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ABSTRACT

We consider multi-input multi-output (MIMO) communications over multi-

mode fibers (MMFs). Current MMF standards, such as OM3 and OM4,

use fibers with core radii of 50µm, allowing hundreds of modes to propagate.

Unfortunately, due to physical and computational complexity limitations, we

cannot couple and detect hundreds of data streams. In order to circumvent

this issue, two solutions were presented in the literature. The first is to design

new fibers with smaller radii so that they can support a desired number of

modes. The second is to design multi-core fibers with a reasonable number

of cores. However, both approaches are expensive as they necessitate the re-

placement of installed fibers. In our work, we consider input-output coupling

schemes that allow the user to couple and extract a reasonable number of

signals from a fiber with many modes. This approach is particularly attrac-

tive as it is scalable; i.e., the fibers do not have to be replaced every time the

number of transmitters or receivers is increased (which is likely to happen

in the near future). In addition, fibers with large radii can support higher

peak powers, relative to fibers with small radii, while still operating in the

linear regime. However, the only concern is that fibers with more modes

suffer from increased mode-dependent losses (MDLs). Our work addresses

this last concern.

This thesis is divided into two parts. In the first part, we present a channel

model that incorporates intermodal dispersion, chromatic dispersion, mode

dependent losses, and mode coupling. We later extend this model to include

the input and output couplers and provide an input-output coupling strategy

that leads to an increase in the overall capacity. This strategy can be used

whenever channel state information (CSI) is available at the transmitter and

the designer has full control over the couplers. We show that the capacity of

an Nt×Nt MIMO system over a fiber with M � Nt modes can approach the

capacity of an N -mode fiber with no loss. Moreover, we present a statistical
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input-output coupling model in order to quantify the loss in capacity when

CSI is not available at the transmitter or there is no control over the input-

output coupler. It turns out that the loss, relative to Nt-mode fibers, is

minimal (less than 0.5 dB) for a wide range of signal-to-noise ratios (SNRs)

and a reasonable range of MDLs. This means that there is no real need to

replace the already installed fibers and that our strategy is indeed a better

approach to solving the above problem.

In the second part, we explore reduced complexity maximum likelihood se-

quence detection (MLSD) algorithms for single carrier MIMO systems. These

algorithms can be used for optical as well as wireless communications. We

show that a sphere decoding (SD)-like approach can be used to reduce the

computational complexity of the vector Viterbi algorithm (VVA), an exten-

sion to the Viterbi algorithm for MIMO systems. Our combined SD-VVA

approach is attractive because it provides substantial computational savings

while solving an exact MIMO MLSD problem. Our results show a 50% re-

duction in complex multiplications and real additions, relative to the full

VVA, for a 2× 2 MIMO system using 16-QAM signal constellation and op-

erating at an signal-to-noise ratio (SNR) of 10 dB. This figure is increased to

60% when the SNR is increased to 15 dB. We show that larger savings can be

achieved for larger MIMO systems and higher order signal constellations. Fi-

nally, we show how our algorithm can be modified in order to further reduce

the complexity of VVA while still achieving close to optimal performance.
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CHAPTER 1

INTRODUCTION

1.1 MIMO Communications over MMF

Since Shannon defined the notion of channel capacity as the fundamental

limit on achievable transmission rates with vanishing probability of error,

system designers have attempted to reach this limit by leveraging device

technology advances and increasingly sophisticated algorithms and architec-

tures. Moore’s law, together with advances in signal processing, information

theory, and coding theory have enabled us to essentially achieve this funda-

mental limit for a number of narrow-band wired and wireless communication

links.

Because of their superior bandwidth-distance product, optical fibers have

become extremely popular and have largely replaced traditional copper wire

technologies. Optical communication links have serial data rates that are

typically several orders of magnitude higher than their wired or wireless

electrical counterparts, such as voice-band or cable modem technology or

even high-speed chip-to-chip serial links.

Despite their superiority, optical links have limited capacity and the cir-

cuits, signal processing, and information theory communities need to com-

pletely re-think the design and analysis of communication systems in order

to address the ever increasing demand for Internet bandwidth. Furthermore,

Moore’s law is reaching its limits, and device scaling can no longer readily

provide the increases in electrical switching speed and transistor density to

which we have become accustomed over the last several decades. Optical

data rates are sufficiently high that we can no longer ignore constraints on

receiver computational complexity and devices when considering achievable

rates.
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Multi-input multi-output (MIMO) communications over multi-mode fibers

(MMFs) promises to boost the Internet bandwidth supply. However, the

capacity of MIMO optical links has not been investigated properly due to the

lack of accurate and mathematically tractable channel models. In the first

part of this thesis, we present a detailed linear model for the MIMO multi-

mode optical channel and analyze its capacity as a function of input-output

coupling as well as other physical parameters. We also introduce an input-

output coupling strategy and compare it to the uncontrolled coupling case in

terms of achievable rate. In the second part, we develop reduced complexity

and sub-optimal approximations to maximum likelihood sequence detection

(MLSD) algorithms for frequency selective MIMO links. The algorithms we

provide can be used for both optical and wireless communication systems.

We show that computational complexity savings can be achieved if a sphere

decoding-like algorithm is used to update the path metrics of all states at

each stage in a vector Viterbi algorithm (VVA).

1.2 Historical Overview

Optical communications, broadly defined, is considered to be one of the old-

est forms of long distance telecommunications. In fact, many centuries ago,

people used beacons, fires, and smoke signals to communicate with one an-

other. More specifically however, the development of optical fiber waveguide

technologies is recent and dates back to the late 1960s. The early history of

the first generation optical fiber communication (OFC) systems is summa-

rized in Table 1.1. The invention of gallium arsenide (GaAs) semiconductor

lasers in the early 1960s was the enabler of high speed OFC technologies.

The second generation of optical fibers emerged in the early 1980s. It op-

erated at 1.3 µm, as opposed to 0.8 µm in the first generation, and used

indium gallium arsenide phosphide (InGaAsP) semiconductor lasers. In this

generation, multi-mode dispersion (cf. Section 2.4) was the major limitation

in OFC systems. In 1981, single-mode fibers (SMF, cf. Section 2.2) were

developed to solve the multi-mode dispersion problem. This led to a boost

in performance; however, practical connectors capable of working with SMF

proved difficult to build. In 1987, optical systems were operating at rates

close to 1.7 Gb/s with a repeater placed every 50 km. In 1988, TAT-8 was

2



Table 1.1: The early history of optical fiber communications

1792 Claude Chappe invented the first optical semaphore tele-
graph (optical telegraph)

1880 Alexander Graham Bell and Charles Sumner Tainter de-
veloped the Photophone, a device for transmitting sound
on a beam of light

1841 Jean-Daniel Colladon demonstrated light guiding or to-
tal internal reflection for the first time

1920 John Logie Baird and Clarence W. Hansell patented the
idea of using arrays of hollow pipes or transparent rods
to transmit images for television

1966 Charles K. Kao and George Hockham proposed optical
fibers at Standard Telecommunications Laboratories

1970 Corning Glass Works (now Corning Inc.) successfully
developed optical fibers with an attenuation of 17-20
dB/km. A few years later they developed a fiber with
only 4 dB/km.

1977 General Telephone and Electronics sent the first live
telephone traffic through fiber optics at a speed of 6
Mbps

the first transatlantic telephone cable to use optical fiber based on Desurvire’s

optimized laser amplification technology. The third generation OFC systems

operated at 1.55 µm and had losses of about 0.2 dB/km. Scientists over-

came chromatic dispersion (cf. Section 2.4) by using dispersion-shifted fibers

that are designed to have minimal spreading at 1.55 µm. The data rates of

these systems was in the range of 2.5 Gb/s with repeaters placed in excess

of 100 km. The fourth generation OFC systems used optical amplification

and wavelength division multiplexing (WDM) to increase data capacity. In

WDM systems, a number of lasers, with different wavelengths, are used to

modulate independent data streams onto the same fiber. This technology led

to doubling the capacity of optical systems every 6 months starting in 1992

until a bit rate of 10 Tb/s was reached in 2001 and then 14 Tb/s in 2006

(over a single 160 km line using optical amplifiers). However, as the tech-

nology matured the increase in capacity saturated in the late 2000s because

almost all available degrees of freedom (cf. Section 2.3) had been already

exploited by then. In this thesis, we show how we can make use of the single

unexplored degree of freedom, the spatial modes of a fiber, to build MIMO

systems that can help boost the data rates of optical links.
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Figure 1.1: Internet demand and supply (extracted from [1])

1.3 Motivation

In an information-intensive era, the demand for Internet bandwidth is in-

creasing at a rate of 56% per year, while the increase in supply is falling

behind at a rate of 25% per year [1]. The increase in demand is fueled by

the boom in web-based data services such as cloud computing and real-time

multimedia applications. Figure 1.1 predicts that the gap between the In-

ternet demand and supply will only increase in the coming few years if no

immediate solution is provided. As a result, optical fiber communication

researchers are looking into new ways of boosting the transmission rate of

optical links. Given that polarization division multiplexing (PDM) and wave-

length division multiplexing (WDM) have already been exploited [3], the only

remaining degree of freedom is space division multiplexing [4]. MIMO optical

communication increases the transmission rates of MMF systems by multi-

plexing a number of independent data streams on different spatial modes.

Note that, unlike WDM systems, all the laser sources in this case have the

same wavelength. MMF is a dominant type of fiber used for high speed data

communication in short-range links such as local area networks (LAN) and

data centers [5]. It is usually favored over single-mode fibers because of its re-

laxed connector alignment tolerances and its reduced transceiver connector

costs. Plastic optical fibers are great examples of MMFs with remarkably
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low installation and operation costs [6]. However, they suffer from mode-

dependent losses, mode coupling, intermodal dispersion, and chromatic dis-

persion (group velocity dispersion) [7]. All these phenomena will be explained

in detail in Section 2.4. These limitations make the design and analysis of

MIMO multi-mode systems challenging yet exciting.

1.4 Outline and Results

In Chapter 2, we present a MIMO channel propagation model that takes in-

termodal dispersion, chromatic dispersion, mode-dependent losses, and mode

coupling into account. In Chapter 3, we compute the capacity of an M -mode

fiber and demonstrate how mode-dependent losses and mode coupling affect

it. In Chapter 4, we analyze the coupling of a reasonable number of laser

sources to a fiber with hundreds of modes. We also propose an input-output

coupling model and present a coupling strategy: using the input-output cou-

plers to perform a special kind of beamforming. This strategy leads to an

increase in the overall capacity as it allows the effective transmission of data

along the least lossy subset of end-to-end eigenmodes. The resultant capac-

ity is almost equal to that of a fiber with Nt modes and no modal losses, an

ideal case which maximizes the capacity of an Nt ×Nt MIMO system. This

coupling strategy can only be used when channel state information (CSI) is

available at the transmitter and there is full control over the input-output

couplers. In the absence of these conditions, an appropriate random input-

output coupling model is used in order to better model the behavior of the

system and quantify the expected loss in the fiber’s capacity. It turns out that

the loss, relative to Nt-mode fibers, is minimal (less than 0.5 dB) for a wide

range of SNRs and a reasonable range of MDLs. In Chapter 5, we present

a reduced complexity maximum likelihood sequence detection (MLSD) algo-

rithm for frequency selective MIMO channels. The algorithm we develop is

a variant of the popular vector Viterbi algorithm (VVA). Complexity reduc-

tions are achieved by an approach similar to sphere decoding (SD) to update

the path metrics and select the survived states at each stage in the VVA. We

show that a 60% reduction in complex multiplications and real additions is

achieved for 2× 2 MIMO systems with 16-QAM signal constellations. More

savings are achieved for higher order signal constellations and larger MIMO
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systems.

In our thesis, we use results from random matrix theory, information the-

ory, and MIMO Orthogonal Frequency Division Multiplexing (OFDM) com-

munications. This is why we dedicate Appendices A, B, and C to discussing

them in detail.

1.5 Notation

• x (t) is a time domain signal

• x (ω) is the continuous time Fourier transform (CTFT) of x (t)

• x (X) is a vector (matrix) of scalar entries

• x (t) (X (t)) is a vector (matrix) of continuous time signals

• x (ω) (X (ω)) is the entry-wise CTFT of x (t) (X (t))

• IN denotes the N ×N identity matrix

• 0L×K represents the L×K zero matrix

• x ? y (t) represents the convolution of x (t) with y (t)

• X∗ is the conjugate transpose of X

• XT is the transpose of X

• det (X) and tr (X) denote the determinant and trace of X respectively

• diag (x) represents a diagonal matrix formed by the entries of x

• f ′ (x) is the first order derivative of f (x)

• f ′′ (x) is the second order derivative of f (x)

6



CHAPTER 2

FUNDAMENTALS AND MODELING

2.1 Fundamentals

Modern optical fiber systems transmit digital information (voice, video, or

files) through an optical fiber using light waves. Optical fibers are cylindrical

waveguides made from glass or plastic (for low cost systems). The transmis-

sion and reception processes in an optical communication system are depicted

in Figure 2.1.

distorted 
baseband signal + 

noise

sampling

EQ

decision

threshold

1,1,0,1,0,1
detected

1,0,0,1,0,0
estimated data

decoding

detection

1,1,0,1,0,1
raw data

channel coding

1,1,0,1,0,1
coded data

MOD

baseband signal

AMP Sensing & DEMOD

fiber span(s) with amplifiers

Figure 2.1: An optical communication system using single-mode fibers and
on-off keying (reproduced from [2])

A block of raw data bits is first encoded via a channel code to yield a longer

block of coded bits. The coded bits are mapped to a baseband signal that

drives a laser source or a light emitting diode (LED). This essentially converts

an electrical baseband signal to an optical passband signal. The optical
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signal (electromagnetic field) is then transmitted through a cylindrical shaped

fiber. If the fiber is sufficiently long, optical amplification is employed to

boost the energy of the attenuated signal. At the other end of the fiber,

the signal is detected using a detector such as a photo detector array (if an

LED is used for transmission) or a MachZehnder interferometer (if a coherent

laser is used for transmission). The combination of LED and photo detector

array gives rise to a non-coherent optical communication system where the

received signal is proportional to the energy of the transmitted field. Thus,

any information transmitted through the phase is lost. On the other hand,

the combination of coherent laser source and MachZehnder interferometer

gives rise to a coherent optical communication system where the field’s phase

and amplitude are both recovered at the output of the fiber. In either case,

the received signal is a distorted and attenuated version of the transmitted

one with an additional, potentially signal dependent, noise component due

to electronic processing and optical amplification. The task of the receiver

is to apply equalization and detection techniques in order to recover the

coded bits. Finally, a decoder is used to correct for detection errors and

output the original block of information bits. Figure 2.2 summarizes the

differences between coherent and non-coherent optical systems. In this figure,

sr (t) represents the field at the output of the fiber. Coherent systems use

well calibrated phase controlled laser sources and local oscillators operating

well in the terahertz regime (hundreds of THz) to transmit and recover the

phase and amplitude of an information-bearing signal. On the other hand,

non-coherent systems use simple LEDs and photo detectors to transmit and

detect the energy of an information signal. Thus, coherent systems are more

complex, more expensive, and harder to build and maintain when compared

to non-coherent systems. This is why the majority of currently deployed

optical systems are non-coherent while a small percentage of the high end

ones are coherent. However, coherent systems are becoming more popular as

the optoelectronic devices are becoming more affordable. In fact, the state-of-

the-art optical systems use both polarization and quadrature multiplexing to

multiply the data rate by a factor of four. For example, OC-768 systems use

the horizontal and vertical polarizations in addition to quadrature phase-shift

keying (QPSK) to multiplex four independent data streams and transmit

them all at the same time. An example of an OC-768 transmitter and receiver

is shown in Figure 2.3.
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The OC-768 network has transmission speeds of 40 Gbit/s. This means that

in a system using QPSK and dual polarization, the transmitter operates at

a frequency of about 10 GHz. Because coherent systems are becoming more

popular and affordable, the capacity analysis we perform in Chapter 3 is

exclusively applicable to coherent systems.

2.2 Single-Mode vs. Multi-Mode Fibers

Electromagnetic waves propagating inside the core of a fiber are characterized

by Maxwell’s equations. When the core radius is sufficiently small, only one

solution to the wave equations is supported and the fiber is said to be a single-

mode fiber. In multi-mode fiber systems, the core radius is relatively large

and hence there is more than one solution (propagation mode) to the wave

equation [7]. Ideally, the field inside the core would propagate in different

orthogonal modes that do no interact with one another. However, due to

manufacturing non-idealities and index of refraction inhomogeneities, the

modes may couple. This phenomenon is called mode coupling and is modeled

in Section 2.4.

core: 50 um

cladding

different modes

Multimode Fiber

Single Mode Fiber core: 8 um

Figure 2.4: Single-mode vs. multi-mode fibers

A geometric optics visualization for modes is given in Figure 2.4. From

a geometric optics point of view, the electromagnetic modes are represented

by rays and their propagation through the fiber is described by a simple

10



ray tracing model. As can be seen in Figure 2.4, single-mode fibers are

characterized by a single line of sight path from the input to the output

of the fiber. However, in MMFs the light pulse takes several optical paths

of different lengths. The fact that some paths are longer than others leads

to pulse spreading at the output of the fiber. This phenomenon is called

intermodal dispersion and will be formally presented in Section 2.4. In order

to combat intermodal dispersion, the index of refraction of the fiber’s core

is graded to make its distribution non-uniform. A parabolic index profile,

shown in Figure 2.5, is typically used in commercial multi-mode fibers.

core: 50 um
cladding: 125 um

core: 8.3 um
cladding: 125 um

core: 100 um
cladding: 140 um

fiber cross section

refractive index profile

step-index MMF graded-index MMF SMF

Figure 2.5: Step index vs. graded index single-mode and multi-mode fibers

Intuitively, as the optical signal moves into a region where the index of re-

fraction is lower, its speed is increased and hence the total time needed for

propagation is decreased. This reduces the delay spread, the maximum dif-

ference between the arrival times of different modes at the output of the fiber,

and thus mitigates the effect of intermodal dispersion (cf. Section 2.4 for a

formal definition of delay spread). Fibers that have uniform index of refrac-

tion are called step index fibers while fibers with graded index of refraction

are called graded index fibers. The effect of index of refraction grading is

depicted in Figure 2.6.
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different modes

Step-Index Multimode Fiber

core: 100 um

cladding

core: 50 um

 

different modes

Graded-Index Multimode Fiber

Figure 2.6: Step index vs. graded index fibers

2.3 Degrees of Freedom

Loosely speaking, the degrees of freedom (DoF) of a channel is an upper limit

on the number of independent data streams that can be transmitted through

the channel over a period of time. A more rigorous definition of DoF is given

in [8] as the minimial dimension of the received signal space. The quadrature

and in-phase components of a passband information signal are two familiar

and commonly exploited degrees of freedom in wired and wireless communi-

cation systems. Figure 2.7 shows the degrees of freedom available in a multi-

mode fiber communication system. Frequency, time, code, quadrature, and

polarization states are all well explored and already utilized in commercial

optical systems. However, the spatial degree of freedom, which is unique to

MMFs, has not been exploited yet in commercial products and is still under

research. In 2000, H. R. Stuart was the first to notice the similarity between

the multipath wireless channel and the MMF optical channel and suggested

using the spatial modes to multiplex several independent data streams onto

the fiber [9]. Prior to this finding, single-mode fibers were always considered

to be superior to MMFs because of their improved bandwidth-distance prod-

uct (as SMFs do not suffer from intermodal dispersion). However, we will

show in Chapter 3 that MMFs have advantages over single-mode fibers from
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Degrees of Freedom

WDM
OFDM

Amplitude/Phase 
Modulation

oCDMA

Separate Fibers
Multiple Modes

Space Frequency

Time Polarization

Quadrature Code

Figure 2.7: Degrees of freedom in multi-mode fibers (reproduced from [3])

a capacity perspective. Therefore, MIMO over MMFs seems to be a better

route to higher data rates.

2.4 Fiber Propagation Model

For coherent optical systems operating in the linear regime, the basic form

of the baseband transfer function governing the input-output relationship of

the ith mode is given by

Hi (x, y, z, ω) = φi (x, y, ω) e−
κiz

2 e−jβi(ω+ωc)z (2.1)

where ωc is the laser’s center frequency, φi (x, y, ω) is the transverse function

(spatial pattern) of the ith mode, κi is the mode-dependent attenuation fac-

tor, and βi (ω + ωc) is the ith mode’s propagation constant [2]. Figure 2.8

shows the spatial patterns of two low order modes in a fiber with a perfect

parabolic index of refraction profile. Expanding the function βi (ω) around

ωc using its Taylor series expansion, and keeping the first and second order
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(b) 1st order mode

Figure 2.8: Lower order modes in an MMF

derivative terms, we get

Hi (x, y, ω) ≈ φi (x, y) e
gi
2 e−jθie−jωτie−jω

2αi (2.2)

where φi (x, y) = (x, y, L, ωc), gi = −κiL, θi = βi (ωc)L, τi = β
′
i (ωc)L, and

αi = β
′′
i (ωc)L. Observe that z has been suppressed as it has been evaluated

at L, the fiber’s length. The function φi (x, y, ω) generally depends on ω but

since the signal spectrum (tens of GHz) is narrow around the laser’s center

frequency (hundreds of THz), we drop this dependency and evaluate it at ωc.

The model in (2.2) assumes that the propagation of the mode is completely

characterized by a second order linear model where the only phenomena

exhibited along the ith mode are

• mode-dependent loss (MDL): gi = −κiL

• mode-dependent phase shift (MDPS): θi = βi (ωc)L

• group delay (GD): τi = β
′
i (ωc)L

• group velocity dispersion (GVD): αi = β
′′
i (ωc)L

The mode-dependent losses (MDLs) are negative quantities describing the

attenuation experienced by the modal fields. On the other hand, the mode-

dependent phase shifts (MDPSs) represent phase shifts experienced by the

modal fields. In general, modal fields propagate at different speeds and thus

the group delays (GDs) characterize the arrival times of different modes.

Therefore, if we transmit a narrow pulse through the fiber, it would appear
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as a pulse having a width of Td = maxi,j{|τi − τj|} at the output of the

fiber. The quantity Td is referred to as the channel’s delay spread. Assume,

without loss of generality, that the group delays are sorted in increasing order,

τ1 being the smallest and τM being the largest. In this case, Td is given by

Td = max
i,j
{|τi − τj|}

= τM − τ1

= L
(
β
′

M (ωc)− β
′

1 (ωc)
)

(2.3)

Thus, Td is directly proportional to the length of the fiber. The pulse broad-

ening phenomenon, due to nonzero Td, is called intermodal dispersion and is

a serious performance limitation in MMF systems. The group velocity dis-

persion (GVD), also called chromatic dispersion (CD), suggests that different

frequencies coupled to the same mode propagate at different speeds and hence

broadening occurs to the field propagating in a particular mode. This phe-

nomenon is called intra-modal dispersion. In a first-order model, intermodal

dispersion is assumed to dominate over intra-modal dispersion and the GVD

term is typically neglected, especially for shorter lengths L. Furthermore,

since we are not interested in analyzing the field at every point (x, y) in the

fiber’s core, we suppress this term to obtain the following expression:

Hi (ω) ∝ e
gi
2 e−jθie−jωτie−jω

2αi (2.4)

Ideally, the field at the output due to the ith mode is given by ri (t) =

si ? hi (t), where si (t) is the field at the input due to the same mode. Thus,

the frequency domain vector representation of the modal fields at the output

of the fiber is given by
r1 (ω)

...

rM (ω)

 =


H1 (ω)

. . .

HM (ω)




s1 (ω)
...

sM (ω)

 (2.5)

where the off-diagonal entries are zero because the modes are assumed to

be orthogonal. This analysis neglects the existing fiber aberrations such as

fiber bends, index of refraction inhomogeneities, and random vibrations, and

is therefore incomplete. In fact, the modes interact with one another and
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Figure 2.9: A multi-mode fiber with K propagation sections

exchange energy as they propagate along the fiber, complicating the analysis

of the wave propagation. The treatment we present was first applied to

polarization mode dispersion (PMD) in [10] and was then generalized to

model mode coupling in [11]. In the regime of high mode coupling, for

example when plastic optical fibers are used, an MMF with M modes1 is

split into K � 1 statistically independent longitudinal sections as depicted

in Figure 2.9. The number of sections K is equal to L/lc, where lc represents

the correlation length of the fiber. The frequency response of each section is

given by

Hk (ω) = UkΛk (ω) Vk∗ for k = 1, ..., K (2.6)

where Uk and Vk are M × M frequency-independent projection matrices

(unitary matrices) describing the modal coupling via a phase and energy

shuffling process at the input and output of each section and

Λk (ω) = diag
(
e

1
2
gk1−jθk1−jωτk1−jω2αk1 , ..., e

1
2
gkM−jθ

k
M−jωτ

k
M−jω

2αkM

)
(2.7)

is the propagation matrix describing the ideal (uncoupled) field propaga-

tion in the kth section. This model assumes that mode coupling occurs at

the interface of different sections while the propagation in each section is

ideal (and is described by Λk (ω)). In (2.7), the vectors gk =
(
gk1 , ..., g

k
M

)
,

θk =
(
θk1 , ..., θ

k
M

)
, τ k =

(
τ k1 , ..., τ

k
M

)
, and αk =

(
αk1, ..., α

k
M

)
represent the

uncoupled MDL, MDPS, GD, and GVD coefficients in the kth section. Here,

gki = −κki lc, θki = βki (ωc) lc, τ
k
i = β

′k
i (ωc) lc, and αki = β

′′k
i (ωc) lc are not nec-

essarily identical across the M modes and K sections and will be modeled

as random variables in Section 2.5. The overall channel frequency response

is equal to the product of the frequency responses of the K sections and is

1In this work, M refers to all the available spatial degrees of freedom including the x
and y polarization states.
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given by

H (ω) = H(K) (ω) ...H(1) (ω) (2.8)

Alternatively, one could describe the input output relationship in time do-

main by

H (t) = H(K) ?H(K−1)...H(2) ?H(1) (t) (2.9)

In (2.9), the operation C (t) = A ? B (t) represents a matrix convolution

operation. Specifically, the (i, j)th entry of C (t) is given by

cij (t) =
M∑
l=1

ail ? blj (t) (2.10)

where M is the dimension of the square matrices A (t) and B (t).

2.5 Random Propagation Model

We now develop a random propagation model for the MIMO optical channel.

The random model we introduce is an extended variant of what was presented

in [11] and [12]. The per-section coupling matrices Uk and Vk are modeled as

independent and identically distributed (i.i.d.) random unitary matrices with

arbitrary distributions. Appendix A provides a brief introduction to random

unitary matrices and some results that will prove useful when we compute the

channel’s capacity. We assume that the propagation characteristics gki , θki ,

αki , and τ ki are all independent random quantities. In addition, each of gk, θk,

τ k, and αk has zero mean identically distributed, but possibility correlated,

entries. The zero mean assumption is not restrictive because the mean MDL,

MDPS, GD, and GVD do not affect the capacity of the fiber. Even though

the propagation characteristics are identically distributed within a particular

section, they need not have the same distributions from one section to the

other. We define σk to be the standard deviation of the uncoupled MDLs in

the kth section: σk =
√

Var
(
gki
)

= lc

√
Var

(
κki
)
. At any fixed frequency ω0,

the overall frequency response in (2.8) can be written as

H (ω0) = UHΛHV∗H (2.11)
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by the singular value decomposition (SVD) of H (ω0). In (2.11), all the

matrices are random frequency dependent square matrices and

ΛH = diag
(
e

1
2
ρ1 , ..., e

1
2
ρM
)

(2.12)

contains the end-to-end eigenmodes, singular values of H (ω0). We note that

the end-to-end eigenmodes are not actual solutions to the wave equation,

but rather they characterize the effective overall propagation through the

fiber. The vector ρ = (ρ1, ρ2, ..., ρM) contains the end-to-end mode-dependent

losses, the logarithms of the eigenvalues of H (ω0) H∗ (ω0). These quantities

are obviously frequency dependent random variables as they are the loga-

rithms of the eigenvalues of a frequency dependent random matrix. The

accumulated mode-dependent loss variance is defined as

ξ2 = σ2
1 + σ2

2 + ...+ σ2
K (2.13)

where ξ is measured in units of the logarithm of power gain and can be

converted to decibels by multiplying its value by 10/ ln 10 [11]. When all

sections have identical distributions for the MDLs, Equation (2.13) reduces

to ξ2 = Kσ2 because σk = σ for all k.

2.6 A First-Order Model

In order to get a feel for how mode coupling affects the field’s propagation,

we derive a first-order model for the end-to-end fiber impulse response. For

the sake of simplicity, we ignore chromatic dispersion and assume that the

propagation characteristics are deterministic and are identical for all sections.

In other words, the random vector
(
gki , θ

k
i , α

k
i , τ

k
i

)
is replaced by a determin-

istic vector (gi, θi, 0, τi) for all k. This is equivalent to replacing the random

propagation matrices Λk (ω) by a deterministic propagation matrix Λ (ω).

These assumptions are exclusive to this section and are relaxed in the chap-

ters to follow. We now solve for hl0,lK+1
(t), the (l0, lK+1)th entry of H (t).

Recall, from (2.9), that H(t) is the fiber’s matrix impulse response and it

contains M2 impulse responses. Here, hl0,lK+1
(t) is the impulse response of

the effective channel between the input of the lthK+1 mode and the output of

the lth0 mode. Therefore, each of l0 and lK+1 can take values from 1 to M .
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We use the indices (l0, lK+1) instead of (i, j) for notational convenience. Let

Bk = Vk∗U(k−1) for 2 ≤ k ≤ K, B(K+1) = U(K), and B(1) = V(1)∗ , then

Equation (2.8) can be written as

H (ω) = H(K) (ω) ...H(1) (ω) (2.14)

= UKΛK (ω) VK∗ ...U1Λ1 (ω) V1∗

= B(K+1)Λ(K) (ω) B(K)Λ(K−1) (ω) B(K−1)...Λ(1) (ω) B(1)

We note that since Vk∗ and U(k−1) are independent random unitary matrices,

their product Bk is a random unitary matrix. Taking the product of the

2K + 1 matrices in (2.14), one can show that the (l0, lK+1)th entry of H (ω)

is given by

hl0lK+1
(ω) =

M∑
lK=1

...
M∑
l1=1

[
K∏
m=0

b
(K−m−1)
lm,lm+1

]
e+

∑K
m=1( 1

2
glm−jθlm−jωτlm) (2.15)

where b
(K−m−1)
lm,lm+1

is the (lm, lm+1) entry of B(K−m−1). At a first glance, it

seems that all the KM summands in (2.15) are distinct. However, the

term 1
2
glm − jθlm − jωτlm can take one of at most M values because it

has to belong to {1
2
gi − jθi − jωτi}Mi=1. This means that the summation∑K

m=1

(
1
2
glm − jθlm − jωτlm

)
can have up to M distinct summands. Thus,

we can rewrite Equation (2.15) in a more compact and meaningful form as

hl0lK+1
(ω) =

∑
k1+...+kM=K

B (k1, ..., kM) e+ 1
2

∑M
i=1 kigie−j

∑M
i=1 kiθie−jω

∑M
i=1 kiτi

(2.16)

where

B (k1, ..., kM) =
∑

{l1,...,lK |#(l′is=j)=kj ,∀j}

K∏
m=0

b
(K−m−1)
lm,lm+1

(2.17)

and the notation # (l′is = j) = kj means that the number of li’s equal to j is

equal to kj. This formulation is equivalent to choosing K elements from M

distinct items with replacement, k1 elements from item 1
2
g1 − jθ1 − jωτ1, k2

elements from item 1
2
g2 − jθ2 − jωτ2, so on so forth. Therefore, the number

of summands in (2.17) is given by the multinomial coefficient(
K

k1, ..., kM

)
=

K!

k1!k2!...kM !
(2.18)
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Equation (2.16) can be further simplified and written as

hl0lK+1
(ω) =

M∑
k1+...+kM=K

A (k1, ..., kM) e−jωτ(k1,...,kM ) (2.19)

where τ (k1, ..., kM) =
∑M

i=1 kiτi is an effective group delay and

A (k1, ..., kM) = B (k1, ..., kM) e+
∑M
i=1 ki( 1

2
gi−jθi) (2.20)

is an attenuation and phase shift factor. Alternatively, the time domain

impulse response is given by

hl0lK+1
(t) =

M∑
k1+...+kM=K

A (k1, ..., kM) δ (t− τ (k1, ..., kM)) (2.21)

where the response has
(
M+K−1

K

)
distinct impulse taps: δ (t− τ (k1, ..., kM)).

Furthermore, min τ (k1, ..., kM) = Kτ1 = Klcβ
′
1 (ωc) and max τ (k1, ..., kM) =

KτM = Klcβ
′
M (ωc) and hence mode coupling does not increase the delay

spread Td = L
(
β
′
M (ωc)− β

′
1 (ωc)

)
. However, mode coupling spreads the en-

ergy of the signal in a non-unique way between Kτ1 and KτM . We define the

energy of an impulse tap δ (t− τ (k1, ..., kM)) as E [|A (k1, ..., kM) |2]. When

mode coupling is ignored, i.e. K = 1, the impulse response has M impulse

taps which represent the M modal group delays. In this case, the modes are

perfectly orthogonal and do not interact with one another. As K increases,

the number of taps increases and the energy distribution becomes concen-

trated around the center of the impulse response. This is because the average

energy of an impulse tap δ (t− τ (k1, ..., kM)) is directly proportional to the

number of summands in Equation (2.17). When k1 = k2 = ... = kM = K/M ,

assuming that K/M is an integer, the number of summands in (2.17) is max-

imized and hence the impulse tap corresponding to this assignment has the

largest average energy. On the other hand, τ (k1, ..., kM) = KτM is achieved

by setting kM = K and k1 = k2 = ... = kM−1 = 0 and hence there is only

one term in the summation in (2.17). Similarly, the tap corresponding to

τ (k1, ..., kM) = Kτ1 has one term in the summation in (2.17) as well. This

means that the energy of the impulse response taps for those two extreme

points is very low when compared to the middle taps. This phenomenon is

pictorially depicted in Figure 2.10. Even though the theoretical Td is un-
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1K MK

Figure 2.10: A sketch for hl0lK+1
(t)

changed, the effective channel spread is reduced due to mode coupling. This

is to be expected as mode coupling happens due to the exchange of energy

between modes. Therefore, when K is large, a lot of energy mixing takes

place (energy leaking from fast modes to slower modes and vice versa) and

thus the middle tap will capture most of the signal energy.
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CHAPTER 3

CAPACITY OF MULTI-MODE FIBERS

3.1 Literature Review

Following the work of Shannon [13], many information theorists investi-

gated the capacity of different channels, including single-input single-output

(SISO) channels with memory, channels with constrained input alphabet, and

multiple-input multiple-output (MIMO) channels. In their seminal work,

Telatar and Foschini et al., independently showed that the capacity of a

MIMO flat fading wireless channel, under the Raleigh fading model, scales

linearly with respect to the minimum number of antennas at the transmitter

and receiver [14, 15]. Since then, the wireless communications community

has been focused on developing detection and coding schemes for MIMO sys-

tems in order to achieve the aforementioned capacity gains. Recent wireless

technologies such as WLAN 802.11n and Long Term Evolution Advanced

(LTE-A) are examples of MIMO systems deploying up to 8 transmitters

and receivers. More importantly, as we discussed in Chapter 2, this MIMO

technique is not limited to wireless systems. In fact, Stuart was the first to

demonstrate the feasibility of a 2×2 MMF system and to show that there are

indeed some capacity gains to be leveraged [9]. However, Stuart’s analysis

and experiments assumed a radio frequency sub-carrier (∼ 1 GHz) instead

of an optical carrier (∼ 100 THz). This assumption was later relaxed in the

work of Shah et al. but their treatment did not account for any intermodal

dispersion, chromatic dispersion, or mode coupling [16]. Recently, the infor-

mation theoretic capacity of coherent MMF systems has been studied in [4],

where the authors ignored the frequency selectivity of the channel but in-

corporated the effects of mode coupling. In [11], Keang-Po et al. considered

the capacity of a frequency selective MMF channel at a particular frequency.
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They later studied the impact of frequency diversity on the channel’s capac-

ity for mutli-mode fibers with 10 modes [17]. However, their models did not

incorporate the effect of mode-dependent phase shifts or chromatic disper-

sion.

In this chapter, we compute the capacity of coherent MMF systems un-

der the presence of mode-dependent phase shifts (MDPSs), mode-dependent

losses (MDLs), group delay (GD), chromatic dispersion (CD), and mode

coupling. We review the information theoretic definition and operational

meaning of channel capacity and derive the capacity of frequency flat and

frequency selective MIMO channels in Appendix B. Table 3.1 summarizes

the parameters governing the random propagation model presented in Sec-

tion 2.5. Each of the vectors gk, θk, τ k, and αk has zero mean identically

Table 3.1: Random propagation model

fiber’s frequency response H (ω) = HK (ω) ...H1 (ω)
per-section response Hk (ω) = UkΛk (ω) Vk∗

per-section coupling matrices Uk and Vk

uncoupled MDL gk =
(
gk1 , ..., g

k
M

)
uncoupled MDPS θk =

(
θk1 , ..., θ

k
M

)
uncoupled GD τ k =

(
τ k1 , ..., τ

k
M

)
uncoupled GVD αk =

(
αk1, ..., α

k
M

)
uncoupled MDL variance σ2

k = Var
(
gki
)

= l2c Var
(
κki
)

accumulated MDL variance ξ2 = σ2
1 + σ2

2 + ...+ σ2
K

distributed, but possibility correlated, entries. Moreover, the vectors gk1 , θk1 ,

τ k1 , and αk1 are independent of gk2 , θk2 , τ k2 , and αk2 for k1 6= k2. However,

they can have the same statistical distributions. Recall, from Section 2.5,

that the kth section propagation matrix is given by

Λk (ω) = diag
(
e

1
2
gk1−jθk1−jωτk1−jω2αk1 , ..., e

1
2
gkM−jθ

k
M−jωτ

k
M−jω

2αkM

)
= ΘkTkAkGk (3.1)

where Θk = diag
(
e−jθ

k
1 , ..., e−jθ

k
M

)
, Tk = diag

(
e−jωτ

k
1 , ..., e−jωτ

k
M

)
, Ak =

diag
(
e−jω

2αk1 , ..., e−jω
2αkM

)
, and Gk = diag

(
e

1
2
gk1 , ..., e

1
2
gkM

)
.
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3.2 Frequency Flat Channel Capacity

We first study the capacity of the system when the channel’s delay spread and

CD are negligible. The more general frequency selective case is handled in

Section 3.3. In this regime, maxij |τ ki − τ kj | ≈ 0 and maxi |αki | ≈ 0 and hence

τ ki = τ k and αki = 0 for all i and k. Therefore, the kth section propagation

matrix is given by

Λk (ω) = diag
(
e

1
2
gk1−jθk1−jωτk1−jω2αk1 , ..., e

1
2
gkM−jθ

k
M−jωτ

k
M−jω

2αkM

)
= e−jωτ

k

diag
(
e

1
2
gk1−jθk1 , ..., e

1
2
gkM−jθ

k
M

)
= e−jωτ

k

ΘkGk

= e−jωτ
k

Λk (3.2)

where Λk = ΘkGk. Therefore, the overall response can be written as

H (ω) = e−jω
∑K
k=1 τ

k

UKΛKVK∗ ...U1Λ1V1∗

= e−jω
∑K
k=1 τ

k

UHΛHV∗H (3.3)

where UH , ΛH , and V∗H are all frequency independent. The term e−jω
∑K
k=1 τ

k

is a delay term and can be neglected if we assume that the transmitter and

receiver are synchronized. Thus, the channel is frequency flat and is given

by

H = UHΛHV∗H (3.4)

Consequently, the input-output relationship under this frequency flat channel

model in (3.4) is given by

y = Hx + v (3.5)

where x and y represent the transmitted and received vectors, respectively,

and v represents the modal noise which is modeled as additive white Gaussian

noise (AWGN) with covariance matrix N0IM, N0 being the noise power den-

sity per Hz. This assumes that coherent optical communication is used and

that electronic noise dominates over amplified spontaneous emission (ASE)

noise. In addition, the fiber non-linearities are neglected under the assump-

tion that the signal’s peak to average power ratio (PAPR) and peak power are

both low enough. This condition is not restrictive because MMFs have large

radii and hence can support more power (relative to single mode fibers) while
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still operating in the linear region. The input-output model in (3.5) may seem

identical to the wireless MIMO flat fading one. However, the Rayleigh fading

i.i.d. model does not hold in our case because H is a product of K terms,

each containing a random diagonal matrix sandwiched between two random

unitary matrices. Moreover, the entries of H are correlated. From Appendix

B, the capacity of a single instantiation of the channel in (3.4), when channel

state information (CSI) is not available at the transmitter, is given by

C (H) = log det

(
IM +

SNR

M
HH∗

)
=

M∑
n=1

log

(
1 +

SNR

M
λ2
n

)
b/s/Hz (3.6)

where SNR = P/N0W , P representing the total power divided equally across

all modes and W representing the available bandwidth in Hz. The λ2
n’s are

the eigenvalues of HH∗. If CSI is available at the transmitter, the capac-

ity could be further increased through waterfilling [18, 8]. In this case, the

transmitter pre-processes the transmit vector x by allocating powers using a

waterfilling procedure and then multiplies x by VH . On the other side, the

receiver multiplies the received vector y by U∗H . This effectively turns the

MIMO channel into a set of parallel AWGN channels. In optical communi-

cations, the beamforming process assumes that the designer can couple the

fields of different sources onto the fiber exactly as determined by VH . This

procedure, though beneficial, is complicated as it necessitates the design of

sophisticated reconfigurable mode-selective spatial filters using coherent spa-

tial light modulators [19, 20].

In the above analysis, we considered the capacity of (3.5) for a given in-

stantiation of H. However, since H is random, the channel capacity C (H)

is random. In the fast fading regime, the ergodic capacity, expected value

of C (H), is desired as it dictates the fastest rate of transmission [8]. On

the other hand, in the slow fading regime, the cumulative distribution func-

tion (CDF) of C (H) is desired as it determines the probability of an outage

event for a particular rate of transmission [8]. In either case, the cumulative

distribution and the expected value of C (H) are both functions of the distri-

bution of λ = (λ2
1, ..., λ

2
M), the eigenvalues of HH∗. From (3.4), the matrix

HH∗ = UHΛ2
HU∗H is Hermitian and its eigenvalues, the squares of the sin-
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gular values of H, are real non-negative quantities. Recall from Section 2.5

that the quantity λn = e
1
2
ρn refers to the nth end-to-end eigenmode and the

quantity ρn refers to the nth end-to-end mode dependent loss (MDL). The

distribution of the end-to-end MDL values was studied in [11] where it was

conjectured that as M tends to infinity, the ρn’s become independent and

identically distributed on a semicircle. Their analysis and simulations, how-

ever, did not incorporate the effect of mode dependent phase shifts (MDPSs),

θki ’s. The following proposition shows that the statistical distribution of the

end-to-end MDL values is unchanged even when MDPSs are incorporated.

Proposition 3.2.1 The statistics of H are unchanged when MDPSs are

modeled.

Proof 1 In order to prove the above proposition, we show that the statis-

tics of Hk = UkΘkGkVk∗ are the same as those of Hk = UkGkVk∗ for all

k = 1, ..., K. Observe that Θk is a unitary and random matrix because it has

random orthonormal columns. However, the matrix does not necessarily be-

long to the class of random unitary matrices as it is not necessarily uniformly

distributed over U (M), the space of M ×M unitary matrices. Nonetheless,

we note that the distribution of W = UkΘk is the same as the distribution

of Uk because

f (W) =

∫
Θk
f
(
W|Θk

)
f
(
Θk
)
dΘk

= f
(
Uk
) ∫

Θk
f
(
Θk
)
dΘk

= f
(
Uk
)

(3.7)

where the second equality holds because for a given instantiation of Θk, the

random matrix W|Θk has the same distribution as Uk (cf. Lemma A.2.1 in

Appendix A). Therefore, the statistics of H are unchanged when the MDPSs

are incorporated, and thus the results in [11] carry over to this more general

setting.

Figure 3.1 shows that for M = 100 the distribution of ρn approaches a semi-

circle. The distributions in Figure 3.1 were obtained by generating a large

sample of channel matrices H (for M = 8, M = 52, and 100) and estimat-

ing the distributions of the logarithm of their singular values. Appendix A
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Figure 3.1: Distribution of end-to-end MDL

explains how we can generate random unitary matrices, which are needed

to create samples of H, from matrices with i.i.d. complex Gaussian entries.

The average capacity of C (H) is given by

Cavg =
M∑
n=1

E
[
log

(
1 +

SNR

M
eρn
)]

b/s/Hz (3.8)

where the average is taken over the statistics of the end-to-end MDL values.

Figure 3.2 shows the average capacity of MMFs for various values of M and

ξ = 4 dB. The capacity of the system increases with an increasing number

of modes. This is intuitive because as the number of modes increases, the

fiber’s spatial degrees of freedom are increased. Figure 3.3 shows the effect of

accumulated MDLs on the average capacity. An increasing value of ξ results

in a capacity equivalent to that of a fiber with fewer modes. This means that

as ξ2, the accumulated mode-dependent loss variance, increases the system

loses its spatial degrees of freedom.
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Figure 3.2: Capacity of MIMO MMF systems at ξ = 4 dB
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3.3 Frequency Selective Channel Capacity

When chromatic and intermodal dispersion are taken into account, the fiber’s

frequency response H (ω) becomes frequency selective. Under the same linear
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assumptions as in the previous section, the input-output relationship is given

by

y (t) = H (t) ? x (t) + v (t) (3.9)

where v (t) is a Gaussian vector process, x (t) is the input, and y (t) is the

received signal. Recall, from Section 2.4, that H (ω0) can be written as

H (ω0) = UHΛHV∗H (3.10)

where UH , ΛH , and V∗H all depend on ω0. From Appendix B, the capacity of

a single instantiation of H (ω), when CSI is not available at the transmitter,

is equal to

C =
1

2πW

∫ 2πW

0

log det

(
INr +

SNR

M
H (ω) H∗ (ω)

)
dω b/s/Hz (3.11)

where W is the bandwidth of the system in Hz and SNR = P/N0W [8].

This capacity can be achieved by Orthogonal Frequency Division Multiplex-

ing (OFDM) with N sub-carriers (as N tends to infinity). MIMO OFDM

modulation is a popular modulation scheme in wireless communications and

is currently being developed for the next generation optical systems [21].

We describe this scheme in detail in Appendix C. The maximum achievable

capacity of a MIMO-OFDM system with N sub-carriers is

C =
1

N

N∑
i=1

log det

(
INr +

SNR

M
HiH

∗
i

)

=
1

N

N∑
i=1

M∑
n=1

log

(
1 +

SNR

M
λ2
n,i

)
b/s/Hz (3.12)

where Hi = H (ωi) and λ2
n,i is the nth eigenvalue of HiH

∗
i. When CSI is

available at the transmitter, waterfilling can be performed to allocate optimal

powers across sub-carriers and transmitters. This procedure is explained

thoroughly in Appendix B.

In the above analysis, we considered the capacity of (3.9) for a given in-

stantiation of H (ω). We focus on analyzing the expected capacity of the
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frequency selective system which is now given by

Cavg = E

[
1

N

N∑
i=1

M∑
n=1

log

(
1 +

SNR

M
λ2
n,i

)]
b/s/Hz (3.13)

To begin with, if we assume that, in each section, all modes experience

the same random loss (i.e., the entries of gk are perfectly correlated), then

Gk = e
1
2
gkIM. Furthermore, assume that the K sections are statistically

identical. Therefore, σk = σ for all k and ξ2 = Kσ2. In this case, the overall

response is given by

H (ω) = UKΛK (ω) VK∗ ...U1Λ1 (ω) V1∗

= e
1
2

∑K
k=1 g

k

UKΘKTKAKVK∗ ...U1Θ1T1A1V1∗ (3.14)

Observe that, even though H (ω) is a function of ω, H (ω) H (ω)∗ = e
∑K
k=1 g

k
IM

is independent of ω. This means that λ2
n,i = e

∑K
k=1 g

k
is independent of the

frequency index i and the mode number n. In the strong coupling regime

(i.e., when K is large), the random variable
∑K

k=1 g
k converges, in distribu-

tion, to a Gaussian random variable with variance equal to ξ2 = Kσ2 by the

central limit theorem. In other words, the distribution of the random vari-

able λ2 = e
∑K
k=1 g

k
converges to a log-normal distribution. Thus, the average

capacity of the fiber is given by

Cavg = ME
[
log

(
1 +

SNR

M
λ2

)]
(3.15)

where the average is taken over the statistics of λ2. Observe that average

capacity scales linearly with M , the number of modes. In general, the distri-

bution of λ2 = e
∑K
k=1 g

k
could converge to a log-normal distribution even if the

K sections are not statistically identical. A sufficient condition for conver-

gence is that the sequence {gk}Kk=1 satisfies Lindeberg’s condition [22]. Thus,

neither group delay nor chromatic dispersion affect the average capacity of

the fiber.

We now derive the capacity for the general case (i.e., when the entries of

gk are potentially independent). The following proposition shows that the

statistics of H (ω) are independent of ω.

Proposition 3.3.1 The statistics of H (ω) are independent of ω.
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Proof 2 Using the same proof as in proposition 3.2.1, we can show that

the statistics of Hk (ω) = UkΘkTkAkGkVk∗ are the same as the statistics

of Hk = UkGkVk∗ by showing that the distribution of Wk = UkΘkTkAk is

equal to the distribution of Uk. Thus, the statistics of Hk (ω) are independent

of ω.

This result shows that the statistics of the eigenvalues of HiH
∗
i are identical

for all i. Therefore, the average capacity expression can now be rewritten as

Cavg =
M∑
n=1

E
[
log

(
1 +

SNR

M
λ2
n

)]
b/s/Hz (3.16)

which is identical to the average capacity of frequency flat optical MIMO

systems. Therefore, the results of the previous section carry over to the

frequency selective case.
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CHAPTER 4

INPUT-OUTPUT COUPLING
STRATEGIES

4.1 Input-Output Coupling

The capacity analysis presented in Chapter 3 is important, but it only serves

as an upper limit on the achievable rate. This limit can only be achieved

by making use of all available spatial modes. In theory, one can always

design a fiber with a sufficiently small core radius such that a desired number

of modes propagate through the fiber [7]. In reality, one has to rely on

currently installed optical fibers and available technologies. The state-of-

the art OM3 and OM4 MMF technologies have core radii of 50µm with

hundreds of propagation modes. Unfortunately, having a 100 × 100 MIMO

system is neither physically nor computationally realizable at the moment.

This means that a more careful look at the effective channel capacity has to

be considered. This is why we now focus on the case when Nt transmit laser

sources and Nr receivers are used. For most parts of this chapter, we assume

that intermodal and chromatic dispersions are negligible. Even though this

may seem like a restriction, this assumption actually serves to simplify the

discussion and presentation of input-output coupling strategies. The results

and procedures we present offer insight and can be extended to the more

general frequency selective case.

4.2 Input-Output Coupling Model

The input coupling is described by CI, an M × Nt matrix, and the output

coupling is described by CO, an Nr ×M matrix. Here, M is much larger
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than Nt and Nr and the overall response is given by

Ht = COH(K)...H(1)CI

= COHCI (4.1)

Therefore, for a single instantiation of Ht, the capacity of the channel is given

by

C (Ht) = log det

(
INt +

SNR

Nt

HtH
∗
t

)
(4.2)

The input-output coupling coefficients (entries of CI and CO) are complex

quantities capturing the effect of both power and phase coupling into and out

of the fiber. These coefficients are determined by the system geometry and

launch conditions. For example, in order to study the input coupling profile

of each light source one needs to specify its exact geometry and launching

angle, and then solve the overlap integrals: two dimensional inner products

between the laser’s spatial patterns and those of each mode

cij =

∫ ∫
φi (x, y)φsj (x, y) dxdy (4.3)

where cij is the (i, j)th entry of CI, φi (x, y) is the ith mode spatial pattern,

and φsj (x, y) is the jth laser source spatial pattern. However, this procedure

is cumbersome and offers little insight on the underlying channel physics. In

what follows, we provide a simple condition on the input-output couplers.

This condition will prove useful when we present an input-output scheme

that maximizes the achievable rate of the overall system (Section 4.3) and

impose a statistical model for CI and CO (Section 4.4).

Proposition 4.2.1 If we neglect the power lost due to input coupling inef-

ficiencies, then a necessary and sufficient condition for CI to be an input

coupling matrix is given by

(ci, cj) = δij (4.4)

where ci represents the ith column of CI and (a,b) denotes the standard

Euclidean inner product between the vectors a and b. This means that the

columns of CI should form a complete orthonormal basis for CNt. Similarly,

if we neglect the power lost due to output coupling inefficiencies, then the

rows of CO should form a complete orthonormal basis for CNr .
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Proof 3 Satisfying the energy conservation principle requires that

||CIx||2 = ||x||2 ∀x ∈ CNt (4.5)

This means that the energy of the input vector should be equal to the energy

of the mode vector at the input of the fiber. This condition holds whenever

the mapping CI is a linear isometry mapping. In the special case where CI

is a square matrix, a classical result in linear algebra states that CI has to be

a unitary matrix [23]. However, CI is a tall M ×Nt (M � Nt) rectangular

matrix. In this case, the condition in (4.5) can be rewritten as

(CIx,CIx) = (x,x) ∀x ∈ CNt (4.6)

or equivalently as

(x, [C∗ICI − INt ] x) = 0 ∀x ∈ CNt (4.7)

If C∗ICI = INt, the condition in (4.7) holds and CI preserves the norm. This

choice ensures that the columns of CI form a complete orthonormal basis

for CNt. However, this only proves the sufficiency part of the proposition.

To prove the necessity part, we consider B = C∗ICI − INt and show that if

(4.7) holds, then it is equal to zero. It can be easily verified that if B is

a diagonal matrix, then (x,Bx) = 0 ∀x ∈ CNt implies that B = 0. The

same observation holds if B is diagonalizable. In this case, one can choose

an orthonormal basis of eigenvectors and map (x,Bx) = 0 ∀x ∈ CNt to

(x̃,Dx̃) = 0 ∀x̃ ∈ CNt where D is a diagonal matrix. In our case, B is

Hermitian and hence it is unitarily diagonalizable so that B = 0 or alterna-

tively, C∗ICI = INt as desired. A similar proof can be carried out to show

that COC∗O = INr.

We note that even though C∗ICI = INt , CIC
∗
I 6= INt because CI is of full

column rank, but not of full row rank. We now use this property to show

that CI and CO should have a special structure.

Proposition 4.2.2 The input-output coupling matrices CI and CO can be

expressed as

CI = UI

[
INt

0(M−Nt)×Nt

]
V∗I (4.8)

34



CO = UO

[
INr0Nr×(M−Nr)

]
V∗O (4.9)

where UI and V∗O are M ×M unitary matrices, V∗I is an Nt × Nt unitary

matrix, and UO is an Nr ×Nr unitary matrix.

Proof 4 By the singular value decomposition (SVD), CI = UIΛIV
∗
I and

CO = UOΛOV∗O [23]. The non-zero singular values of CI are the square

roots of the eigenvalues of C∗ICI, and C∗ICI = INt. A similar argument

holds for CO.

4.3 Input-Output Coupling Strategies

In this section, we assume that Nt = Nr. When CSI is available at the

transmitter and the design of CI and CO is affordable, an optimal choice for

the input-output couplers is the one that maximizes the system’s capacity

(
Copt

I ,Copt
O

)
= arg max

(CI,CO)
log det

(
INr +

SNR

Nt

HtH
∗
t

)
= arg max

(CI,CO)

N∑
n=1

log

(
1 +

SNR

Nt

λ2
n

)
(4.10)

where the λ2
n’s are the eigenvalues of HtH

∗
t. We note that Copt

I and Copt
O

should have a structure compliant with (4.8) and (4.9), respectively. Instead

of solving the above constrained optimization problem, we provide an in-

tuitive choice for (CI,CO) and argue that it leads to a maximized overall

capacity through simulations.

Proposition 4.3.1 The capacity of the overall system in (4.2) is indepen-

dent of the choice of V∗I and UO from (4.8) and (4.9).

Proof 5 The capacity of the overall system is given by

C (Ht) = log det

(
INt +

SNR

Nt

HtH
∗
t

)
= log det

(
INt +

SNR

Nt

COHCICI
∗H∗C∗O

)
= log det

(
INt +

SNR

Nt

UOΛOV∗OHUIΛIΛ
∗
IU
∗
IH
∗VOΛ∗OU∗O

)
= log det

(
INt +

SNR

Nt

ΛOV∗OHUIΛIΛ
∗
IU
∗
IH
∗VOΛ∗O

)
(4.11)

35



Therefore, the capacity of the overall system is independent of V∗I and UO

and hence, without loss of generality, we will assume that they are both equal

to the identity matrix.

The following input-output coupling scheme is suggested

CI = VH

[
INt

0(M−Nt)×Nt

]
(4.12)

CO = [INr0(M−Nt)×Nt ]U
∗
H (4.13)

where VH and UH have been defined in (3.4). Choosing VO = UH, UO = INt ,

UI = VH, and VI = INt leads to an overall response given by

Ht =
[
IN0(M−N)×N

]
ΛH

[
IN

0(M−N)×N

]
(4.14)

= diag (λ1, ..., λN)

Thus, the overall MIMO channel is transformed into a set of parallel AWGN

channels. Moreover, since the SVD in (3.4) sorts the singular values in de-

creasing order, the signal energy has been restricted to the Nt (out of M)

least lossy end-to-end eigenmodes. The capacity achieved by this choice of

input-output coupling is

C (Ht) =
Nt∑
n=1

log

(
1 +

SNR

Nt

eρn
)

b/s/Hz (4.15)

As shown in Appendix B, this capacity could be further increased by pre-

processing x via a diagonal power allocation matrix K using waterfilling. Our

strategy is intuitive since we only have Nt degrees of freedom so it would be

wise if we use the Nt least lossy end-to-end eigenmodes to transmit. We note

that even though the effective end-to-end fiber response shows that we have

used the Nt best end-to-end eigenmodes only, Nt signals were coupled to and

collected from all the available physical modes at the input and output of the

fiber. Nonetheless, achieving (4.15) requires, as discussed before, having CSI

at transmitter and using adaptive spatial filters which is typically hard to

implement. Even though we did not prove that the above strategy is capacity

optimal, our simulations section will show that it appears to maximize the
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capacity of the overall system.

4.4 Random Input-Output Coupling

The design of reconfigurable input-output couplers is expensive and assumes

the availability of CSI at the transmitter (which is only feasible when the

channel is varying slowly). More importantly, in many cases, the coupling

coefficients are affected by continuous vibrations and system disturbances.

Thus, full control over CI and CO is not always affordable. In this section,

we analyze the capacity when the user does not have control over CI and

CO. This will give us better insight on the achievable capacity of MIMO

MMF systems. We model the coupling coefficients as time varying random

variables and impose a physically inspired distribution that respects both

the fundamental energy preservation constraint and the maximum entropy

principle. Even though we focus on describing the statistical model of CI,

our discussion applies equally well for CO.

For an M×M square matrix A, the energy conservation principle confirms

that A should belong to the class of M×M unitary matrices, U (M) := {U ∈
CM×M |U∗U = UU∗ = IM}. It was proven in [24] that since a Haar measure

exists over U (M), one could define a uniform distribution over U (M). There-

fore, we choose a random setting where the input coupling matrix CI has its

Nt columns randomly selected from a square matrix A that is uniformly dis-

tributed over U (M). This distribution ensures that the columns of CI form

a complete orthonormal basis for CNt and gives equal probability measure for

all such possible vectors. In other words, CI is uniformly distributed over a

Stiefel manifold VNt

(
CM
)
. Appendix A shows how we can generate CI and

CO from an M×M matrix with i.i.d. Gaussian entries. The ergodic capacity

of the overall system can now be computed by averaging over the statistics of

the input-output couplers and the statistics of the fiber response. Similarly,

one could also compute the probability of an outage event by obtaining the

cumulative distribution function (CDF) of the capacity, which now depends

on the statistics of CI and CO.
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Figure 4.1: Achievable capacity of a 4× 4 MIMO MMF system

4.5 Discussion

We have evaluated the capacity of both controlled and uncontrolled MIMO

MMF systems. As discussed in Section 4.3, the controlled case refers to

the case when CSI is available at the transmitter side and there is full con-

trol over the input-output couplers. The uncontrolled case refers to the

random coupling model presented in Section 4.4. In our simulations, we

numerically computed the ergodic capacity using (3.8), with H replaced by

Ht = COHCI. The average in (3.8) is taken over the statistics of the channel

and the input-output couplers for the uncontrolled case. For reference, we

included plots of the capacity when

• all mode dependent losses are equal to zero and there is no mode cou-

pling (K = 1 and ξ = 0); hence the channel has unity eigenmodes. A

fiber with such properties will be referred to as an ideal fiber.

• the fiber core radius is chosen so that only Nt modes can propagate. In

this case the input and output coupling matrices are unitary matrices.

In this analysis, we consider Nt = Nr = 4, K = 256, ξ = 4 dB, and M = 100.

Comparing Figures 4.1 and 3.3, we observe that the capacity of a 4×4 system

over a 100-mode fiber is inferior to the intrinsic capacity of the fiber (i.e.,
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when all the modes are used). This result is expected since we are using 4

out of 100 available degrees of freedom. At moderate SNR values the loss in

capacity is about 6 dB. On the other hand, observe, from Figure 4.1, that the

performance of an uncontrolled 4×4 system over a 100-mode fiber is close to

that of a system with 4 modes. Thus, currently installed fibers could be used

without significant loss in capacity. We also note that, by using the input-

output coupling strategy presented in Section 4.3, performance equal to that

of an ideal fiber can be achieved. This is explained by revisiting Figure 3.1

which shows the probability distribution of the end-to-end MDL values when

M = 100. We observe that in this case we only use the best 4 eigenmodes

to transmit the signal. As such, it is highly probable that these 4 (out of

100) modes will have close to zero end-to-end mode-dependent losses, and

thus the performance is almost equal to that of an ideal fiber (even when ξ is

large). The larger M is, the closer the capacity of a controlled fiber can get

to that of an ideal fiber. Finally, one could argue that coupling a reasonable

number of inputs to a fiber with hundreds of modes is advantageous since

the fiber’s peak power constraint is proportional to the number of modes

(recall that more propagation modes means larger core radius). This means

that compared to an Nt-mode fiber, a higher capacity could be achieved if

we signal over an M � Nt-mode fiber since the total power budget can now

be increased.
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CHAPTER 5

REDUCED COMPLEXITY SEQUENCE
DETECTION ALGORITHMS

5.1 Detection Algorithms

The vector Viterbi algorithm (VVA) extends the conventional Viterbi algo-

rithm (VA) to make it operate over vector transmitted symbols [25, 26]. The

emergence of multi-input multi-output (MIMO) Orthogonal Frequency Divi-

sion Multiplexing (OFDM) reduced the complexity of the receiver while still

achieving MIMO capacity gains [27]. This aided in the VVA being overlooked

as a solution for MIMO systems. Let L, N , Nt, Nr, and |A| denote the chan-

nel memory, number of transmitted symbols per block, number of transmit

elements, number of receive elements, and size of signal constellation, re-

spectively. As shown in Appendix C, the computational complexity of a

MIMO OFDM based detection scheme is O
(
(Nr +Nt)N log (N) +N |A|Nt

)
in comparison to O

(
N |A|LNt

)
for the vector Viterbi algorithm. Thus, MIMO

OFDM systems are computationally attractive when L is large. Nonetheless,

this advantage comes at the following expenses:

1. OFDM requires the addition of a cyclic prefix which reduces the in-

formation rate of communication. If the channel is changing rapidly,

the size of the block cannot be made long and hence the percentage

overhead is even larger (up to 25% in some cases).

2. The transmitter complexity is increased because Nt N -point IFFTs

have to be computed at the transmitter side.

3. The orthogonality between sub-carriers might be lost due to Doppler

shifts and/or channel nonlinearities.

4. The peak to average power ratio (PAPR) of an OFDM system is sig-

nificantly larger than that of a single carrier system.
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Figure 5.1: SC-FDMA modulation in LTE-A systems

In addition to the above disadvantages, some communication technologies,

such as under-water acoustic systems and fiber optic systems, cannot eas-

ily make use of OFDM due to various transmitter and receiver limitations.

For example, the laser sources in fiber optic systems cannot be easily modu-

lated by arbitrarily shaped signals having high PAPR. Moreover, high PAPR

signals excite fiber nonlinearities which destroy the orthogonality between

sub-carriers. This is why state-of-the-art optical communication systems use

simple modulation schemes such as quadrature phase shift keying. Despite

the above challenges, the optical fiber communications community is inter-

ested in developing coherent optical OFDM for the next generation optical

systems [21].

More importantly, single carrier systems are used in the latest wireless

communication standards. For example, the Long Term Evolution Advanced

(LTE-A) wireless standard does not use OFDM for the uplink channel due

to its high PAPR [28]. Instead, LTE-A uplink systems use Single Carrier

Frequency Division Multiple Access (SC-FDMA) modulation. Even though

SC-FDMA divides the resources among users in the frequency domain, the

transmission uses single carrier modulation. This process is shown in Figure

5.1. Therefore, it is natural to revisit single carrier systems and look for ways

to reduce the computational complexity of sequence detection. Our sphere

decoding (SD) approach for the VVA is a promising technique that reduces

VVA’s complexity significantly while preserving its optimality.

The remainder of this chapter is organized as follows. In Section 5.2, we

review the sphere decoding algorithm. In Section 5.3, we show how SD can
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be used to perform MIMO MLSD at reduced computational cost. In Section

5.4, we compare the complexity of the original naive implementation of the

VVA to our scheme and show that for a 2× 2 MIMO system with 16-QAM

signal constellation, up to 60% of the complexity can be reduced using our

approach.

5.2 Sphere Decoding

A frequency flat MIMO system is described by

y = Hx + v (5.1)

where x is an Nt-dimensional vector, y is an Nr-dimensional vector, H is an

Nr ×Nt matrix, and v is a zero mean complex Gaussian noise vector with a

covariance matrix equal to N0INr . Given x, we know that

f (y|x) ∼ CN (Hx, N0INr) (5.2)

where f (y|x) denotes the conditional distribution of y given x and CN (µ,K)

represents a complex Gaussian distribution with mean vector µ and covari-

ance matrix K.

The goal of a MIMO detector is to separate out the original transmitted

signal from the received signal. The detection process can be divided into two

stages: a preprocessing stage, where the channel matrix H is learned, and

a detection stage, where the transmitted symbols are recovered. Typically,

the preprocessing stage is implemented at the channel variation rate, while

the detection stage is implemented at the transmission rate. The optimal

detector, in terms of minimizing the symbol error rate (SER), is the maximum

likelihood (ML) detector and is given by

x̂ = argmax
x∈ANt

f (y|x)

= argmin
x∈ANt

‖y −Hx‖2 (5.3)

where A represents the signal constellation set. The ML detector finds the

nearest neighbor to the received vector among all possible constellation points
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(lattice points) by performing an exhaustive search. Unfortunately, the com-

putational complexity of this algorithm is exponential in Nt. Nonetheless,

there exists a clever algorithm that performs ML detection at a substantially

lower cost.

As shown in Figure 5.2, the basic idea of Sphere Decoding (SD) is to per-

form a search over the constellation points that lie within a sphere of radius

r centered around the received vector [29]. This algorithm is noteworthy

because its expected complexity is comparable to that of a DFE algorithm

while its performance is superior to any suboptimal detection algorithm [30].

Observe that the closest lattice point to the received vector within the sphere

is also the closest point among all the lattice points. This gives rise to two

questions:

1. What should the sphere’s radius r be? Determining the proper radius

is important because, if the radius is too large, the number of points

needed to search for will be large, while if the radius is too small, no

lattice points may exist within the sphere.

2. Which points of the space lie within the sphere? This can be answered

by testing the distance between each lattice point and the received

vector. Without a simple method to determine which points lie in the

sphere, SD will be no different from the original ML algorithm as every
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Figure 5.3: Tree representation of a 2-dimensional 4-QAM lattice

lattice point will need to be tested to determine if it lies within the

sphere or not.

The SD algorithm we now present provides answers to both questions. The

central idea is to represent the signal constellation via an |A|-ary tree of

depth Nt. Figure 5.3 shows the tree representation for a 4-QAM modulation,

A = {±1 ± j}, with 2 transmitters. The nodes at depth i correspond to

instances of the (Nt − i+ 1)th entry in x. Thus, the tree has |A|Nt leaves,

each corresponding to an instance of x. Assume that Nr ≥ Nt, then by the

QR decomposition H = Q
[
RT0Nt×(Nr−Nt)

]T
, where Q is an Nr×Nr unitary

matrix and R is an Nt×Nt upper triangular matrix. As the norm is invariant

to unitary transforms, the ML rule can be rewritten as

x̂ = argmin
x∈AN

‖y −Hx‖2

= argmin
x∈AN

‖Q∗y −

[
R

0(Nr−Nt)×Nt

]
x‖2

= argmin
x∈AN

‖ỹ −Rx‖2 (5.4)

where ỹ is a vector containing the first Nt entries of Q∗y. Due to the tri-

angular structure of R, the vector norm can now be rewritten as a sum of
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scalar norms

‖ỹ −Rx‖2 =
Nt∑
i=1

∣∣∣∣∣ỹi −
Nt∑
l=i

ri,lxl

∣∣∣∣∣
2

=
Nt∑
i=1

ei (xi, ..., xNt)

= e1 (x1, ..., xNt) + ...+ eNt (xNt) (5.5)

where ei (xi, ..., xNt) =
∣∣∣ỹi −∑Nt

l=i ri,lxl

∣∣∣2. Note that the last Nt − i + 1

summands in (5.5) depend only on the last Nt − i + 1 transmitted sym-

bols and they are all non-negative. We define the partial Euclidean dis-

tance (PED) as pi =
∑Nt

j=Nt−i+1 ej (xj, ..., xNt) for i = 1, ..., Nt. This se-

quence is computed recursively by traversing the tree from the root node

down to a leaf node. For i = 1, p1 = e1 (xNt) and for i = 2, ..., Nt,

pi = pi−1 + eNt−i+1 (xNt−i+1, ..., xNt). Notice that pi is a non-negative and

non-decreasing sequence and that pi ≤ ‖ỹ − Rx‖2 for all i. Therefore, it

is safe to drop all candidate vectors xj’s that end with the same i symbols

if any pi exceeds a specified radius r. This technique is referred to as tree

pruning.

Tree pruning is a smart way of eliminating the lattice points that do not

lie inside the sphere of radius r. However, we still do not know how to choose

r. This can be done in a variety of ways. A simple scheme would set r to

infinity and run a depth first search algorithm until the leftmost leaf node

is reached. At this point, r is updated to become equal to the Euclidean

distance of that particular instance of x. The depth first search algorithm is

then resumed and the aforementioned pruning process is applied whenever

some pi exceeds r. A leaf node is reached only if the distance between the

received vector and that particular instance of x is less than r. In this case,

the radius is updated to become equal to this new Euclidean distance and

the process is continued until all leafs are either visited or pruned.

The complexity of SD is random as it depends on the quality of the chan-

nel realization which is a random variable. Moreover, the performance is

a function of SNR. At high SNRs the savings are large because very few

lattice points lie inside the sphere. However, marginal gains are achieved

if the transformed lattice Hx happened to be such that all the points are

close to each other. Therefore, SD still suffers from a worst case exponential

45



complexity. Nonetheless, this happens with low probability (especially when

the SNR is high). It was shown in [31, 30] that the expected complexity of

SD is polynomial in Nt for a wide range of SNRs and Nt. In fact for high

SNRs, the expected complexity is cubic in Nt.

5.3 Frequency Selective Systems

A frequency selective MIMO system is described by

y[n] =
L−1∑
k=0

H[k]x[n− k] + v[n] (5.6)

where y[n] and x[n] are the detected and transmitted symbol vectors, re-

spectively. In (5.6), L represents the number of nonzero taps in H[n], the

channel’s matrix impulse response, and is given by Td/Ts where Td is the

channel’s delay spread and Ts is the sampling period. In our analysis, we

assume that the channel’s matrix impulse response H[n] is fixed for N con-

secutive transmissions. In a frequency selective MIMO system, each received

signal is a noisy linear combination of current and previous symbols coming

from all transmitted streams. The temporal mixing phenomenon is called

inter-symbol interference (ISI) and the spatial mixing phenomenon is called

inter-channel interference (ICI).

5.3.1 Prior Work

Sphere decoding has been recently introduced as a reduced complexity de-

tection algorithm for single carrier MIMO frequency selective systems [32].

We define the following vectors:

y = [yT [1],yT [2], . . . ,yT [N + L− 1]]T

v = [vT [1],vT [2], . . . ,vT [N + L− 1]]T

x = [xT [1],xT [2], . . . ,xT [N ]]T (5.7)
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Using (5.6) and (5.7), we can write the input-output relation for the disper-

sive channel in a matrix form as

y = Hx + v (5.8)

where H is an Nr (N + L− 1)×NtN block Toeplitz matrix given by

H =



H[0]

H[1] H[0]
. . . . . .

H[L− 1] H[L− 2]

H[L− 1]


. (5.9)

Given x, we know that

f (y|x) ∼ CN (Hx, N0IN+L−1) (5.10)

where Hx is the mean vector and N0IN+L−1 is the covariance matrix of the

complex Gaussian distribution. Therefore, the optimal detection rule is given

by

x̂ = argmin
x∈ANtN

‖y −Hx‖2 (5.11)

A straightforward implementation will perform an exhaustive search over all

|A|NtN possible transmit vectors, which is stupendously expensive for large

Nt or N . Observe that the problem in (5.11) is identical to the one in (5.4).

Therefore, sphere decoding can be used to reduce the complexity of MLSD.

However, the dimension of the equivalent frequency flat MIMO system is

Nr (N + L− 1) × NtN and thus, the expected complexity of this approach

is at best polynomial in NtN . This figure can be significantly larger than

O
(
N |A|LNt

)
for large N or small L. Therefore, VVA seems to be more

attractive for large N .

5.3.2 The Vector Viterbi Algorithm

The vector Viterbi algorithm (VVA) is the vector version of the popular

Viterbi algorithm [25, 26]. The VVA uses the entire received sequence y to

detect the transmitted sequence x. Both x and y have been defined in (5.7).
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It is convenient to define the mean vector µ (x) = Hx and divide it into

N + L− 1 sub-vectors where the kth sub-vector is given by

µk (x) =
L−1∑
l=0

H[l]x[k − l] (5.12)

Similarly, we can divide the vector y into N + L − 1 sub-vectors where the

kth sub-vector is yk = y[k]. The optimization problem in (5.11) can now be

written as

x̂ = argmin
x∈ANtN

‖y − µ (x)‖2

= argmin
x∈ANtN

N+L−1∑
k=1

‖yk − µk (x)‖2

= argmin
x∈ANtN

PN+L−1 (x) (5.13)

where Pi (x) =
∑i

k=1‖yk − µk (x)‖2 is called the ith path metric. The VVA

performs the above minimization with complexity linear in N . Unlike the

previously derived SD algorithm, VVA exploits the channel memory being

limited to L. This is known as the Markovian property of the channel. We

define the state Sk at time k to be

Sk = (x[k − 1],x[k − 2], . . . ,x[k − L+ 1]) (5.14)

There are |A|Nt(L−1) different states and Sk evolves as a Markov chain. Let

Sjk and xi[k] represent instances of Sk and x[k], respectively. The observation

y[k] is a function of Sk and x[k] corrupted by noise v[k], and thus y[k] forms

a hidden Markov model (HMM). As shown in Figure 5.4, we can represent

the state evolution in time using a trellis diagram. The paths will always

converge to the zeroth state at time N + L − 1 since the transmission is

stopped at time N . Finding the maximum-likelihood sequence estimate is

equivalent to finding the shortest path through the trellis. Note that µk (x)

is only a function of x[k] and Sk. We associate the following branch metric

B
(
y[k],Sjk,x

i[k]
)

= ‖yk − µk

(
Sjk,x

i[k]
)
‖2 (5.15)
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Figure 5.4: Trellis diagram for a 2× 2 system with BPSK signalling and
memory length of 2

with each branch emanating from Sjk and terminating in S ik+1. Note that the

vectors x[k − 1], . . . ,x[k−L+ 2] are exactly the same for both states. Each

state Sjk can terminate in one of |A|Nt states because the only new entry in

S ik+1 is xi[k]. The vector Viterbi algorithm uses dynamic programming to

implement a breadth-first search on a trellis. The key observation is that

the minimization could be solved recursively by noting that Pk = Pk−1 +

B
(
y[k],Sjk,xi[k]

)
. Therefore, to find the shortest path, it is sufficient to

solve the following problem

P ik = min
j∈F
Pjk−1 + B

(
y[k],Sjk,x

i[k]
)

(5.16)

for every S ik ∈ Sk and k = 1, ..., N +L− 1. In (5.16), F contains the indices

of the states, at stage k − 1, that are allowed to transition to S ik. Observe

that for k = N + L − 1, the solution to miniP iN+L−1 is the solution to the

MIMO MLSD problem in (5.13).

5.3.3 Combined SD-VVA

The computational complexity of VVA is equal to the product of the num-

ber of computations required per state (|A|Nt), the number of states per

stage (|A|Nt(L−1)), and the number of stages (N + L − 1). As a result, the

complexity grows linearly with the block length and exponentially with the

number of transmitters and memory length. In what follows, we derive a

new, lower complexity, optimal sequence detection algorithm. The aim is to

break down the exponential number of computations required per state to

something polynomial (often cubic) in Nt. This reduction in complexity is
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Table 5.1: State and super state assignment at time k in a 2× 2 system
with BPSK signalling and memory length of 3

Sk {xk−2,xk−1} Sk Sk {xk−2,xk−1} Sk
S1 {(0, 0) , (0, 0)} S1 S9 {(1, 0) , (0, 0)} S1

S2 {(0, 0) , (0, 1)} S2 S10 {(1, 0) , (0, 1)} S2

S3 {(0, 0) , (1, 0)} S3 S11 {(1, 0) , (1, 0)} S3

S4 {(0, 0) , (1, 1)} S4 S12 {(1, 0) , (1, 1)} S4

S5 {(0, 1) , (0, 0)} S1 S13 {(1, 1) , (0, 0)} S1

S6 {(0, 1) , (0, 1)} S2 S14 {(1, 1) , (0, 1)} S2

S7 {(0, 1) , (1, 0)} S3 S15 {(1, 1) , (1, 0)} S3

S8 {(0, 1) , (1, 1)} S4 S16 {(1, 1) , (1, 1)} S4

made possible by observing that the selection of the surviving path for each

state can be computed via a tree based algorithm similar to the one used in

sphere decoding. We define a super state Sk−1 to be the set of states Sk−1

that differ only by x[k − L + 1]. Table 5.1 shows the state and super state

assignments for a 2 × 2 system with |A| = 2 and L = 3. Given this defini-

tion, we see that each super state contains |A|Nt elements and that there are

|A|Nt(L−2) super states. Observe, from Figure 5.5, that there is a transition

from each Sjk−1 ∈ S
l
k−1 to one S ik ∈ Smk . Furthermore, the first L− 2 entries

in Sjk−1 are identical to the last L−2 entries in S ik. Thus, the following holds:

P ik = min
j∈F
Pjk−1 + B

(
y[k],Sjk,x

i[k]
)

= min
j∈F
Pjk−1 + ‖yk − µk

(
Sjk,x

i[k]
)
‖2

= min
j∈F
Pjk−1 + ‖zk −Gxj‖2 (5.17)

where zk = yk−
∑L−2

l=0 H[l]xi[k−l], G = H[L−1], and xj = xj[k−L+1]. Had

the term Pjk−1 not existed in (5.17), this minimization would have resembled

the standard frequency flat MIMO ML detection problem in (5.4). In this

case, the complexity can be reduced by solving for the surviving branch via

a sphere decoding approach as detailed in Section 5.2. However, in our case

every path is biased by a different quantity Pjk−1 that is only determined when

we traverse the tree from the root node down to a leaf node. This problem is

clearly more complicated than the frequency flat MIMO ML one and cannot

be solved using the standard sphere decoding algorithm. Nonetheless, we
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Figure 5.5: Trellis super state grouping in a 2× 2 system with BPSK
signalling and memory length of 3

suggest modifying the tree representation by appending the path metrics

to the leaf nodes. This is depicted in Figure 5.6 where the tree has been

extended to incorporate the effect of Pjk’s. Thus, we can now run a depth

first search SD algorithm using the tree in Figure 5.6 to solve for the ith state’s

path metric at k. The first time the radius is updated it will include both

the branch and path metrics of the state that corresponds to the leftmost

branch in the tree. An approach that would lead to larger computational

savings would first rearrange the branches of the tree in Figure 5.6 so that

the leftmost leaf node corresponds to the instance that has the smallest path

metric and the rightmost leaf node corresponds to the instance that has the

largest path metric. This leads to an improved performance as the radius is

likely chosen to be small. However, this approach necessitates a sorted list

of path metrics which complicates the implementation of the algorithm and

increases the number of comparisons needed.

The performance of the combined SD-VVA approach depends on how large

the path metrics are relative to the branch metrics. Little savings can be

achieved if the Pjk’s are much larger than the weights (eji ’s) shown in Figure

5.6. In this case, almost all leaf nodes would have to be visited. Therefore,

large savings can be achieved if the trellis is shortened from N to 5L. This
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Figure 5.6: Tree representation for a 2× 2 BPSK system at stage k + 1

ensures that the path metrics do not accumulate and are still comparable

to all other weights and thus, pruning will be more effective. However, this

technique is sub-optimal. In addition, we will show in Section 5.4 that com-

putational gains are large even for N = 103, and therefore this technique is

not necessary.

5.4 Complexity Analysis & Results

The per state computational complexity of the VVA is given by

Nadd = 3Nt|A|Nt

Nmult = Nt|A|Nt

Ncmp = |A|Nt − 1 (5.18)

where Nadd and Nmult represent the number of real additions and complex

multiplications, respectively. For Nt ≥ 2, the per state computational com-

plexity of full tree search, without tree pruning, is given by

Nadd ≈ 4|A|Nt

Nmult ≈ |A|Nt (5.19)
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The exact expressions and derivation of (5.18) and (5.19) can be found in

Appendix D. Observe that we can achieve computational gains even if we

perform a naive tree search without pruning. For example, in a 2× 2 MIMO

system with 16-QAM signal constellation, a full tree search algorithm saves

33% of the real additions and 46% of the complex multiplications when com-

pared to VVA. More importantly, the full tree search algorithm has a fixed

(non-random) computational complexity. However, we can save more com-

putions by using the combined SD-VVA algorithm described in the previous

section. Unlike VVA or full tree search, the combined SD-VVA algorithm

has a random complexity that depends on the SNR and channel statistics.

In order to quantify the average computational savings, we computed, via

simulations, the average complexity of the combined VVA-SD algorithm and

compared it to VVA for various settings. In our experiments, we chose a

2× 2 MIMO system with 16-QAM signal constellation, L = 3, and N = 103.

The results are summarized in Table 5.2. As discussed in Section 5.2, the

Table 5.2: SD-VVA vs. VVA

constellation Nadd Nmult

16-QAM (5 dB) 43% 49%
16-QAM (10 dB) 53% 54%
16-QAM (15 dB) 64% 62%

algorithm’s performance improves with increasing SNR. For 16-QAM sig-

nal constellations, the computational complexity of VVA is reduced by 50%

when the SNR is 10 dB and by 60% when the SNR is 15 dB.

5.5 Conclusion

Even though our approach provides substantial complexity gains, the number

of states is still exponential in Nt and L. Therefore, for large Nt or L,

performing exact MLSD might be expensive despite the reductions shown

in the previous section. In this case, we can use a variety of techniques

to further reduce the complexity. This, however, sacrifices optimality. For

example, when L is large, a linear channel shortening filter can be used to

reshape the channel’s impulse response such that most of the signal’s energy

is concentrated in the first few L′ taps, where L′ < L. If Nt is large, we can
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also save by keeping the best K states (states with the least path metrics) at

each stage instead of keeping track of all |A|Nt(L−1) states. The choice of K

is determined by a reasonable performance-complexity tradeoff assessment.

The combined SD-VVA algorithm reduces the complexity of VVA while

preserving its optimality. This algorithm is attractive whenever performance

is not to be compromised. In LTE-A systems, the uplink can afford run-

ning expensive detection algorithms because the computations take place at

the base station. Moreover, the combined SD-VVA algorithm can be easily

modified to output likelihoods (soft decisions) that can be fed to the channel

decoder. Future work could look at the architectural implementation and

design of the combined SD-VVA algorithm.
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CHAPTER 6

CONCLUSION

MIMO communications over optical fibers is an attractive solution to the

ever increasing demand for Internet bandwidth. In the first part of this

thesis, we presented a propagation model that takes input-output coupling

into account for MIMO MMF systems. A coupling strategy was suggested

and simulations showed that the capacity of an Nt ×Nt MIMO system over

a fiber with M � Nt modes can approach the capacity of an ideal fiber with

Nt modes. A random input-output coupling model was used to describe the

behavior of the system when the design of the input-output couplers is not

available. The results proved that, under random coupling, the capacity of

an Nt ×Nt MIMO system over a fiber with M � Nt modes is almost equal

to that of an Nt-mode fiber.

High speed multi-input multi-output (MIMO) communication systems suf-

fer from inter-channel and inter-symbol interference (ICI and ISI). The vec-

tor Viterbi algorithm (VVA) is a maximum likelihood sequence detection

(MLSD) algorithm for MIMO frequency selective channels. MLSD algo-

rithms are attractive because they minimize the probability of sequence de-

tection error. However, they suffer from high computational complexity. In

the second part of this thesis, we showed how a sphere decoding-like algo-

rithm can be used to reduce the complexity of VVA while preserving its

optimality. For a 2×2 MIMO system with 16-QAM signal constellation, our

algorithm appears to reduce the VVA complexity by 50% at an SNR of 10

dB and by 60% at an SNR of 15 dB.
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APPENDIX A

RANDOM UNITARY MATRICES

This appendix provides a brief introduction to random matrix theory with

particular emphasis on random unitary matrices. The results we show in the

following sections are used in Chapters 3 and 4.

A.1 Random Matrices

An M×N random matrix A is described by the joint probability distribution

function (pdf) of its entries

f (A) = f (ai,j; i = 1, ...,M ; j = 1, ..., N) (A.1)

A popular example of a family of random matrices is the Ginibre ensemble

[24]. In this case, the entries of an M ×M square matrix A are indepen-

dent and identically distributed (i.i.d.) standard complex Gaussian random

variables

f (A) =
1

πM2 e
−

∑M
j,k=1 |ajk|2 =

1

πM2 e
− tr (A∗A) (A.2)

We define U (M) := {U ∈ CM×M |U∗U = UU∗ = IM} to be the space of

M ×M unitary matrices. If the pdf of a random matrix is invariant to left

(right) multiplication by any M ×M (N ×N) deterministic unitary matrix,

it is called left (right) rotationally invariant. In other words, if A is a random

matrix, A is left rotationally invariant if

fUA (UA) = f (A) (A.3)

where U ∈ U (M), and A is right rotationally invariant if

fAV (AV) = f (A) (A.4)
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where V ∈ U (N). A matrix that is left and right rotationally invariant is

called isotropically invariant.

Lemma A.1.1 The Ginibre ensemble is a family of isotropically invariant

random matrices [33].

Proof 6 We will show that f (UA) = f (A) and the Jacobian of the mapping

A→ UA (a transformation in CM2
) is unity. From Equation (A.2), we have

the following:

f (UA) =
1

πM2 e
− tr((UA)∗(UA))

=
1

πM2 e
− tr(AU∗UA)

= f (A) (A.5)

Furthermore, if we look at A as a vector in CM2
, we can decompose the action

of U as the direct sum U
′

= U
⊕

...
⊕

U ∈ U (M2). Hence, | det
(
U
′) | =

| det (U) ... det (U) | = 1. Therefore, fUA (UA) = f (A). Right rotational

invariance is shown in a similar way.

A.2 Random Unitary Matrices

An M ×M random unitary matrix A is one for which its pdf is given by

f (A) = g (A) δ (AA∗ − IM) (A.6)

where g (A) is some distribution function defined over U (M). Observer that

P{A /∈ U (M)} = 0. It turns out that U (M) forms a compact topological

group, and thus a unique uniform measure (up to a scalar multiplication),

called Haar measure, can be defined over U (M) [24, 33, 34]. In this case,

g (A) is independent of A and it is easy to show that f (A) is given by

f (A) =

∏M
i=1 Γ (i)

πM(M+1)/2
δ (AA∗ − IM) (A.7)

We provide two methods for generating uniformly distributed random unitary

matrices. The first method is based on the Gram-Schmidt orthogonalization

procedure. Suppose we have a sample Z form a Ginibre ensemble. We

57



can perform the Gram-Schmidt orthogonalization procedure on the column

vectors Zi of Z to obtain the column vectors Ai of A, a random unitary

matrix [34]. In other words, given Z, Ai is given by

Ai =
Zi −

∑i−1
k=1 (Zi,Ai) Ak

‖Zi −
∑i−1

k=1 (Zi,Ai) Ak‖
(A.8)

where (a,b) denotes the standard inner product between the vectors a and

b. It is easy to verify that A is unitary for any sample Z. Moreover, it can

be shown that A has a uniform distribution over U (M) [34].

Lemma A.2.1 The pdf of A is isotropically invariant [34].

Proof 7 We prove left rotational invariance. Right rotational invariance is

shown in a similar way. The ith column of UA is exactly UAi and it is equal

to

UAi =
UZi −

∑i−1
k=1 (Zi,Zi) UAk

‖Zi −
∑i−1

k=1 (Zi,Ai) Ak‖

=
UZi −

∑i−1
k=1 (UZi,UAi) UAk

‖UZi −
∑i−1

k=1 (UZi,UAi) UAk‖
(A.9)

where the last equality holds because the standard inner product is invariant

to unitary transformations. As shown in Lemma A.1.1, UZ has the same

distribution as Z. Therefore, by induction, UAi has the same distribution as

Ai for all i. This proves the left rotational invariance property.

The second method is based on the QR decomposition procedure [24]. In

this case, A is constructed as follows:

1. Generate an M ×M matrix Z with i.i.d. complex Gaussian entries.

2. Obtain the QR decomposition of Z; Z = QR.

3. Form the following diagonal matrix:

Λ =


r11
|r11|

r22
|r22|

. . .
rMM

|rMM |

 (A.10)
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where {rii}Mi=1 are the diagonal entries of R.

4. Let A = ΛQ.

In the above construction, A is obviously unitary since Q is unitary. Fur-

thermore, it can be shown that A has a uniform distribution over U (M).

A.3 Input-Output Coupling Matrices

To generate the input coupling matrix, the following method is used:

1. Generate an M ×M unitary matrix A (as described above).

2. Choose Nt columns randomly from A to form CI.

A similar approach can be taken to generate CO. In this case, Nr columns

are selected randomly from A to represent the rows of CO.
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APPENDIX B

A BIT OF INFORMATION THEORY

This appendix discusses some fundamental results in information theory. We

derive capacity expressions for the channel models used in Chapters 3 and

5. For an in-depth treatment of information theory we direct the reader to

standard texts such as [35] and [18].

B.1 Entropy and Mutual Information

The entropy of a discrete random variable X that can take one of K possible

values and has a probability mass function (pmf) P (X) is defined as

H(X) = E [− logP (X)]

= −
K∑
i=1

P (xi) logP (xi) (B.1)

where − logP (X) is defined as the information content of X. The base of

the logarithm in (B.1) is usually 2 in which case the entropy is given in bits.

For the discrete case, H (X) is always non-negative and less than or equal to

logK. It is equal to zero if X is a deterministic random variable and equal

to logK if X is uniformly distributed. The entropy can be interpreted as a

measure of the amount of uncertainty in X.

Similarly, the joint entropy between two discrete random variables X and

Y with a joint pmf P (X, Y ) is defined as

H(X, Y ) = E [− logP (X, Y )]

= −
K1,K2∑
i,j=1

P (xi, yj) logP (xi, yj) (B.2)
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The conditional entropy of X given Y is defined as

H(X|Y ) = −
K1,K2∑
i,j=1

P (xi, yj) logP (xi|yj) (B.3)

The conditional entropy can be interpreted as the average amount of uncer-

tainty left in X after observing Y . If X and Y are independent H (X|Y ) =

H (X). Using the above definitions, one can easily show the following:

H (X, Y ) = H (X) +H (Y |X) = H (Y ) +H (X|Y ) (B.4)

Moreover, one can show that conditioning always reduces entropy: H (X|Y ) ≤
H (X). The mutual information between two discrete random variables X

and Y is defined as

I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) (B.5)

The mutual information is symmetric with respect to X and Y and is always

non-negative. It is equal to zero if and only if X and Y are independent.

For a continuous random variable x with a probability density function

(pdf) fx (x), the differential entropy of x is defined as

h (x) = −
∫ ∞
−∞

fx (u) log fx (u) du (B.6)

Similarly, the conditional differential entropy between x and y is defined as

h (x|y) = −
∫ ∞
−∞

fx,y (u, v) log fx|y (u|v) dudv (B.7)

and the continuous mutual information is defined as

I (x; y) = h (x)− h (x|y) = h (y)− h (y|x) (B.8)

whenever the quantities on the right-hand side are finite. Unlike the discrete

case, the differential entropy can be negative. For example, if x is uniformly

distributed between 0 and a, its differential entropy is equal to log a, which

is negative for a < 1. However, the continuous mutual information retains

the same fundamental meaning as in the discrete case.
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B.2 Channel Capacity

To convey information from one end to the other of a channel, a codebook

C := {c1, ..., c|C|} of block length N and size |C| is used. Here, ck denotes the

kth codeword. Since there are |C| codewords, we are conveying log2 |C| bits

per N channel uses. Therefore, the rate of communications is

R =
log2 |C|
N

(B.9)

The task of the decoder is to recover the index of the transmitted codeword

given a block of N noisy symbols. Hence, an error occurs whenever the de-

coded codeword is not equal to the transmitted one. Clearly, the probability

of error is a function of the codebook and the channel transition probability

i.e., Pe
(
C, fy|x

)
. A rate R is said to be achievable if for every ε > 0, ∃Nε ∈ N

such that for all N > Nε, Pe
(
C, fy|x

)
< ε. By definition, the capacity of a

channel C, is the maximum achievable rate.

Theorem B.2.1 For a discrete memoryless channel with input random vari-

able X and output random variable Y . The capacity of the channel is

C = max
P (X)

I (X;Y ) (B.10)

Proof 8 See [13].

Similarly, the capacity of continuous memoryless channels is given by C =

maxfx(x) I (x; y). However, this quantity could very well be infinite for many

pdfs fx (x) with unbounded second moment. In digital communications, the

average transmitted power is typically limited to some maximum value P .

This is why the set of distributions that are valid for the mutual information

maximization problem consists of those that have a second moment less than

or equal to P . Therefore, the capacity of a continuous memoryless channel

is given by

C = max
fx(x): E[x2]≤P

I (x; y) (B.11)
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B.2.1 AWGN Channels

We now apply the above results to the complex baseband additive white

Gaussian noise (AWGN) channel. The input-output relationship in an AWGN

channel is given by

y = x+ v (B.12)

where v is a zero mean complex Gaussian random variable with a variance

equal to N0. In this case, one can verify that h (v) = log (πeN0). The

capacity of the channel is thus given by

C = max
fx(x): E[x2]≤P

h (y)− log (πeN0) (B.13)

Under the second moment constraint on x, the random variable y is con-

strained to have a total power of P +N0. It was shown in [14] that a circular

symmetric complex Gaussian random variable has the largest differential

entropy among all complex random variable (under a second moment con-

straint). Therefore, the capacity of the complex baseband AWGN channel

is

C = log (πe (P +N0))− log (πeN0) = log

(
1 +

P

N0

)
(B.14)

and the distribution of x that achieves this capacity is a zero mean complex

Gaussian with a variance equal to P .

B.2.2 Frequency Selective Channels

A linear time-invariant L-tap inter-symbol interference (ISI) channel is given

by

y[n] =
L−1∑
l=0

h[l]x[n− l] + v[n] (B.15)

with a second moment constraint on each x[n]. As explained in Appendix

C, Orthogonal Frequency Division Multiplexing (OFDM) can be used to

transform this frequency selective channel into the following set of parallel

frequency flat channels:

ỹn = h̃nx̃n + ṽn n = 1, ..., N (B.16)
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where h̃ =
(
h̃1, ..., h̃N

)
is the N -point discrete Fourier transform (DFT) of

h[n] scaled by
√
N , ṽn is a complex Gaussian symbol, and N is the number

of sub-carriers per OFDM block . The power constraint on x[n] translates to

E [‖x̃‖2] ≤ NP , where x̃ = (x̃1, ..., x̃N). The channel in (C.9) is known as a

parallel AWGN channel. If the transmitter knows h[n], it can assign a power

budget Pn to the nth sub-carrier so that the total capacity is maximized.

Thus, the following problem has to be solved:

C =
1

N
max

P1,...,PN

N∑
n=1

log

(
1 +

Pn|h̃n|2

N0

)
(B.17)

subject to
∑N

n=1 Pn = NP and Pn ≥ 0 for n = 1, ..., N . The solution to this

problem is known as “waterfilling power allocation” [8]. Let x+ = max (x, 0),

the optimal power allocation is given by

P ∗n =

(
1

λ
− N0

|h̃n|2

)+

(B.18)

where λ is chosen such that

N∑
n=1

(
1

λ
− N0

|h̃n|2

)+

= NP (B.19)

A simple iterative numerical algorithm is used to solve (B.18) and obtain

P ∗n for n = 1, ..., N . The solution has the name waterfilling because sub-

channels with good conditions (large |h̃n|2) receive more power relative to

sub-channels with bad conditions. As N goes to infinity, one can generalize

the above discussion to arrive to the following conclusion:

C =
1

W

∫ W

0

log

(
1 +

P ∗ (f) |h̃ (f) |2

N0

)
df (B.20)

where h̃ (f) is the discrete-time Fourier transform (DTFT) of h[n] and W

represents the bandwidth used in Hz. The optimal power allocation in this

case is given by

P ∗ (f) =

(
1

λ
− N0

|h̃ (f) |2

)+

(B.21)
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where λ is chosen such that∫ W

0

(
1

λ
− N0

|h̃ (f) |2

)+

df = P (B.22)

When the transmitter does not know h[n], it allocates power uniformly across

all sub-carriers. Therefore, the capacity is given by

C =
1

W

∫ W

0

log
(

1 + |h̃ (f) |2 SNR
)
df (B.23)

where SNR = P/N0.

B.2.3 MIMO Frequency Flat Channel

A time-invariant MIMO frequency flat channel is given by

y = Hx + v (B.24)

where x ∈ CNt and y ∈ CNr represent the transmitted and received vectors,

respectively, and v is a complex Gaussian vector with a covariance matrix

equal to N0INr . Without loss of generality, let Nr ≤ Nt. To begin with, the

channel matrix H is assumed to be known at the transmitter and receiver.

We provide an intuitive proof for the channel capacity. A rigorous proof

can be found in [14]. By the singular value decomposition (SVD), H can be

decomposed as

H = UΛV∗ (B.25)

where U ∈ CNr×Nr and V∗ ∈ CNt×Nt are both unitary matrices and Λ is

a rectangular matrix containing the singular values of H. If the transmit-

ter performs the following preprocessing x̃ = Vx and the receiver performs

the following postprocessing ỹ = U∗y, then the input-output relationship

becomes

ỹ = Λx̃ + ṽ (B.26)

where ṽ = U∗v is again a complex Gaussian vector with a covariance matrix

equal to N0INr . Therefore, ỹi = λix̃i + w̃i for i = 1, .., Nt. Thus, we have

transformed the MIMO AWGN channel into a set of parallel AWGN channels

and we can now readily use the results of the previous section to determine
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the channel capacity. Note that one, or many, of the λi’s might be equal to

zero. As in the previous section, the capacity of the MIMO AWGN channel

is given by

C =
Nt∑
k=1

log

(
1 +

P ∗kλ
2
k

N0

)
(B.27)

where the optimal power allocation is given by waterfilling

P ∗k =

(
µ− N0

λ2
k

)+

(B.28)

with µ chosen such that the total power constraint
∑

k P
∗
k = P is satisfied.

In general, one can show that the capacity is given by

C = log det

(
INr +

1

N0

HKH∗
)

(B.29)

where K = Q diag (P1, ..., PNt) Q∗ is the covariance of the input vector x. If

the transmitter knows H, it selects Q = U∗ and allocates power using the

waterfilling procedure. However, if H is not known at the transmitter, then

Q is chosen to be equal to the identity matrix and the powers are divided

equally across all Nt transmit antennas. In this case, it is easy to verify that

the capacity is given by

C = log det

(
INr +

1

N0

H diag

(
P

Nt

, ...,
P

Nt

)
H∗
)

=
Nt∑
k=1

log

(
1 +

SNR

Nt

λ2
k

)
(B.30)

B.2.4 MIMO Frequency Selective Channels

A frequency selective MIMO channel is described by

y[n] =
L−1∑
k=0

H[k]x[n− k] + v[n] (B.31)

where y[n] and x[n] are the detected and transmitted symbol vectors, re-

spectively. The channel’s matrix impulse response H[n] is assumed to have

L non-zero taps. As shown in Appendix C, if OFDM is used, the frequency
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selective MIMO channel can be transformed into a set of frequency flat MIMO

channels

ỹn = H̃nx̃n + ṽn n = 1, ..., N (B.32)

where h̃i,j =
(
H̃i,j

1 , ..., H̃
i,j
N

)T
is theN -point discrete Fourier transform (DFT)

of hi,j[n] scaled by
√
N . Here, hi,j[n] represents the impulse response from

the jth transmitter to the ith receiver and H̃i,j
l is the (i, j)th entry of H̃l.

The power constraint on x[n] translates to E [‖x̃‖2] ≤ NP , where x̃ =(
x̃T1 , ..., x̃

T
N

)T
. Using the result of the previous section, the capacity of a

MIMO frequency selective channel is given by

C =
1

N

N∑
n=1

log det

(
INr +

1

N0

H̃nKnH̃
∗
n

)
(B.33)

where Kn = Qn diag (P1,n, ..., PNt,n) Q∗n represents the covariance matrix of

the vector x̃n transmitted along the nth sub-carrier. By the SVD, H̃n =

UnΛnV
∗
n. If the transmitter knows H[n], it can set Qn = Vn and allocate

power using waterfilling so that it maximizes the capacity. Therefore, the

capacity of frequency selective MIMO channels is given by

C =
1

N

N∑
n=1

log det

(
INr +

1

N0

H̃nVn diag (P1,n, ..., PNt,n) V∗nH̃
∗
n

)

=
1

N

N∑
n=1

Nt∑
i=1

log

(
1 +

P ∗n,iλ
2
n,i

N0

)
(B.34)

where the optimal power allocation is given by waterfilling

P ∗n,i =

(
µ− N0

λ2
n,i

)+

(B.35)

with µ chosen such that the total power constraint
∑

n,i P
∗
n,i = NP is satis-

fied. As N goes to infinity, one can generalize the above discussion to arrive

to the following conclusion:

C =
1

W

∫ W

0

log det

(
INr +

1

N0

H̃ (f) K (f) H̃∗ (f)

)
df

=
1

W

Nt∑
i=1

∫ W

0

log

(
1 +
|λi (f) |2P ∗i,i (f)

N0

)
df (B.36)
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where K (f) = U (f) P (f) U∗ (f) and P (f) is a diagonal power alloca-

tion matrix. Here, H̃ (f) is the point-wise discrete-time Fourier transform

(DTFT) of H[n] and λi (f) represents the ith eigenvalue of H̃ (f). The opti-

mal power allocation in this case is given by

P ∗i,i (f) =

(
1

µ
− N0

|λi (f) |2

)+

(B.37)

where µ is chosen such that

Nt∑
i=1

∫ W

0

(
1

µ
− N0

|λi (f) |2

)+

df = P (B.38)

When H[n] is not know at the transmitter, the power is divided equally

across all transmit antennas and Qn is chosen to be equal to an identity

matrix for all n. In this case, the capacity becomes

C =
1

N

N∑
n=1

Nt∑
i=1

log

(
1 +

SNRλ2
n,i

Nt

)
(B.39)

As N goes to infinity, the capacity is given by

C =
1

W

∫ W

0

log det

(
INr +

SNR

Nt

H̃ (f) H̃∗ (f)

)
df

=
1

W

Nt∑
i=1

∫ W

0

log

(
1 +

SNR |λi (f) |2

Nt

)
df (B.40)
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APPENDIX C

ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING

In this appendix, we provide a brief overview on Orthogonal Frequency Divi-

sion Multiplexing (OFDM). The results of this section are used in Chapters

3, 4, and 5.

OFDM is one of the most advanced modulation schemes and is widely

used in today’s wireless communication standards [27]. The trick is to use

a modulation format that converts a frequency-selective channel into a set

of parallel frequency flat channels to mitigate the effects of inter-symbol

interference caused by the channel time spread. Blocks of inverse discrete

Fourier transform (IDFT) symbols are typically preceded by a cyclic prefix

(CP) and transmitted over a dispersive channel. Under this condition, a

linear convolution of the transmitted sequence and the channel’s impulse

response is converted to a circular convolution. At the receiver, the discrete

Fourier transform (DFT) is applied to the received block to transform the

circular convolution to simple matrix product, thus eliminating the effects of

ISI. Moreover, this approach enables the transmitter and receiver to use fast

signal processing transforms such as the fast Fourier transform (FFT) and

its inverse for the computation of the DFT and IDFT.

C.1 SISO OFDM

In a single-input single-output (SISO) communication system, the input-

output relationship is given by

y[n] =
L−1∑
l=0

h[l]x[n− l] + v[n] (C.1)

where x[n] and y[n] are the transmitted and received sequences, respectively.

For every block of N symbols x̃ = (x̃1, x̃2, . . . , x̃N), we first obtain the vector
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x = (x[1], x[2], . . . , x[N ]) by taking the IDFT of x̃. Therefore, x is given by

x̃ = F∗x̃ (C.2)

where F is the DFT matrix and F∗ is the IDFT matrix. We then add a cyclic

prefix of L− 1 symbols to form the following vector:

b = (x[N − L+ 2], ..., x[N ], x[1], x[2], . . . , x[N ]) (C.3)

The symbols b[n] are transmitted sequentially over the channel. With this

input to the channel, the output is given by

d[n] =
L−1∑
l=0

h[l]b[n− l] + v[n] (C.4)

The receiver discards the first L − 1 symbols and forms the vector y =

(d[L], ..., d[N + L− 1]). Under this condition the input-output vector rela-

tionship is given by y = Hx + v, where v = (v[L], ..., v[N + L− 1]) and

H =


h[0] 0 . . . 0 h[L− 1] h[L− 2] . . . h[1]

h[1] h[0] 0 . . . 0 h[L− 1] . . . h[2]

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 h[L− 1] h[L− 2] . . . h[1] h[0]

 (C.5)

is a circulant matrix. Let h = (h[0], ..., h[l − 1], 0, ..., 0) be an N × 1 vector.

A classical result in linear algebra states that a circulant matrix can always

be decomposed as H = F∗ΛF, where Λ is a diagonal matrix and Λn,n = h̃n,

the nth entry of the vector h̃ =
√
NFh. Thus, the following relation holds:

y = Hx + v

= F∗ΛFx + v

= F∗Λx̃ + v (C.6)

If we let ỹ = Fy, then the following holds:

ỹn = h̃nx̃n + ṽn n = 1, ..., N (C.7)
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CPIFFT FFTCPchannel

Figure C.1: OFDM modulation

and we have successfully transformed a frequency selective channel into a

set of N frequency flat channels. The OFDM modulation scheme we just

described is summarized in Figure C.1.

C.2 MIMO OFDM

A frequency selective MIMO channel is described by

y[n] =
L−1∑
k=0

H[k]x[n− k] + v[n] (C.8)

where y[n] and x[n] are the detected and transmitted symbol vectors, re-

spectively. The channel’s matrix impulse response H[n] is assumed to have

L non-zero taps. Multi-input multi-output (MIMO) OFDM is analogous to

SISO OFDM. In fact, as shown in Figure C.2, a MIMO OFDM system applies

OFDM modulation (see Figure C.1) for each transmit and receive antenna.

Following the same derivation as in the previous section, one can show that

the frequency selective MIMO channel is transformed into a set of frequency

flat MIMO channels

ỹn = H̃nx̃n + ṽn n = 1, ..., N (C.9)

where h̃i,j =
(
H̃i,j

1 , ..., H̃
i,j
N

)T
is theN -point discrete Fourier transform (DFT)

of hi,j[n] scaled by
√
N . Here, hi,j[n] represents the impulse response from

the jth transmitter to the ith receiver and H̃i,j
l is the (i, j)th entry of H̃l.

The block length is crucial in OFDM systems as it dictates the size of FFTs

and IFFTs and hence determines the overall computational complexity of the
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Figure C.2: MIMO OFDM modulation

system. For instance, if the block length is N , then for an Nt × Nr MIMO

system, Nt N -point IFFTs must be computed at the transmitter and Nr

N -points FFTs followed by N MIMO maximum likelihood (ML) estimates

must be computed at the receiver. Therefore, the computational complexity

of a MIMO-OFDM system is O
(
(Nt +Nr)N log (N) +N |A|Nt

)
.
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APPENDIX D

COMPUTATIONAL COMPLEXITY
ANALYSIS

In this appendix, we derive the computational complexity expressions used

in Chapter 5.

D.1 Computational Complexity of VVA

For VVA, the following operation needs to be performed for each state:

P ik = min
j∈F
Pjk−1 + ‖yk − µk

(
Sjk,x

i[k]
)
‖2,

where µk

(
Sjk,xi[k]

)
=
∑L−2

l=0 H[l]xi[k− l] + H[L− 1]xj[k−L+ 1] is precom-

puted for all i and j. There are |A|Nt incoming branches for each state. To

compute each branch metric, Nt complex additions, Nt complex multiplica-

tions, and Nt − 1 real additions are needed. Each computed branch metric

has to be added to its corresponding path metric. This requires an additional

real addition. Finally, to perform the min, |A|Nt−1 comparisons are needed.

Therefore, the per-state complexity of the VVA algorithm is given by

Nadd = 3Nt|A|Nt

Nmult = Nt|A|Nt

Ncmp = |A|Nt − 1. (D.1)

Here, Nadd refers to the total number of real additions, Nmult refers to the

total number of complex multiplications, and Ncmp refers to the number of

comparisons. We assume that every complex addition is equivalent to two

real additions.
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D.2 Computational Complexity of Full Tree Search

For the full tree search algorithm, the following operation needs to be per-

formed for each state:

P ik = min
j∈F
Pjk−1 + ‖zk −Gxj‖2

= min
j∈F
Pjk−1 + ‖z̃k −Rxj‖2, (D.2)

where G = Q
[
RT0Nt×(Nr−Nt)

]T
by the QR decomposition and z̃k corre-

sponds to the first Nt entries of Q∗zk. We assume that
∑L−2

l=0 H[l]xi[k − l]
and Rxj are precomputed for all i and j. First, to compute zk = yk −∑L−2

l=0 H[l]xi[k − l], Nr complex additions are needed. The result has to be

multiplied by Q∗ to obtain z̃k. This requires (Nr − 1)Nt complex additions

and NrNt complex multiplications. Next, we have to compute all the par-

tial Euclidean distances. In a |A|-ary tree of depth Nt, there are
∑Nt

i=1 |A|i

edges. Therefore, in order to compute the weights el
(
xjl , ..., x

j
Nt

)
of all edges,

we need
∑Nt

i=1 |A|i complex additions and
∑Nt

i=1 |A|i complex multiplications.

After having computed the weights of all edges in the tree, we need to tra-

verse the tree from the root node to every leaf node to add the weights of all

edges to each other and then add the result to the path metric. This requires∑Nt
i=2 |A|i+ |A|Nt real additions. The number of comparisons that are needed

is identical to VVA. Therefore, the per-state complexity of full tree search is

given by

Nadd =
Nt∑
i=2

|A|i + |A|Nt + 2
Nt∑
i=1

|A|i + 2 (Nr − 1)Nt + 2Nr

Nmult =
Nt∑
i=1

|A|i +NrNt

Ncmp = |A|Nt − 1. (D.3)
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