoder does
not use any information about the structure of the graph.
Instead, it only checks whether the weight of the 2L-bits
signature associated with the right node is exactly L. In
the asynchronous case, although the codewords are still
designed similarly based on a sparse-graph code, there is
no clear notion of received bits corresponding to a right
node of the graph, as codewords are shifted by arbitrary
offsets.

We now explain the details of the asynchronous SAF-
FRON scheme. We first describe the Singleton-Only
scheme, where the decoder only detects the singletons, and
terminates decoding after all the singletons are detected.
Without loss of generality suppose that ∆ = 2k0 log (n)
for some integer k0 > 1. We design the bipartite graph
(matrix T) of size (k0 + M) × n as follows. Each entry
of T is Bernoulli-distributed and i.i.d. with parameter p (to
be determined), or equivalently, each possible edge of the
bipartite graph is present with probability p independently.
The signature vector of each user is the same as explained
before, and has length 2 log (n).

Decoding Algorithm: We use a simple sliding-window
decoder to detect the active users (as illustrated in Figure
3). The decoder checks all the 2L+ 7 consecutive received
bits. It first checks whether the first three bits and last
three bits are 0, ensuring that it is an isolated singleton.
It then checks whether the fourth bit is a 1, indicating
the start of a signature. Finally, it looks at the weight of
the remaining 2L bits. If the weight of the 2L-bits binary
string is L, the decoder declares a singleton and finds the
corresponding active user by observing the first L bits that
represent the binary expansion of the index of the active

Fig. 3: Singleton-only asynchronous graph. Each of the colored
nodes represents an active node, whose signature is transmitted
at the indicated slot on the right. The receiving node sees the
concatenation of the bins on the right as a contiguous bit string
and decodes using a sliding window.

user. Note that the sliding window used by the decoder can
mark the hypotheses while iterating through the received
signal. It may then iterate through each of the hypotheses
and decode.

For the purpose of analysis, we do not decode the
first 2k0 log2 (n) = ∆ bits, and only decode the latter
2M log2 (n) bits. Note that the total number of received bits
can be as large as 2∆+2M log (n) due to asynchronization,
which denotes the rate (overhead) required by SAFFRON
to detect the active users. We also do not decode the final
∆ bits.

We now state the main result of the paper:

Theorem 2. With codewords of length m = ∆ +
αK log (K) log2 (n), for α > 0, the SAFFRON scheme
recovers all of the K active users with probability 1 −
O(1

KΘ(1)) while identifying no false positives. The computa-
tional complexity of the decoding algorithm is linear in the
length of the codewords, i.e. it is Θ(∆+K log (K) log2 (n))

Proof: We first prove that the SAFFRON scheme re-
covers correctly recovers all of the K active users with
probability 1−O(1

KΘ(1)). Label the edges of the graph as
e1, e2, ..., e|E|, where E denotes the set of the edges of the
graph. Let Xi be the random variable denoting the starting
position (in bits) of the signature vector of ei. Note that
each edge of the graph corresponds to a signature vector of
length 2 log2 (n) bits. Let R = 2M log2 (n) be the number
of bits that we use for decoding. Let E1 be the set of edges
ei such that Xi ∈ [R]. Consider a random edge e` in E1.
It is easy to see that with the described construction of
the graph and with the assumption that δk is uniformly
distributed in {0, 1, . . . ,∆}, X` is uniformly distributed in
[R]. To analyze the performance of the decoding algorithm,
we find the probability that a random edge e` corresponds
to a singleton, i.e. there exists no Xi, i 6= ` such that
X` − 2 log2 (n) ≤ Xi ≤ X` + 2 log2 (n). That is, no other
edges of the graph lie in a 4 log2 (n)- neighborhood of X`.
Fix another edge ej . The probability that X`−2 log2 (n) ≤
Xj ≤ X`+2 log2 (n) is 4 log2 (n)

R . Thus, the probability that
no Xi’s lie in a 4 log2 (n)-neighborhood of X` is:(

1− 4 log2 (n)

R

)|E1|−1

' exp
(
−4 log (n)|E1|

2M log (n)

)
(5)

as n approaches infinity. We denote this quantity by q̄ and
note that we design q̄ to be Θ(1). Note that this is guaranteed
by designing p = Θ

(
1
K

)
so that |E1| = Θ(M). Further,

we may design M = αK log (K). for some α > 0 to be
determined. Thus:

|E1| = βK log (K) = Kd̄,

where the average degree of the active left nodes is d̄ =
Θ(log (K)). Now, one can design the tuple (α, β) rather
than (α, p); then, q̄ = exp(− 2β

α). Now, conditioning on
the degree of an active left node of the graph being x, the
probability that the corresponding active user is not detected
is (1− q̄)x = qx. As K tends to infinity, the degree of the
active left nodes of the graph is Poisson distributed with
parameter d̄. Letting Ai be the event that left node i is
not recovered after decoding and noticing that Pr(A1) =
Pr(Ai) for all i, we see that:

Pr(A1) =

∞∑
x=0

qxe−d̄
d̄x

x!
(6)

= e−d̄q̄ (7)

= exp
(
−e−

2β
α β log (K)

)
(8)

Thus, using the union bound, the probability that an active
left node is not detected can be upper bounded as follows:

Pr

(K⋃
i=1

Ai

)
≤

K∑
i=1

Pr (Ai) (9)

= Kexp
(
−e−

2β
α β log (K)

)
(10)

= K1−βe−
2β
α (11)

≤ 1

KΘ(1)
(12)

Where the last inequality follows by designing sufficiently
large constants α and β.

We now show that the SAFFRON scheme does not
decode any false positives. Let us denote the 2L + 7 bits
section covered by the sliding window as c′. Recall that the
sliding window decoder checks whether the first and last
three bits of c′ are 0. If they are all 0 and the fourth bit is
1, then the decoder checks whether the remaining 2L bits
of c′ have weight L, in which case a singleton is detected.
If the weight is not L, then there are at least two codewords
that are synchronized and conflicting, and we do not decode.
Otherwise, there is at least one codeword conflicting with
c′, and we do not decode. Thus, the only case where the
decoder will attempt to decode c′ is when the fourth bit is
1, the zero-pad is met, and the weight of the remaining 2L
bits is L, which by construction, can only occur if c′ is a
singleton.

We are ultimately interested in the minimum feasible α,
so the following lemma helps us to establish this:

Lemma 3. For any values of n and K, the minimum
feasible α = 2e

Proof: We may write the following optimization prob-
lem:

min α (13)
s.t. α ≥ 0, β ≥ 0

βe−
2β
α ≥ 1

Now, note that maxx xe
−x = 1

e . Thus, we can see that:

maxβe−
2β
α =

α

2e

Now, in order to minimize α while satisfying the constraints
of the optimization problem, we may set α = 2e. Thus, we
can see that there exists β > 0 where the maximum value
of βe−

2β
α can be achievably set to 1.

A. Robustified Singleton-Only Asynchronous SAFFRON

In this section, we consider robustifying the singleton-
only solution to noise. Notice that since the receiver is
performing simple energy detection, we may model the
various sources of noise (i.e. thermal noise, range, etc.)
as i.i.d. bit flips with probability a at the receiver’s end.
In order to tolerate the noise, we add 2 random checks
at the end of each codeword, and use an inner code on
each codeword. More specifically, we utilize the following
properties of spatially coupled codes [15] (with message
length N and rate R):
• It has an encoding function f(·) : {0, 1}N →
{0, 1}N/R and a decoding function g(·) : {0, 1}N/R →
{0, 1}N , and its decoding complexity is O(N).

• If R satisfies:

R < 1−H(a)−δ = 1+a log2 a+(1−a) log2 (1− a)−δ

for an arbitrarily small constant δ > 0, then Pr(g(x +
w) 6= x) < 2−ζN as N → ∞, for some constant
ζ > 0.

We can now describe the augmented signature matrix
for use in the noisy regime. Consider some arbitrary active
node with index `. Now, draw two random variables i`, j`
independently from [N]. At a high level, we will use these
as “random checks” to verify whether our decoded singleton
is correct. Additionally, we append a set of all 1’s of size
t log n for some appropriately determined constant t to the
beginning of the codeword. We finally use our inner code f
on each of these checks so we have the following signature
matrix:

U ′ =



f(b1) f(b2) · · · f(bn−2) f(bn−1)

f(b1) f(b2) · · · f(bn−2) f(bn−1)
f(bi1) f(bi2) · · · f(bin−2

) f(bin−1
)

f(bi1) f(bi2) · · · f(bin−2
) f(bin−1

)
f(bj1) f(bj2) · · · f(bjn−2) f(bjn−1)

f(bj1) f(bj2) · · · f(bjn−2) f(bjn−1)


Decoding Algorithm: Here, we briefly describe the

augmented decoding scheme in robustified singleton-only
SAFFRON. The decoder slides a window of length

(
t +

6
R

)
log n and checks the energy of the first t log n. If this

energy is greater than an energy threshold Te = t logn
2 , the

following 6 logn
R bits are added as a hypothesis, and the

window keeps sliding. We now note that in order to ensure
the singleton is isolated, the decoder skips the following
6 logn
R bits, only adding them to the hypothesis list. It keeps

track of how many bits are left to “restart”, and resets this
counter once it sees a set of t log n bits which pass the
energy test. The decoder only marks a hypothesis when
the “restart” counter hits 0 and it sees a set of contiguous
t log n bits that pass the energy test. Now, note that since
we are still using the complement of each codeword, a valid
singleton will still have approximately constant weight.

This allows the decoder to iterate through the decoding
map and check for an approximately constant weight of
3
(

logn
R

)
. In this way, just as in the noiseless decoder, it

may take one pass through the received bit string, and then
carefully check the remaining hypotheses in the following
manner. We first use the decoding map g(·) to find the
hypothetical active node corresponding to the first

(
logn
R

)
bits. Then, using the two random checks in the following
two

(
logn
R

)
length sections, the decoder checks the initial

hypothesis. If the checks were inconsistent, it does not
declare a resolved singleton, and continues decoding. Noting
that the extension to asynchrony allows us to use the same
designs to robustify as in the synchronous case, we state
the following lemma and theorem summarizing this. The
key component is Lemma 4, and its proof can be found in
[14].

Lemma 4. Robustified-SAFFRON misses a singleton with
probability no greater than 3

nζ
. Robustified-SAFFRON

wrongly declares an active neighbor with probability no
greater than 1

n2+ζ .

Theorem 5. The sample and decoding complexity of Ro-
bustified, Asynchronous Singleton-only SAFFRON are both
O(K log (K) log (n)) where the exact constants can be
specified as a function of α and a.

We note that one can easily bound the number of hy-
pothesis by O(K logK) using Hoeffding’s bounds. Hence,
Theorem 5 is a direct application of Lemma 4 along with
this. We omit the details.

V. SIMULATION RESULTS

In this section, we empirically evaluate the asynchronous
SAFFRON algorithm through extensive simulations. Simu-
lations in this section are done in Python.

A. Noiseless Simulations

As noted in Section IV, the asynchronous SAFFRON
algorithm has the following properties:

1) Decoding complexity: Θ(∆ +K log (K) log2 (n)).
2) Performance as a function of an oversampling param-

eter α, which can be explicitly determined.
We illustrate these key properties in the simulations. First,
we fix the size of the problem with n = 232 and K = 210

and vary the parameter α. Recall that in the proof of 2,
we mention the tuple (α, β). The optimal α = 2e can be
clearly seen from the plot in Figure 4. Additionally, in order
to illustrate the decoding complexity of the algorithm, we
plot the runtime of the algorithm according to varying values
of n and K. We note that as n varies, it clearly follows a
log-linear trajectory, as shown in Figure 5b. As K varies,
we fit a curve following the trajectory of K logK, which
the empirical data points follow tightly, as one can see in
Figure 5a.

B. Noisy Simulations

We now show the performance of the Asynchronous
SAFFRON algorithm in the presence of noise. Whereas
in Section IV-A, we use a capacity achieving code to
achieve linear encoding and decoding complexity, for the
purposes of simulation, we use an inner Reed-Solomon code
before specifying the code induced by the sparse graph. The
simulations here are run with the total number of nodes

Minimum value of ↵
determined by optimization

Fig. 4: Fraction of Undetected Neighbors as a Function of
Oversampling. Using values of n = 232, and K = 210, and
∆ = 200, as well as designing p = Θ(1

K
), the fraction of

undetected neighbors as a function of the oversampling ratio. Note
the threshold, which can be determined by the optimization routine
given in Equation 13.

(a) Noiseless, n = 232 (b) Noiseless, K = 28

Fig. 5: Noiseless simulation results of Asynchronous SAFFRON. (a),
(b): We measure run-time of Asynchronous SAFFRON for varying values
for n and K.

in the networks n = 224 and number of active neighbors
K = 25. The utilized Reed-Solomon code uses a field size
of cq , and takes a message of size ck encoding it into a
codeword of size cn, where cn ≤ cq . For our simulations,
we use cq = 28, and view dlog2 ne as a 3 symbol message.
We thus use ck = 3 and plot the performance of the
robust algorithm as cn varies, noting that the error correcting
capability of the code is given by b cn−ck2 c. The results can
be seen in Figure 6.

Fig. 6: Fraction of Undetected Neighbors as a Function of cn.
Using values of n = 224, and K = 25, and ∆ = 200, as well
as designing p = Θ(1

K
), the fraction of undetected neighbors

as a function of the expansion in the RS code cn. Each curve
corresponds to a different level of noise in the system.

VI. CONCLUSION AND FURTHER WORK

In this paper, we presented a novel formulation of the
neighbor discovery problem for an IoT setting, where
the nodes operate in the low energy regime and are not
fully synchronized. We made essential use of the recently-
proposed SAFFRON scheme for group testing to design a
new neighbor discovery protocol. Our asynchronous pro-
tocol has a transmission length of O(∆ + K logK log n)
and decoding complexity linear in the transmission length,
where we are able to furnish exact constants for the over-
sampling ratio α. Additionally, we robustify our protocol to
noise, showing that the transmission length and decoding
complexity stay order-wise equivalent. Finally, we corrobo-
rate the theoretical results with extensive simulations.

Future work involves extending the idea outlined here
with synchronization at the bit level to incorporate a peeling
structure, augmenting the encoder and decoder to be able
to handle collisions of at most two transmissions, and
robustifying this protocol to noise.

REFERENCES

[1] A. P. Athreya and P. Tague, “Network self-organization in the internet
of things,” in 2013 IEEE International Conference on Sensing,
Communications and Networking (SECON), 2013.

[2] M. Baker, S. Sesia, and I. Toufik, “Lte-the umts long term evolution
from theory to practice,” 2011.

[3] Z. Zou, D. S. Mendoza, P. Wang, Q. Zhou, J. Mao, F. Jonsson,
H. Tenhunen, and L.-R. Zheng, “A low-power and flexible energy
detection ir-uwb receiver for rfid and wireless sensor networks,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 58,
no. 7, pp. 1470–1482, 2011.

[4] J. Wolf, “Born again group testing: Multiaccess communications,”
IEEE Transactions on Information Theory, vol. 31, no. 2, pp. 185–
191, 1985.

[5] J. Luo and D. Guo, “Neighbor discovery in wireless ad hoc networks
based on group testing,” in Communication, Control, and Computing,
2008 46th Annual Allerton Conference on, 2008.

[6] M. Tabesh, N. Dolatsha, A. Arbabian, and A. M. Niknejad, “A power-
harvesting pad-less millimeter-sized radio,” IEEE Journal of Solid-
State Circuits, vol. 50, no. 4, pp. 962–977, 2015.

[7] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery
and rendezvous for mobile sensing applications,” in Proceedings of
the 6th ACM conference on Embedded network sensor systems, 2008.

[8] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar, “U-connect: a
low-latency energy-efficient asynchronous neighbor discovery proto-
col,” in Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, 2010.

[9] S. Vasudevan, M. Adler, D. Goeckel, and D. Towsley, “Efficient
algorithms for neighbor discovery in wireless networks,” IEEE/ACM
Transactions on Networking, vol. 21, no. 1, pp. 69–83, 2013.

[10] S. A. Borbash, A. Ephremides, and M. J. McGlynn, “An asyn-
chronous neighbor discovery algorithm for wireless sensor networks,”
Ad Hoc Networks, vol. 5, no. 7, pp. 998–1016, 2007.

[11] L. Zhang, J. Luo, and D. Guo, “Neighbor discovery for wireless
networks via compressed sensing,” Performance Evaluation, vol. 70,
no. 7, pp. 457–471, 2013.

[12] A. Stajkic, F. Clazzer, and G. Liva, “Neighbor discovery in wireless
networks: A graph-based analysis and optimization,” in Communi-
cations Workshops (ICC), 2016 IEEE International Conference on,
2016.

[13] K. R. Narayanan and H. D. Pfister, “Iterative collision resolution
for slotted aloha: An optimal uncoordinated transmission policy,” in
Turbo Codes and Iterative Information Processing (ISTC), 2012 7th
International Symposium on, 2012.

[14] K. Lee, R. Pedarsani, and K. Ramchandran, “SAFFRON: A
fast, efficient, and robust framework for group testing based on
sparse-graph codes,” CoRR, vol. abs/1508.04485, 2015.

[15] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold satura-
tion via spatial coupling: Why convolutional ldpc ensembles perform
so well over the bec,” IEEE Transactions on Information Theory,
vol. 57, no. 2, pp. 803–834, 2011.

