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CHAPTER 1

INTRODUCTION

The Internet has shaped our daily lives. On one hand, social networks like

Facebook and Twitter allow people to share their precious moments and

opinions with virtually anyone around the world. On the other hand, ser-

vices like Google, Netflix, and Amazon allow people to look up information,

watch movies, and shop online anytime, anywhere. However, with the ability

to surf the web efficiently comes the danger of being monitored. Totalitarian

governments worldwide monitor their populations with ease [1]. More mun-

danely, people often post content online, only to later suffer repercussions

due to uncontrolled information spread [2].

There is an increasing tension between the need to share data and the

need to preserve the privacy and anonymity of Internet users. The need

for privacy appears in two main contexts: the metadata privacy context, as

in when individuals want to broadcast their opinions anonymously, and the

data privacy context, as in when individuals want to communicate with a

potentially malicious data analyst.

1.1 The Metadata Privacy Context

In a free society, people have the right to consume and distribute information

without being monitored or surveilled. It is a basic right to be able to ex-

press one’s opinion anonymously [3]. The demand for anonymity is evident

from the explosive growth of anonymous chatrooms and social networks like

Rooms, Secret, Whisper, and Yik Yak [4, 5, 6, 7]. Anonymity is particularly

important in nations with authoritarian governments, where the right to free

expression and the personal safety of message authors hinge on anonymity.

Whether one’s fear is of judgment or personal danger, the ability to anony-

mously, quickly, and efficiently spread content is becoming a priority.
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Anonymous communication has been a popular research topic for decades,

starting with the famous dining cryptographers’ problem. Chaum’s seminal

work on DC nets spawned a great deal of literature on anonymous message

sharing [8, 9, 10]. Our work differs from the existing literature by considering

a different adversarial model (i.e., we allow collusion between adversarial

nodes), a different class of solutions based on spreading models rather than

encoding, and an arbitrary network structure (instead of a fully connected

network as in [8]).

In a parallel vein, “anonymous” secret-sharing applications like Secret,

Whisper, and Yik Yak hide authorship information from other users. How-

ever, authorship information is stored on centralized servers, which may be

accessible to governmental agencies, hackers, advertisers, and of course, the

company itself [11, 12]. In these applications, users’ real names and contact

information are hidden by the application itself, either via a pseudonym or

no name at all. Secret, Whisper, and Yik Yak share a user’s posts with

members of her extended online network or geographic neighbors without

revealing her identity. Rooms allows users to join and create chat rooms

under a pseudonym (as is standard in most chat rooms). Despite the rise in

popularity of these services, they do not provide true anonymity. Messages

and authors can be linked on the centralized servers that store content for

these networks—servers that may be visible to government agencies, hackers,

and of course the company itself. Indeed, a recent article by the Guardian

newspaper revealed that Whisper retains users’ posts indefinitely (including

deleted posts), along with timestamps and geographical locations [12]. Fur-

thermore, Whisper employees personally monitor user activity and provide

that data to the U.S. Department of Defense and the FBI. Our work differs

by being fully distributed and offering provable anonymity guarantees.

We wish to distinguish our work from anonymous point-to-point commu-

nication, like Tor [13], Freenet [14], Free Haven [15], and Tarzan [16]. These

services are particularly successful due to their distributed nature and rout-

ing algorithms. These systems are point-to-point in the sense that they

allow Alice to communicate with Bob without Bob learning that Alice is at

the other end. Our problem differs because we want to communicate with

everyone under the constraints established by an underlying network (in our

case, a social network). One could use a point-to-point anonymous tool like

Tor to send the message to a public forum. This solution works if the public
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forum can reach the whole network. However, most people do not subscribe

to truly public forums due to overwhelming spam. Spreading content over a

fixed network whenever users approve a message significantly decreases the

risk of spreading irrelevant content, and is therefore more appealing to users.

Thus the network inherently inhibits the spread of messages.

1.1.1 Completed Work

To overcome the shortcomings of centralized systems, we focus on distributed

network architectures. Distributed systems lack a central point of failure and

are difficult to monitor. Moreover, the incentive structures in such systems

are better aligned for protecting privacy than they are for centralized service

providers; that is, privacy-minded network participants may help one another

achieve privacy, whereas centralized services often have a financial incentive

to track user activities (e.g. targeted advertisement).

In Chapter 2, we design novel spreading mechanisms that disseminate mes-

sages quickly over a distributed network while preserving the anonymity of

the original message author against strong adversaries. We study a global

adversary which has side information on the underlying connectivity of the

distributed network. Moreover, the adversary can track who has received the

objectionable message. To counteract such an adversary, the system designer

can control the message spreading mechanism. That is, when Alice is ready

to forward a message (e.g., after she clicks “like”), the designer can control

when and to whom Alice will forward this message. The system designer

consequently wishes to design a spreading mechanism that makes it hard to

detect the content source, while spreading the message as quickly as possi-

ble given network connectivity constraints. We provide information-theoretic

guarantees, which ensure that the probability of an adversary identifying the

true message author is always minimal. Precisely, we show that a simple

spreading mechanism, called adaptive diffusion, enables the message author

to hide perfectly among all nodes with the message. This work will appear

in SIGMETRICS 2015 [17].

3
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1.1.2 Proposed Research

Going next, we plan to design distributed anonymous message spreading

mechanisms for more realistic adversarial models. In a more realistic setting,

the adversary can be modeled as a colluding set of network nodes (spies)

trying to estimate the most likely author. Spy nodes can track when and

from whom they receive objectionable messages. Our initial investigations

show that adaptive diffusion is capable of hiding the message author perfectly

under this more general adversarial model.

Further, we plan to implement our secret sharing algorithms by building an

open source, P2P secret-sharing mobile messaging applications that protects

the anonymity of authors—much like Secret and Whisper, except distributed,

open-source, and offering provable guarantees of anonymity. Users will be

able to anonymously compose and disseminate messages over a social graph.

The spreading models we have designed will provide strong anonymity guar-

antees against realistic adversaries.

We are in the process of building WildFire, the first truly anonymous

social networking application. To communicate between users, WildFire

uses an existing secure communication framework called Tox [18]. Tox is

an open-source, P2P anonymous communication tool, much like a privacy-

aware Skype; it shares its name with its underlying communication protocol.

The Tox codebase (written in C) features the ability to share text messages,

files, and video. We predict the latter two will be particularly useful in times

of political dissent. Like TCP, the Tox communication protocol supports

the lossless transmission of packets over IP, with the additional advantage

that all communications are encrypted. We plan to overlay our anonymous

spreading algorithms on this foundation.

1.2 The Data Privacy Context

Privacy is a fundamental individual right. Traditionally, individual informa-

tion access was limited and corresponding privacy violations were essentially

local, both temporally and geographically. In the era of big data, massive

amounts of data about individuals are collected both voluntarily and invol-

untarily. With the ready ability to search for information and correlate it

across distinct sources, privacy violation takes on an ominous note in this
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information age.

Classical approaches to providing privacy guarantees involve anonymizing

user information. While this seems to be a reasonable approach to pro-

tect the privacy of individuals, it is not infallible to correlation attacks: by

correlating the anonymized database with another (perhaps publicly avail-

able) deanonymized database, a user’s privacy could still be divulged. Early

work in 1997 by Sweeney [19] demonstrated such an attack by correlating

anonymized health records released by the state of Massachusetts with voter

registration records. Similar deanonymization attacks have been routinely

conducted in the ensuing years, despite the adoption of more sophisticated

anonymization strategies [20]: AOL search logs (reported by NYTimes in

2006), Netflix collaborative filtering contest [21], Kaggle recommender sys-

tem contest of Flickr data [22], and surname inference from genome datasets

[23] are instances that have received widespread attention.

1.2.1 Completed Work

While correlation attacks using currently available databases are already dev-

astating for anonymization techniques, an even larger issue is that anonymiza-

tion is susceptible to future data releases. A way out of these limitations is

to release randomized data.

Local differential privacy has recently surfaced as a strong measure of pri-

vacy in contexts where personal information remains private even from data

analysts. Working in a setting where both the data providers and data an-

alysts want to maximize the utility of statistical analyses performed on the

released data, we study the fundamental trade-off between local differential

privacy and utility. This trade-off is formulated as a constrained optimization

problem: maximize utility subject to local differential privacy constraints.

In Chapter 3, we identify the combinatorial structure of the family of

optimal privatization mechanisms for a broad class of information theoretic

utility functions such as mutual information and f -divergences. We further

prove that for a given utility function and privacy level, solving the privacy-

utility maximization problem is equivalent to solving a finite-dimensional

linear program, the outcome of which is the optimal privatization mechanism.

However, solving this linear program can be computationally expensive since
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it has a number of variables that is exponential in the size of the alphabet

the data lives in. To account for this, we show that two simple privatization

mechanisms are universally optimal in the high and low privacy regimes, and

well approximate the intermediate regime. This work was partially presented

at NIPS 2014 [24] and is currently under review by the Journal of Machine

Learning Research (JMLR) [25].

1.2.2 Proposed Research

Going next, we plan to apply our fundamental results to real world applica-

tions. We would like to design optimal data-dependent privatization mecha-

nisms for the release of medical and smart meter data. In addition, we plan

to build open source applications that allow users (patients and energy con-

sumers) to privately share their personal data with third party data analytic

agencies.

6
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CHAPTER 2

ANONYMOUS SOCIAL NETWORKING

2.1 Introduction

Microblogging platforms form a core aspect of the fabric of the present Inter-

net; popular examples include Twitter and Facebook. Users propagate short

messages (texts, images, videos) through the platform via local friendship

links. The forwarding of messages often occurs through built-in mechanisms

that rely on user input, such as clicking “like” or “share” with regards to a

particular post. Brevity of message, fluidity of user interface, and trusted

party communication combine to make these microblogging platforms a ma-

jor communication mode of modern times. There has been tremendous re-

cent interest in the privacy implications of these platforms, as evidenced by

the explosive growth of anonymous microblogging platforms, like Secret [5],

Whisper [6] and Yik Yak [7]. These platforms enable users to share messages

with their friends, without leaking the identity of the message author. In

such applications, it is crucial to keep anonymous the identity of the user

who initially posted the message.

Existing anonymous messaging services store both messages and author-

ship information on centralized servers, which makes them vulnerable to

government subpoenas, hacking, or direct company access. A more robust

solution would be to store this information in a distributed fashion; each node

would know only its own friends, and message authorship information would

never be transmitted to any party. Distributed systems are more robust to

monitoring due to lack of central points of failure. However, even under

distributed architectures, simple anonymous messaging protocols (such as

those used by commercial anonymous microblogging apps) are still vulnera-

ble against an adversary with side information, as proved in recent advances

in rumor source detection. In this work, we study in depth a basic building

7
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block of the messaging protocol that would underpin truly anonymous social

media – broadcast a single message on a contact network with the goal of

obfuscating the source under strong adversarial conditions. We refer to social

graphs among the users of the anonymous social media as contact networks.

A natural strategy to obscure source identification by an adversary would

be to spread the message as fast as possible (with reliable connection to

infrastructure like the Internet, this could be in principle done nearly in-

stantaneously). If all users receive the message instantaneously, any user is

equally likely to have been the source. However, this strategy is not avail-

able in many of the key real-life scenarios we are considering. For instance, in

social networks, messages are spread based on users approving the message

via liking, sharing or retweeting (to enable social filtering and also to avoid

spamming) – this scenario naturally has inherent random delays associated

with when the user happens to encounter the message and whether or not

she decides to “like” the message. Indeed, standard models of rumor spread-

ing in networks explicitly model such random delays via a diffusion process:

messages are spread independently over different edges with a fixed proba-

bility of spreading (discrete time model) or an exponential time to spread

(continuous time model).

2.1.1 Related Work

Anonymous communication has been a popular research topic for decades,

starting with the famous dining cryptographers’ (DC) problem. This work

diverges from the vast literature on this topic [8, 9, 26, 10, 27]. We con-

sider statistical spreading models rather than cryptographic encodings, ac-

commodate computationally unbounded adversaries, and arbitrary network

structures rather than a fully connected network.

Anonymous point-to-point communication, where a sender communicates

with a receiver without the receiver learning the sender’s identity, has also

been well studied; examples include Tor [13], Freenet [14], Free Haven [15],

and Tarzan [16]. Instead, we address the problem of broadcasting a message

over an underlying contact network (in our case, a social network).

Within the realm of statistical message spreading models, the problem

of detecting the origin of an epidemic or the source of a rumor has been

8
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studied under the diffusion model. Recent advances in [28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38] show that it is possible to identify the source within

a few hops with high probability. Drawing an analogy to epidemics, we

refer to a person who has received the message as ‘infected’ and the act

of passing the message as ‘spreading the infection’. Consider an adversary

who has access to the underlying contact network of friendship links and

the snapshot of infected nodes at a certain time. The problem of finding

the source of a rumor, first posed in [28], naturally corresponds to graph

centrality based inference algorithms: for a continuous time model, [28, 29]

used the rumor centrality measure to correctly identify the source after time

T (with probability converging to a positive number for large d-regular and

random trees and with probability proportional to 1/
√
T for lines). The

probability of identifying the source increases even further when multiple

infections from the same source are observed [30]. With multiple sources of

infections, spectral methods have been proposed for estimating the number

of sources and the set of source nodes in [31, 32]. When infected nodes are

allowed to recover as in susceptible-infected-recovered (SIR) model, Jordan

centrality was proposed in [33, 34] to estimate the source. In [34], it is

shown that the Jordan center is still within a bounded hop distance from

the true source with high probability, independent of the number of infected

nodes. Under natural and diffusion-based message spreading – as seen in

almost every content-sharing platform today – an adversary with some side-

information can identify the rumor source with high confidence. We overcome

this vulnerability by asking the reverse question: can we design messaging

protocols that spread fast while protecting the anonymity of the source?

2.1.2 System and Adversarial Models

We focus on anonymous social media built atop an underlying contact net-

work, such as Secret [5] over the network of phone contacts and Facebook

friends. In such systems, the designer has some control over the spread-

ing rate, by introducing artificial delays on top of the usual random delays

due to users’ approval of the messages. We model this physical setup as a

discrete-time system, where any individual receiving a message approves it

immediately at the next timestep, at which point the protocol determines

9
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how much delay to introduce before sending the message to each of her un-

infected neighbors. Given this control, the system designer wishes to design

a spreading protocol that makes inference on the source of the message dif-

ficult. The assumption that all nodes are willing to approve and pass the

message is not new. Such assumptions are common in the analysis of rumor

spreading [28, 29, 34], and our deviation from those standard models is that

we are operating in discrete time and approvals are immediate.

Following the adversarial model assumed in rumor source detection [28, 29,

34], we assume the adversary knows the whole underlying contact network

and, at a certain time, it observes a snapshot of the state of all the nodes, i.e.

who has received the message thus far. This adversary is strong in the sense

that the whole contact network is revealed as well as the state of everyone

in the network, but it is also limited in the sense that the adversary is not

aware of when a particular node received the message or from whom. This

model captures an adversary that is able to indirectly observe the contents

of users’ devices without actively compromising the devices; for instance, if

the message in question contains the time and location of a protest, then

the adversary learns a snapshot of the infection at a given point in time by

observing who attends the protest. This adversarial model also captures an

adversary that is able to monitor the network state more closely, but only at a

high cost. As such, it cannot afford to continuously monitor state. We design

a new anonymous messaging protocol, which we call adaptive diffusion, that

is inherently distributed and provides strong anonymity guarantees under

this adversarial model. We discuss other plausible adversarial models in

Section 2.5.

2.1.3 Spreading Models

At time t = 0, a single user v∗ ∈ V starts to spread a message on a contact

network G = (V,E) where users and contacts are represented by nodes and

edges, respectively. Upon receiving the message, a node can send the mes-

sage to any of its neighbors. We assume a discrete-time system and model

the delays due to user approval and intermittent network access via a de-

terministic delay of one time unit. Therefore, a message always propagates

with a delay of at least one time unit. Our goal is to introduce appropri-

10
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ate random delays into the system in order to obfuscate the identity of the

source v∗. After T timesteps, let VT ⊆ V , GT , and NT , |VT | denote the

set of infected nodes, the subgraph of G containing only VT , and the number

of infected nodes, respectively. At a certain time T , an adversary observes

the infected subgraph GT and produces an estimate v̂ of the source v∗ of the

message (with probability of detection PD = P(v̂ = v∗)). Since the adversary

is assumed to not have any prior information on which node is likely to be

the source, we use the maximum likelihood estimator

v̂ML = arg max
v∈GT

P(GT |v). (2.1)

We wish to achieve the following performance metrics.

(a) We say a protocol has an order-optimal rate of spread if the expected

time for the message to reach n nodes scales linearly compared to the

time required by the fastest spreading protocol.

(b) We say a protocol achieves a perfect obfuscation if the probability of

source detection for the maximum likelihood estimator conditioned on

n nodes being infected is bounded by

P
(
v̂ML = v∗|NT = n

)
=

1

n
+ o
( 1

n

)
. (2.2)

2.1.4 Key Insights

Figure 2.1 (left) illustrates an example of the spread when the message is

propagated immediately upon reception. The source is indicated by a solid

circle. This scheme spreads the message fast but the source is trivially identi-

fied as the center of the infected subgraph if the contact network is an infinite

tree. This is true independent of the infection size. Even if we introduce some

randomness at each node, the source will still be identified within a few hops.

This is due to both the fact that the source is close to some notion of the

center of the infected subgraph [28, 34].

Since we do not know a priori when the adversary is going to attack, the

main challenge is to ensure that the source is equally likely to be anywhere in

the infection at any given time. Figure 2.1 (right) illustrates the main idea

of our approach: we intentionally break the symmetry around the source.

11
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Figure 2.1: Illustration of a spread of infection when spreading immediately
(left) and under the adaptive diffusion (right).

This is achieved by combining two insights illustrated in the two warm-up

examples in Section 2.2. The first insight is that nodes farther away from

the source should spread the infection faster. The second insight is that the

spread should be coordinated in order to maintain a symmetric structure

centered around a ‘virtual source’ node. This leads to the source node being

anywhere in the infected subgraph with equal probability.

2.1.5 Contributions

We introduce a novel messaging protocol, which we call adaptive diffusion,

with provable author anonymity guarantees against strong adversaries. Our

protocol is inherently distributed and spreads messages fast, i.e., the time it

takes adaptive diffusion to reach n users is at most twice the time it takes

the fastest spreading scheme which immediately passes the message to all its

neighbors.

We further prove that adaptive diffusion provides perfect obfuscation of

the source when applied to regular tree contact networks. The source hides

perfectly within all infected users, i.e., the likelihood of an infected user

being the source of the infection is equal among all infected users. For a

more general class of graphs which can be finite, irregular and have cycles,

we provide results of numerical experiments on real-world social networks

and synthetic networks showing that the protocol hides the source at nearly

the best possible level of obfuscation.

12
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2.1.6 Organization

The remainder of this chapter is organized as follows. To warm up, we

introduce, in Section 2.2, two messaging protocols customized for lines and

trees. Combining the key insights of these two approaches, we introduce, in

Section 2.3, a new messaging protocol called adaptive diffusion and analyze

its performance theoretically and empirically, in Section 2.4. Section 2.5

discusses limitations and future work.

2.2 Warm-up Examples

In this section, we discuss two special contact networks as warm-up exam-

ples: a line and a regular tree with degree larger than two. We provide two

fully-distributed, customized messaging protocols, one for each case, and

show that these protocols spread messages quickly while effectively hiding

the source. However, these protocols fail to protect the identity of the source

when applied to a broader class of contact networks. In particular, Protocol

1 developed for line contact networks reveals the source with high probabil-

ity when applied to a regular tree with degree larger than two. Similarly,

Protocol 2 developed for tree contact networks reveals the source with high

probability when applied to a line. In Section 2.3, we introduce a novel mes-

saging protocol, which we call adaptive diffusion, that combines the key ideas

behind the two approaches presented in this section.

2.2.1 Spreading on a line

Given the contact network of an infinite line, consider the following determin-

istic spreading protocol. At time t = 1, the source node infects its left and

right neighbors. At t ≥ 2, the leftmost and rightmost infected nodes spread

the message to their uninfected neighbors. Thus, the message spreads one

hop to the left and one hop to the right of the true source at each timestep.

This scheme spreads as fast as possible, infecting NT = 2T + 1 nodes at time

T , but the source is trivially identified as the center of the infection.

Adding a little bit of randomness can significantly decrease the probabil-

ity of detection. Consider a discrete time random diffusion model with a

13
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parameter p ∈ (0, 1) where at each time t, an infected node infects its unin-

fected neighbor with probability p. Using the analysis from [28] where the

continuous time version of this protocol was studied, we can show that this

protocol spreads fast, infecting E[NT ] = 2pT + 1 nodes on average at time

T . Further, the probability of source detection PD = P(v̂ML = v∗) for the

maximum likelihood estimator scales as 1/
√
p(1− p)T . With p = 1/2 for

example, this gives a simple messaging protocol with a probability of source

detection vanishing at a rate of 1/
√
T .

In what follows, we show that with an appropriate choice of time-dependent

randomness, we can achieve almost perfect source obfuscation without sacri-

ficing the spreading rate. The key insight is to add randomness such that all

the infected nodes are (almost) equally likely to have been the origin of the

infection (see Figure 2.2 and Equation (2.6)). This can be achieved by adap-

tively choosing the spreading rate such that the farther away the infection is

from the source the more likely it is to spread. We now apply this insight to

design precisely how fast the spread should be for each infected node at any

time step. A node v is designed to infect a neighbor at time t ∈ {1, 2, . . .}
with probability

pv,t ,
δH(v, v∗) + 1

t+ 1
, (2.3)

where δH(v, v∗) is the hop distance between an infected node v at the bound-

ary of infection and the source v∗. The details of this spreading model are

summarized in Protocol 1.

14
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Protocol 1 Spreading on a line

Require: contact network G = (V,E), source v∗, time T
Ensure: infected subgraph GT

1: G0 ← {v∗}
2: δH(v∗ − 1, v∗)← 1 and δH(v∗ + 1, v∗)← 1
3: t← 1
4: for t ≤ T do
5: v ← rightmost node in Gt

6: draw a random variable X ∼ U(0, 1)
7: if X ≤ (δH(v, v∗) + 1)/(t+ 1) then
8: Gt ← Gt−1 ∪ {v + 1}
9: δH(v + 1, v∗)← δH(v, v∗) + 1

10: v ← leftmost node in GT

11: draw a random variable Y ∼ U(0, 1)
12: if Y ≤ (δH(v, v∗) + 1)/(t+ 1) then
13: Gt ← Gt−1 ∪ {v − 1}
14: δH(v − 1, v∗)← δH(v, v∗) + 1

15: t← t+ 1

The next proposition shows that this protocol achieves two of the main

goals of an anonymous messaging protocol: order-optimal spreading rate

and close to perfect obfuscation.

Proposition 2.2.1 Suppose that the underlying contact network G is an

infinite line, and one node v∗ in G starts to spread a message according to

Protocol 1 at time t = 0. At a certain time T ≥ 0 an adversary estimates the

location of the source v∗ using the maximum likelihood estimator v̂ML defined

in Equation (2.1). The following properties hold for Protocol 1:
(a) the expected number of infected nodes at time T is E[NT ] = T + 1;

(b) the probability of source detection at time T is upper bounded by

P(v̂ML = v∗) ≤ 2T + 1

(T + 1)2
; and (2.4)

(c) the expected hop-distance between the true source v∗ and its estimate

v̂ML is lower bounded by

E[δH(v∗, v̂ML)] ≥ T 3

9(T + 1)2
. (2.5)

The proof of the above proposition can be found in [17]. Compared to
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the (fastest-spreading) deterministic spreading model with a spreading rate

of NT = 2T + 1, Protocol 1 is slower by a factor of 2. This type of constant-

factor loss in the spreading rate is inevitable: the only way to deviate from

the deterministic spreading model is to introduce appropriate delays. The

probability of detection is 2/E[NT ] + o(1/E[NT ]), which is almost perfect

obfuscation up to a factor of 2. Further, the expected distance of the true

source from the ML source estimate scales linearly with the size of the infec-

tion E[NT ], which is the best separation one can hope to achieve.

To illustrate the power of Protocol 1, we consider a fixed T and a finite

ring graph of size larger than 2T + 1, and compare the protocol to a simple

random diffusion. If the source v∗ is chosen uniformly at random on the ring

and its message is spread according to Protocol 1, then the probability of the

source being detected given a set of infected nodes VT is

P
(
v∗ = k

∣∣VT ) =
1

|VT |
+O

( 1

|VT |2
)
, (2.6)

for all k ∈ VT and |VT | ≤ 2T + 1. This follows from the exact computation

of the posterior distribution which is omitted for brevity. For an example

with |VT | = 101, Figure 2.2 illustrates how Protocol 1 flattens the posterior

distribution compared to the random diffusion model. When messages are

sent according to the random diffusion model, the source can only hide in

the central part, which has width O(
√
T ), leading to a probability of source

detection on the order of 1/
√
T [28].
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Protocol 1
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Node k
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v
∗

=
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Figure 2.2: Protocol 1 has a close to uniform posterior distribution
P(v∗ = k |VT = {1, . . . , 101}).

On an infinite line, Protocol 1 provides maximum protection, since the
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probability of detection scales as 1/E[NT ] for any T . When Protocol 1 is

applied to regular trees with degree larger than two, the infected subgraph

contains exponentially many paths starting at v∗ of length close to T . In

such cases, the Jordan center (i.e., the node with the smallest maximum

distance to every other node in the graph) matches the source with positive

probability, as shown in Figure 2.3 for different d-regular trees.

 0.1

 1

 1  10  100  1000  10000

d=5

d=4

d=3

d=2

bound in    

Expected size of infection E[NT ]

P(
v̂

=
v
∗ )

(2.4)

Figure 2.3: Detection probability versus the average size of infection on
regular trees using Jordan center estimator. On a line (d = 2) the Jordan
center is equal to the ML estimate.

2.2.2 Spreading on a regular tree

Consider the case when the underlying contact network is an infinite d-regular

tree with d larger than two. Analogous to the line network, the fastest

spreading protocol infects all the uninfected neighbors at each timestep. This

spreads fast, infecting NT = 1 + d((d− 1)T − 1)/(d− 2) nodes at time T , but

the source is trivially identified as the center of the infected subtree. In this

case, the infected subtree is a balanced regular tree where all leaves are at

equal depth from the source.

Now consider a random diffusion model. At each timestep, each uninfected

neighbor of an infected node is independently infected with probability p. In

this case, E[NT ] = 1 +pd((d− 1)T − 1)/(d− 2), and it was shown in [28] that

the probability of correct detection for the maximum likelihood estimator of

the rumor source is P(v̂ML = v∗) ≥ Cd for some positive constant Cd that

only depends on the degree d. Hence, the source is only hidden in a constant

17



Draft of April 12, 2015 at 01 : 45

number of nodes close to the center, even when the total number of infected

nodes is arbitrarily large.

We now present a protocol that spreads the message fast (NT = O((d −
1)T/2)) and hides the source within a constant fraction of the infected nodes

(P(v̂ML = v∗) = O(1/NT )). This protocol keeps the infected subtree bal-

anced: at any time t, all the leaves of the infected subtree are at the same

hop distance from its center. Further, as we will see next, the leaves of the

infected subtree are equally likely to have been the source. Figure 2.4 illus-

trates how this protocol spreads a message on a regular tree of degree 3. At

t = 1, node 0 (the message author) infects one of its neighbors (node 1 in

this example) uniformly at random. Node 1 will be referred to as the virtual

source at t = 1. The virtual source at time t is the center of the infected

subtree at time 2t. At t = 2, node 1 infects all its uninfected neighbors,

making the infected subgraph G2 a balanced tree with node 1 at the center.

Among the uninfected neighbors of node 1, one node is chosen to be the new

virtual source (node 2 in the example). The message then spreads to the

uninfected neighbors of node 2 at time t = 3, and then to their neighbors at

time t = 4 making G4 a balanced tree with node 2 at the center. Notice that

any given time t, all leaves are equally likely to have been the source. This

follows form the symmetric structure of Gt.

4G

3G

2G

1G

2

1 4
7

6

3

0

5

8 9

Figure 2.4: Spreading on a tree. The red node is the message source.
Yellow nodes denote nodes that have been, are, or will be the center of the
infected subtree.
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The distributed implementation of this spreading algorithm is given in

Protocol 2.

Protocol 2 Spreading on a tree

Require: contact network G = (V,E), source v∗, time T
Ensure: infected subgraph GT

1: G0 ← {v∗}
2: s1,v∗ ← 0 and s2,v∗ ← 0
3: v∗ selects one of its neighbors u at random
4: G1 ← G0 ∪ {u}
5: s1,u ← 1 and s2,u ← 1
6: t← 2
7: for t ≤ T do
8: for all v ∈ Gt−1 with s2,v > 0 do
9: if s1,v = 1 then

10: v selects one of its uninfected neighbors u at random
11: Gt ← Gt−1 ∪ {u}
12: s1,u ← 1 and s2,u ← s2,v + 1
13: s1,v ← 0
14: else
15: for all uninfected neighboring nodes w of v do
16: Gt ← Gt−1 ∪ {w}
17: s1,w ← 0 and s2,w ← s2,v − 1
18: s2,v ← 0

19: t← t+ 1

Protocol 2 ensures that the source can hide among the leaf nodes of the

infected subtree, i.e. all leaves are equally likely to have been the source.

Since a significant fraction of the infected nodes are at the leaf, this protocol

achieves an almost perfect obfuscation.

Proposition 2.2.2 Suppose that the underlying contact network G is an

infinite d-regular tree with d > 2, and one node v∗ in G starts to spread

a message according to Protocol 2 at time t = 0. At a certain time T ≥
1 an adversary estimates the location of the source v∗ using the maximum

likelihood estimator v̂ML. Then the following properties hold for Protocol 2:
(a) the number of infected nodes at time T ≥ 1 is at least

NT ≥
(d− 1)(T+1)/2

d− 2
; (2.7)
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(b) the probability of source detection for the maximum likelihood estimator

at time T is

P
(
v̂ML = v∗

)
=

d− 1

2 + (d− 2)NT

; and (2.8)

(c) the expected hop-distance between the true source v∗ and its estimate v̂

is lower bounded by

E[δH(v∗, v̂ML)] ≥ T

2
. (2.9)

The proof of the above proposition can be found in [17]. Equation (2.7)

shows that the spreading rate of Protocol 2 is O((d− 1)T/2), which is slower

than the deterministic spreading model that infects O((d − 1)T ) nodes at

time T . This is inevitable, as we explained in relation to Proposition 2.2.1.

Although this protocol spreads fast and provides an almost perfect obfus-

cation on a tree with degree larger than two, it fails when the contact network

is a line. There are only two leaves in a line, so at any given time T , the

source can be detected with probability 1/2, independent of the size of the

infected subgraph. Another drawback of this approach, is that even in the

long run, not every node receives the message. For instance, the neighbors

of the source node that are not chosen in the first step are never infected. In

the following section, we address these issues and propose a new messaging

protocol that combines the key ideas of both spreading models presented in

this section.

2.3 Adaptive Diffusion

Section 2.2 showed that by changing the infection rate and direction based

on state variables, the source can hide from the adversary. In particular, the

messaging protocols presented in Sections 2.2.1 and 2.2.2 provide provable

anonymity guarantees for line graphs and d-regular trees with d > 2, respec-

tively. However, Protocol 1 fails to protect the source on graphs with larger

degree. Similarly, Protocol 2 fails to protect the source on a line and does not

pass the message to some of the nodes. To overcome these challenges, we use

ideas from Protocol 1 (nodes farther away from the source spread message
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faster) and from Protocol 2 (keep the infected subgraph balanced and keep

the source closer to the leaves), to design a protocol that achieves perfect

obfuscation and spreads fast on all regular trees (including lines). We call

this protocol adaptive diffusion to emphasize the fact that unlike diffusion,

the protocol adapts the infection rate and direction as a function of time.

We step through the intuition of the adaptive diffusion spreading model

with an example, partially illustrated in Figure 2.5. Suppose that the under-

lying contact network is an infinite d-regular tree. As illustrated in Figure 2.5,

we ensure that the infected subgraph Gt at any even timestep t ∈ {2, 4, . . .}
is a balanced tree of depth t/2, i.e. the hop distance from any leaf to the

root (or the center of the graph) is t/2. We call the root node of Gt the

“virtual source” at time t, and denote it by vt. We use v0 = v∗ to denote

the true source. To keep the regular structure at even timesteps, we use the

odd timesteps to transition from one regular subtree Gt to another one Gt+2

with depth incremented by one.

Figure 2.5 illustrates two sample evolutions of infection, as per adaptive

diffusion. The source v∗ = 0 starts the infection at t = 0. At time t = 1,

node 0 infects node 1 and passes the virtual source token to it, i.e. v2 = 1

(we only define virtual sources for even timesteps). At time t = 1, node 1

infects its uninfected neighbors, nodes 2 and 3. Notice that it requires two

timesteps to infect nodes {1, 2, 3} in order to spread infection to G2, which is

a balanced tree of depth v2 = 1 rooted at node 1. At time t = 3, the adaptive

diffusion protocol has two choices, either to pass the virtual source token to
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Figure 2.5: Adaptive diffusion over regular trees. Yellow nodes indicate the
set of virtual sources (past and present), and for T = 4, the virtual source
node is outlined in red.

21



Draft of April 12, 2015 at 01 : 45

one of node 1’s neighbors that is not a previous virtual source, for example

node 2 (Figure 2.5 left), or to keep the virtual source at node 1 (Figure 2.5

right). In the former case, it again takes two timesteps to spread infection

to G4, which is a balanced tree of depth 2 rooted at node v4 = 2. In the

latter case, only one timestep is required but we add one time delay to be

consistent with the previous case. Hence, G3 = G4 which is a balanced tree

of depth 2 rooted at node v4 = 1. Such a random process can be defined as

a time-inhomogenous (time-dependent) Markov chain over the state defined

by the location of the current virtual source {vt}t∈{0,2,4,...}.
By the symmetry of the underlying contact network (which we assume is

an infinite d-regular tree) and the fact that the next virtual source is chosen

uniformly at random among the neighbors of the current virtual source, it is

sufficient to consider a Markov chain over the hop distance between the true

source v∗ and vt, the virtual source at time t. Therefore, we design a Markov

chain over the state

ht = δH(v∗, vt) ,

for even t. Figure 2.5 shows an example with (h2, h4) = (1, 2) on the left and

(h2, h4) = (1, 1) on the right.

At every even timestep, the protocol randomly determines whether to keep

the virtual source token (ht+2 = ht) or to pass it (ht+2 = ht + 1). Using

ideas from Section 2.2.1, we will construct an time-inhomogeneous Markov

chain over {ht}t∈{2,4,6,...} by choosing appropriate transition probabilities as

a function of time t and current state ht. For an even t, we denote this

probability by

αd(t, h) , P
(
ht+2 = ht|ht = h

)
, (2.10)

where the subscript d denotes the degree of the underlying contact network.

For the running example, at t = 2, the virtual source remains at the cur-

rent node (right) with probability α3(2, 1), or passes the virtual source to

a neighbor with probability 1 − α3(2, 1) (left). The parameters αd(t, h)

fully describe the transition probability of the Markov chain defined over

ht ∈ {1, 2, . . . , t/2}. Let p(t) = [p
(t)
h ]h∈{1,...,t/2} denote the distribution of the

state of the Markov chain at time t, i.e. p
(t)
h = P(ht = h). The state tran-
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sition can be represented as the following ((t/2) + 1) × (t/2) dimensional

column stochastic matrices:

p(t+2) =



αd(t, 1)

1− αd(t, 1) αd(t, 2)

1− αd(t, 2)
. . .
. . . αd(t, t/2)

1− αd(t, t/2)


p(t) . (2.11)

We treat ht as strictly positive, because at time t = 0, when h0 = 0, the

virtual source is always passed. Thus, ht ≥ 1 afterwards. We design the

the parameters αd(t, h) to achieve perfect hiding. Precisely, at all even t, we

desire p(t) to be

p(t) =
d− 2

(d− 1)t/2 − 1


1

(d− 1)
...

(d− 1)t/2−1

 ∈ Rt/2 , (2.12)

for d > 2 and for d = 2, p(t) = (2/t)1t/2 where 1t/2 is all ones vector in Rt/2.

There are d(d − 1)h−1 nodes at distance h from the virtual source, and by

symmetry all of them are equally likely to have been the source:

P(GT |v∗, δH(v∗, vt) = h) =
1

d(d− 1)h−1
p

(t)
h

=
d− 2

d((d− 1)t/2 − 1)
,

for d > 2, which is independent of h. Hence, all the infected nodes (except

for the virtual source) are equally likely to have been the source of the origin.

This statement is made precise in Eq. (2.15).

Together with the desired probability distribution in Equation (2.12), this

gives a recursion over t and h for computing the appropriate αd(t, h)’s. After

some algebra and an initial state p(2) = 1, we get that the following choice

ensures the desired Equation (2.12):

αd(t, h) =

{
(d−1)t/2−h+1−1

(d−1)t/2+1−1
if d > 2

t−2h+2
t+2

if d = 2
(2.13)
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With this choice of parameters, we show that adaptive diffusion spreads fast,

infecting Nt = O((d− 1)t/2) nodes at time t and each of the nodes except for

the virtual source is equally likely to have been the source.

Theorem 2.3.1 Suppose the contact network is a d-regular tree with d ≥ 2,

and one node v∗ in G starts to spread a message according to Protocol 3 at

time t = 0. At a certain time T ≥ 0 an adversary estimates the location

of the source v∗ using the maximum likelihood estimator v̂ML. The following

properties hold for Protocol 3:

(a) the number of infected nodes at time T is

NT ≥

{
2(d−1)(T+1)/2−d

(d−2)
+ 1 if d > 2

T + 1 if d = 2
(2.14)

(b) the probability of source detection for the maximum likelihood estimator

at time T is

P (v̂ML = v∗) ≤

{
d−2

2(d−1)(T+1)/2−d if d > 2

(1/T ) if d = 2
(2.15)

(c) the expected hop-distance between the true source v∗ and its estimate

v̂ML under maximum likelihood estimation is lower bounded by

E[d(v̂ML, v
∗)] ≥ d− 1

d

T

2
. (2.16)

Protocol 3 describes the details of the implementation of adaptive diffusion.

The first three steps are always the same. At time t = 1, the rumor source

v∗ selects, uniformly at random, one of its neighbors to be the virtual source

v2 and passes the message to it. Next at t = 2, the new virtual source v2

infects all its uninfected neighbors forming G2 (see Figure 2.5). Then node

v2 chooses to either keep the virtual source token with probability αd(2, 1)

or to pass it along.

If v2 chooses to remain the virtual source i.e., v4 = v2, it passes ‘infection

messages’ to all the leaf nodes in the infected subtree, telling each leaf to

infect all its uninfected neighbors. Since the virtual source is not connected

to the leaf nodes in the infected subtree, these infection messages get relayed
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Protocol 3 Adaptive Diffusion

Require: contact network G = (V,E), source v∗, time T , degree d
Ensure: set of infected nodes VT

1: VT ← {v∗}, h← 0, v0 ← v∗

2: v∗ selects one of its neighbors u at random
3: VT ← VT ∪ {u}, h← 1, v1 ← u
4: let N(u) represent u’s neighbors
5: VT ← VT ∪N(u) \ {v∗}, v2 ← v1

6: t← 3
7: for t ≤ T do
8: vt−1 selects a random variable X ∼ U(0, 1)
9: if X ≤ αd(t− 1, h) then

10: for all v ∈ N(vt−1) do
11: Infection Message(G,vt−1,v,GT )

12: else
13: vt−1 randomly selects u ∈ N(vt−1) \ {vt−2}
14: h← h+ 1
15: vt ← u
16: for all v ∈ N(vt) \ {vt−1} do
17: Infection Message(G,vt,v,VT )
18: if t+ 1 > T then
19: break
20: Infection Message(G,vt,v,VT )

21: t← t+ 2

22: procedure Infection Message(G,u,v,VT )
23: if v ∈ VT then
24: for all w ∈ N(v) \ {u} do
25: Infection Message(G,v,w,GT )

26: else
27: VT ← VT ∪ {v}
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by the interior nodes of the subtree. This leads to Nt messages getting passed

in total (we assume this happens instantaneously). These messages cause the

rumor to spread symmetrically in all directions at t = 3. At t = 4, no more

spreading occurs.

If v2 does not choose to remain the virtual source, it passes the virtual

source token to a randomly chosen neighbor v4, excluding the previous virtual

source (in this example, v0). Thus, if the virtual source moves, it moves away

from the true source by one hop. Once v4 receives the virtual source token,

it sends out infection messages. However, these messages do not get passed

back in the direction of the previous virtual source. This causes the infection

to spread asymmetrically over only one subtree of the infected graph (G3 in

left panel of Figure 2.5). In the subsequent timestep (t = 4), the virtual

source remains fixed and passes the same infection messages again. After

this second round of asymmetric spreading, the infected graph is once again

symmetric about the virtual source v4 (G4 in left panel of Figure 2.5).

2.4 General Contact Networks

We study adaptive diffusion on general networks, and empirically show that

adaptive diffusion hides the identity of the source when the underlying graph

is cyclic, irregular, and finite.

2.4.1 Irregular tree networks

We first consider tree networks with potentially different degrees at the ver-

tices. Although the degrees are irregular, we still apply the adaptive diffusion

with αd0(t, h)’s chosen for a specific d0 that might be mismatched with the

graph due to degree irregularities. There are a few challenges in this degree-

mismatched adaptive diffusion. First, finding the maximum likelihood esti-

mate of the source is not immediate, due to degree irregularities. Second,

it is not a priori clear which choice of d0 is good. We first show an efficient

message passing algorithm for computing the maximum likelihood source es-

timate. Using this estimate, we show, via simulations, that adaptive diffusion

successfully hides the source and detection probability is not too sensitive to

the choice of d0.
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Efficient ML estimation. To keep the discussion simple, we assume

that T is even. The same approach can be naturally extended to odd

T . Since the spreading pattern in adaptive diffusion is entirely determin-

istic given the sequence of virtual sources at each time step, computing

the likelihood P(GT |v∗ = v) is equivalent to computing the probability

of the virtual source moving from v to vT over T time steps. On trees,

there is only one path from v to vT and since we do not allow the vir-

tual source to “backtrack”, we only need to compute the probability of ev-

ery virtual source sequence (v0, v2, . . . , vT ) that meets the constraint v0 =

v. Due to the Markov property exhibited by adaptive diffusion, we have

P(GT |{(vt, ht)}t∈{2,4,...,T}) =
∏

t<T−1
t even

P(vt+2|vt, ht), where ht = δH(v0, vt). For

t even, P(vt+2|vt, ht) = αd(t, ht) if vt = vt+2 and 1−αd(t,ht)
deg(vt)−1

otherwise. Here

deg(vt) denotes the degree of node vt in G. Given a virtual source trajec-

tory P = (v0, v2, . . . , vT ), let JP = (j1, . . . , jδH(v0,vT )) denote the timesteps at

which a new virtual source is introduced, with 1 ≤ ji ≤ T . It always holds

that j1 = 2 because after t = 0, the true source chooses a new virtual source

and v2 6= v0. If the virtual source at t = 2 were to keep the token exactly

once after receiving it (it flips a biased coin at the end of t = 2), then j2 = 6,

and so forth. To find the likelihood of a node being the true source, we sum

over all such trajectories

P(GT |v0) =
∑

JP :P∈S(v0,vT ,T )

1

deg(v0)

δH(v0,vT )−1∏
k=1

1

deg(vjk)− 1︸ ︷︷ ︸
Av0

×

∏
t<T
t even

(
1{t+2/∈JP}αd(t, ht) + 1{t+2∈JP}(1− αd(t, ht))

)
,

︸ ︷︷ ︸
Bv0

(2.17)

where 1 is the indicator function and

S(v0, vT , T ) = {P : P = (v0, v2, . . . , vT ) is a valid trajectory}.

Intuitively, part Av0 of the above expression is the probability of choosing

the set of virtual sources specified by P , and part Bv0 is the probability

of keeping or passing the virtual source token at the specified timesteps.

Equation (2.17) holds for both regular and irregular trees. Since the path
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between two nodes in a tree is unique and part Av0 multiplies the degree of

each node once in that path, Av0 is identical for all trajectories P . Pulling

Av0 out of the summation, we wish to compute the summation over all valid

paths P of part Bv0 (for ease of exposition, we will use Bv0 to refer to this

whole summation). Although there are combinatorially many valid paths,

we can simplify the formula in Equation (2.17) for the particular choice of

αd(t, h)’s defined in (2.13).

Proposition 2.4.1 Suppose that the underlying contact network G̃ is an

infinite tree with degree of each node larger than one. One node ṽ∗ in G̃

starts to spread a message at time t = 0 according to Protocol 3 with the

choice of d = d0. At a certain even time T ≥ 0, the maximum likelihood

estimate of ṽ∗ given a snapshot of the infected subtree G̃T is

arg max
v∈G̃T \ṽT

d0

deg(v)

 ∏
v′∈p(ṽT ,v)\{ṽT ,v}

d0 − 1

deg(v′)− 1

 , (2.18)

where ṽT is the (Jordan) center of the infected subtree G̃T , p(ṽT , v) is the

unique path from ṽT to v, and deg(v′) is the degree of node v′.

Consider the following observation in Figure 2.6, which was spread us-

ing the adaptive diffusion (Protocol 3) with a choice of d0 = 2. Then,

the Equation (2.18) can be computed easily for each node, which gives

[1/2, 1, 0, 1, 2/3, 1/2, 1/2, 1/4] for node [1, 2, 3, 4, 5, 6, 7, 8]. Hence nodes 2 and

4 are most likely. Intuitively nodes whose path to the center have small de-

grees are more likely. However, if we repeat this estimation assuming d0 = 4,

then Equation (2.18) gives [3, 2, 0, 2, 4/3, 3, 3, 3/2]. In this case, nodes 1, 6,

and 7 are most likely. Intuitively, when d0 is large, the adaptive diffusion

tends to put the source closer to the leaf, and hence the leaf nodes are more

likely to have been the source.
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Figure 2.6: Irregular tree G̃4 with virtual source ṽ4.
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Proof 1 We first make two observations: (a) Over regular trees, P(GT |u) =

P(GT |w) for any u 6= w ∈ GT , even if they are different distances from the

virtual souce. (b) Part Bv0 is identical for regular and irregular graphs, as

long as the distance from the candidate source node to vT is the same in both

and the same αd0(t, h)’s are used. That is, let G̃T denote an infected subtree

over an irregular tree network, with virtual source ṽT , and GT will denote a

regular infected subtree with virtual source vT . For candidate sources ṽ0 ∈ G̃T

and v0 ∈ GT , if δH(ṽT , ṽ0) = δH(vT , v0) = h, then Bv0 = Bṽ0. So to find the

likelihood of ṽ0 ∈ G̃T , we can solve for Bṽ0 using the likelihood of v0 ∈ GT ,

and compute Aṽ0 using the degree information of every node in the infected,

irregular subgraph.

We now solve for Bṽ0. Note that over regular graphs, Av = 1/(d0 (d0 −
1)δH(v,vT )−1), where d0 is the degree of the regular graph. If G is a regular

tree, Equation (2.17) still applies. A crucial fact is that the αd0(t, h)’s have

been designed such that the likelihood are equal for all node in the regular

tree. Hence,

P(GT |v0) =
1

d0(d0 − 1)δH(v0,vT )−1︸ ︷︷ ︸
Av0

×Bv0 , (2.19)

is a constant that does not depend on v0. This gives Bv0 ∝ (d0 − 1)δH(vT ,v0).

From observation (b), we have that Bṽ0 = Bv0. Putting these together, we

get that for a ṽ0 ∈ G̃T \ {ṽT},

P(G̃T |ṽ0) = Aṽ0 Bṽ0

∝ (d0 − 1)δH(ṽT ,ṽ0)

deg(ṽ0)
∏

ṽ′∈p(ṽT ,ṽ0)\{ṽ0,ṽT }(deg(ṽ′)− 1)

After some scaling, and using that |p(ṽT , ṽ0)| = δH(ṽT , ṽ0) + 1, this gives the

formula in Equation (2.18).

Implementation and numerical simulations. We provide an effi-

cient message passing algorithm for computing the ML estimate in Equation

(2.18), which is naturally distributed. We then use this estimator to simulate

message spreading for random irregular trees and show that the obfuscation

is not too sensitive to the choice of d0.

Aṽ0 can be computed efficiently for irregular graphs with a simple message-

passing algorithm. In this algorithm, each node ṽ multiplies its degree infor-
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Algorithm 4 ML estimator of (2.18)

Input: infected network G̃T = (ṼT , ẼT ), virtual source ṽT , time T , the
spreading model parameter d0

Output: argmaxṽ∈ṼT P(G̃T |ṽ∗ = ṽ)

1: Pṽ , P(G̃T |ṽ∗ = ṽ).
2: PṽT ← 0
3: Aṽ ← 1 for ṽ ∈ ṼT \ {ṽT}
4: AṽT ← 0
5: A← Degree Message(GT , ṽT , ṽT , A)
6: P(GT |vleaf )← 1

d0(d0−1)T/2−1

∏
t<T
t even

(1− αd0(t, t2))}
7: for all ṽ ∈ ṼT \ {ṽT} do
8: h← δH(ṽ, ṽT )
9: Bṽ ← P(GT |vleaf ) · d0 · (d0 − 1)h−1

10: Pṽ ← Aṽ ·Bṽ
return argmaxṽ∈ṼTPṽ

11: procedure Degree Message(G̃T , ũ, ṽ, A)
12: for all w̃ ∈ N(ṽ) \ {ũ} do
13: if ṽ = ũ then
14: Aw̃ ← Aṽ/deg(w̃)
15: Degree Message(G̃T , ṽ, w̃, A)
16: else
17: if ṽ is not a leaf then
18: Aw̃ ← Aṽ · deg(ṽ)/(deg(w̃) · (deg(ṽ)− 1))
19: Degree Message(G̃T , ṽ, w̃, A)

return A
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mation by a cumulative likelihood that gets passed from the virtual source

to the leaves. Thus if there are ÑT infected nodes in G̃T , then Aṽ0 for every

ṽ0 ∈ G̃T can be computed by passing O(ÑT ) messages. This message-passing

is outlined in procedure ‘Degree Message’ of Algorithm 4, which we use to

find A5 in our example. In this algorithm, the virtual source ṽT = 3 starts

by setting A2 = 1
2
, A4 = 1

2
, and A5 = 1

3
. Our example stops here, but to

compute other other values of Aw̃, the message passing continues. Each of

the nodes ṽ ∈ N(3) in turn sets Aw̃ for their children w̃ ∈ N(ṽ); this is

done by dividing Aṽ by deg(w̃) and replacing the factor of 1
deg(ṽ)

in Aṽ with
1

deg(ṽ−1)
. For example, node 5 would set A7 = A5

2
· 3

2
. This step is applied

recursively until reaching the leaves.

We now solve for Bṽ0 . Note that over regular graphs, Av0 = 1/d0 · (d0 −
1)1−δH(v0,vT ), where d0 is the degree of the regular graph. If vleaf ∈ GT is a

leaf node and G is a regular tree, we get

P(GT |vleaf) =
1

d0(d0 − 1)T/2−1︸ ︷︷ ︸
Avleaf

∏
t<T
t even

(1− αd0(t,
t

2
))

︸ ︷︷ ︸
Bvleaf

(2.20)

This is because the virtual source must have moved T/2 times for the true

source to be a leaf. If candidate node ṽ0 is h < T/2 hops from ṽT , then to

solve for Bṽ0 in (2.17), we make use of observations (1) and (2). Specifically,

from observation (1), we have that for node v0 with δH(v0, vT ) = h < T/2

over a regular tree,

P(GT |v0) = P(GT |vleaf) (2.21)

=
1

d0 · (d0 − 1)h−1
Bv0 .

From observation (2), we have that Bṽ0 = Bv0 . Now that we know Bv0 , we

can multiply it by Aṽ0 to obtain P(G̃T |ṽ0). So to solve for B5 in our example,

we compute P(GT |vleaf ) for a 3-regular graph at time T = 4. This gives

P(G4|vleaf ) = Avleaf · Bvleaf = 1
6
· (1− α3(2, 1)) = 1

9
. Thus B5 = P(G4|vleaf ) ·

d0 · (d0− 1)h−1 = P(G4|vleaf ) · 3 · (2)0 = 1
3
. This gives P(G̃4|5) = A5 ·B5 = 1

9
.

The same can be done for other nodes in the graph to find the maximum

likelihood source estimate.
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We tested adaptive diffusion over random trees – each node’s degree was

i.i.d., drawn from a fixed distribution. Figure 2.7 illustrates the results of

our simulations for three degree distributions, averaged over 10,000 trials.

This plot shows that the probability of detection decays nearly at a rate of

1/E[NT ] implying nearly perfect anonymity. Moreover, the message spreads

exponentially quickly over the trees.
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Figure 2.7: The probability of detection by the maximum likelihood
estimator decays approximately as O(1/E[NT ]) when adaptive diffusion is
run over irregular trees.

2.4.2 Real World Networks

To understand how the adaptive diffusion algorithm fares in realistic sce-

narios which involve cycles, have irregular degrees, and is finite, we ran

the adaptive diffusion algorithm over an underlying connectivity network of

10,000 Facebook users in New Orleans circa 2009, as described by the Face-

book WOSN dataset [39]. We eliminated all nodes with fewer than three

friends (this approach is taken by Secret so users cannot guess which of their

friends originated the message), which left us with a network of 9,502 users.

Over this underlying network, we selected a node uniformly at random as the

rumor source, and spread the message using adaptive diffusion setting with

d0 =∞, which means that the virtual source is always passed to a new node.

This choice is to make the ML source estimation faster, and other choices

of d0 could outperform this naive choice. To preserve the symmetry of our
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constructed trees as much as possible, we constrained each infected node to

infect a maximum of three other nodes in each time step. We also give the ad-

versary access to the undirected infection subtree (which explicitly identifies

all pairs of nodes such that one node spread the infection to the other), which

is overlaid on the underlying contact network which is not necessarily a tree.

We demonstrate in simulation (Figure 2.8) that even with this strong side

information, the adversary—which has access to the infected subgraph—can

only identify the true message source with a small probability.
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Figure 2.8: Near-ML probability of detection for the Facebook graph with
adaptive diffusion.

Using the naive method of enumerating every possible message trajectory,

it is computationally expensive to find the exact ML source estimate since

there are 2T possible trajectories, depending on whether the virtual source

stayed or moved at each time step. We note that if the true source is one of

the leaves, we can closely approximate the ML estimate among all leaf nodes,

using the same procedure as described in 2.4.1, with one small modification:

in graphs with cycles, the term (deg(vjk) − 1) from equation 2.17 should

be substituted with (degu(vjk) − 1), where degu(vjk) denotes the number of

uninfected neighbors of vjk at time jk. Loops in the graph cause this value to

be time-varying, and also dependent on the location of v0, the candidate true

source. We did not approximate the ML estimate for non-leaves because the

simplifications used in Section 2.4.1 to compute the likelihood no longer hold,

leading to an exponential increase in the problem dimension. This approach

is only an approximation of the ML estimate because the virtual source could
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move in a loop over the social graph (i.e., the same node could be the virtual

source more than once, in nonadjacent time steps).

On average, adaptive diffusion reached 96 percent of the network within

10 time steps.

We also computed the average distance of the true source from the esti-

mated source over the infected subtree (Figure 2.9). We see that as time

progresses, so does the hop distance of the estimated source from the true

source. In social networks, nearly everyone is within a very small number

of hops (say, 6 hops [40]) from everyone else, so this computation is not as

informative in this setting.
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Figure 2.9: Hop distance between true source and estimated source over
infection subtree for adaptive diffusion over the Facebook graph.

2.5 Discussion

Besides the adversarial model studied in this chapter, anonymous messaging

applications face challenges under alternative adversarial models that can

occur in practice. For instance, (a) an adversary that has corrupted a subset

of network nodes through malware, bribery, or Sybil node creation can spy

on the metadata on those compromised nodes on the timing of receiving a

message and who the sender is (b) an adversary might create malware which

prevents some nodes to follow the messaging protocol, or (c) an adversarial

network provider can monitor all network activity and analyze this activity

retroactively.
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All these adversarial attacks increase the chance of the source being iden-

tified, which is a challenging problem for designing anonymous protocols. To

a large extent, de-anonymization is an arms race in which there is always

side information for an adversary to exploit. The point is to make that ex-

ploitation as expensive and difficult as possible, thereby preventing it from

scaling. Within this arms race, anonymous spreading protocols ensure that

adversaries cannot use message propagation patterns as a weapon.
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CHAPTER 3

LOCAL DIFFERENTIAL PRIVACY

3.1 Introduction

In statistical analyses involving data from individuals, there is an increasing

tension between the need to share the data and the need to protect sensitive

information about the individuals. For example, users of social networking

sites are increasingly cautious about their privacy, but still find it inevitable

to agree to share their personal information in order to benefit from cus-

tomized services such as recommendations and personalized search [41, 42].

There is a certain utility in sharing data for both data providers and data

analysts, but at the same time, individuals want plausible deniability when

it comes to sensitive information.

For such applications, there is a natural core optimization problem to be

solved. Assuming both the data providers and analysts want to maximize the

utility of the released data, how can they do so while preserving the privacy

of participating individuals? The formulation and study of a framework

addressing this fundamental tradeoff is the focus of this chapter.

3.1.1 Local differential privacy

The need for data privacy appears in two different contexts: the local pri-

vacy context, as in when individuals disclose their personal information (e.g.,

voluntarily on social network sites), and the global privacy context, as in

when institutions release databases of information of several people or an-

swer queries on such databases (e.g., US Government releases census data,

companies like Netflix release proprietary data for others to test state of the

art data analytics). In both contexts, privacy is achieved by randomizing the

data before releasing it. We study the setting of local privacy, in which data
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providers do not trust the data collector (analyst). Local privacy dates back

to [43], who proposed the randomized response method to provide plausible

deniability for individuals responding to sensitive surveys.

A natural notion of privacy protection is making inference of information

beyond what is released hard. Differential privacy has been proposed in the

global privacy context to formally capture this notion of privacy [44, 45, 46].

In a nutshell, differential privacy ensures that an adversary should not be

able to reliably infer whether or not a particular individual is participating

in the database query, even with unbounded computational power and ac-

cess to every entry in the database except for that particular individual’s

data. Recently, [47] extended the notion of differential privacy to the lo-

cal privacy context. Formally, consider a setting where there are n data

providers each owning a data Xi defined on an input alphabet X . The Xi’s

are independently sampled from some distribution Pν parameterized by ν. A

statistical privatization mechanism Q is a conditional distribution that maps

Xi ∈ X stochastically to Yi ∈ Y , where Y is an output alphabet possibly

larger than X . The Yi’s are referred to as the privatized (sanitized) views of

Xi’s. In a non-interactive setting where all Xi’s are independently sampled

from the same distribution, the same privatization mechanism Q is used by

all individuals. This setting is shown in Figure 3.1 for a special case with

n = 2. For some non-negative ε, we follow the definition of [47] and say that

a mechanism Q is ε-locally differentially private if

sup
S⊂Y,x,x′∈X

Q(S|x)

Q(S|x′)
≤ eε , (3.1)

where Q(S|x) = P(Yi ∈ S|Xi = x) represents the privatization mechanism.

This ensures that for small values of ε, given a privatized data Yi, it is

(almost) equally likely to have come from any data, i.e. x or x′. A small

value of ε means that we require a high level of privacy and a large value

corresponds to a low level of privacy. At one extreme, for ε = 0, the privatized

output must be independent of the private data, and on the other extreme,

for ε =∞, the privatized output can be made equal to the private data.
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X1 ∼ Pν

X2 ∼ Pν
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Privatization
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Privatization
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Figure 3.1: Client server model

3.1.2 Information theoretic utilities for statistical analysis

In analyses of statistical databases, the analyst is interested in the statistics

of the data as opposed to individual records. Naturally, the utility should

also be measured in terms of the distribution rather than sample quantities.

Concretely, consider a client-server setting, where each client with data Xi

sends a privatized version of the data Yi, via a non-interactive ε-locally dif-

ferentially private privatization mechanism Q. Assume all the clients use the

same privatization mechanism denoted by Q, and each client’s data is an

i.i.d. sample from a distribution Pν for some parameter ν. Given the priva-

tized views {Yi}ni=1, the data analyst wants to make inferences based on the

induced marginal distribution

Mν(S) ≡
∑
x∈X

Q(S|x)Pν(x) , (3.2)

for S ⊆ Y . We consider a broad class of convex utility functions, and iden-

tify the class of optimal mechanisms, which we call staircase mechanisms, in

Section 3.2. We apply this framework to two specific applications: (a) hy-

pothesis testing where the utility is measured in Kullback-Leibler divergence

(Section 3.3) and (b) information preservation where the utility is measured

in mutual information (Section 3.4).

In the binary hypothesis testing setting, ν ∈ {0, 1}; therefore, X can be

generated by one of two possible distributions P0 and P1. The power to

discriminate data generated from P0 to data generated from P1 depends on

the ‘distance’ between the marginals M0 and M1. To measure the ability

of such statistical discrimination, our choice of utility of a particular priva-
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tization mechanism Q is an information theoretic quantity called Csiszár’s

f -divergence defined as

Df (M0||M1) =
∑
x∈X

f
(M0(x)

M1(x)

)
M1(x) , (3.3)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL)

divergence Dkl(M0||M1) is a special case with f(x) = x log x, and so is the

total variation ‖M0 −M1‖TV with f(x) = (1/2)|x − 1|. Such f -divergences

capture the quality of statistical inference, such as minimax rates of statistical

estimation or error exponents in hypothesis testing [48]. As a motivating

example, suppose a data analyst wants to test whether the data is generated

from P0 or P1 based on privatized views Y1, . . . , Yn. According to Chernoff-

Stein’s lemma, for a bounded type I error probability, the best type II error

probability scales as e−nDkl(M0||M1). Naturally, we are interested in finding a

privatization mechanism Q that minimizes the probability of error by solving

the following constraint maximization problem

maximize
Q

Dkl(M0||M1)

subject to Q ∈ Dε
, (3.4)

where Dε is the set of all ε-locally differentially private mechanisms satisfying

(3.1).

In the information preservation setting, X is generated from an underlying

distribution P . We are interested in quantifying how much information can

be preserved when releasing a private view of the data. In other words, the

data provider would like to release an ε-locally differentially private view Y

of X that preserves the amount of information in X as much as possible.

The utility in this case is measured by the mutual information between X

and Y

I (X;Y ) =
∑
X

∑
Y

P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
. (3.5)

Mutual information, as the name suggests, measures the mutual dependence

between two random variables. It has been used as a criterion for feature

selection and for determining the similarity between two different clusterings
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of a dataset, in addition to many other applications in signal processing and

machine learning. To characterize the fundamental tradeoff between privacy

and information preservation, we solve the following constrained maximiza-

tion problem

maximize
Q

I(X;Y )

subject to Q ∈ Dε
, (3.6)

where Dε is the set of all ε-locally differentially private mechanisms satisfying

(3.1).

Motivated by such applications in statistical analysis, our goal is to pro-

vide a general framework for finding optimal privatization mechanisms that

maximize information theoretic utilities under local differential privacy. We

demonstrate the power of our techniques in a very general setting that in-

cludes both hypothesis testing and information preservation.

3.1.3 Our contributions

We study the fundamental tradeoff between local differential privacy and a

rich class of convex utility functions. This class of utilities includes several in-

formation theoretic quantities such as mutual information and f -divergences.

The privacy-utility tradeoff is posed as a constrained maximization problem:

maximize utility subject to local differential privacy constraints. This max-

imization problem is (a) nonlinear: the utility functions we consider are

convex in Q; (b) non-standard: we are maximizing instead of minimizing

a convex function; and (c) infinite dimensional: the space of all differen-

tially private mechanisms is uncountable. We show, in Theorem 3.2.2, that

for all utility functions considered and any privacy level ε, a finite family

of extremal mechanisms (a subset of the corner points of the space of pri-

vatization mechanisms), which we call staircase mechanisms, contains the

optimal privatization mechanism. We further prove, in Theorem 3.2.4, that

solving the original problem is equivalent to solving a linear program, the

outcome of which is the optimal staircase mechanism. However, solving this

linear program can be computationally expensive since it has 2|X | variables.

To account for this, we show that two simple staircase mechanisms (the bi-

nary and randomized response mechanisms) are optimal in the high and low

privacy regimes, respectively, and well approximate the intermediate regime.
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This contributes an important progress in the differential privacy area, where

the privatization mechanisms have been few and almost no exact optimal-

ity results are known. As an application, we show that the effective sample

size reduces from n to ε2n under local differential privacy in the context of

hypothesis testing.

We also study the fundamental tradeoff between utility and approximate

differential privacy, a generalized notion of privacy that was first introduced

in [49]. The techniques we develop for differential privacy do not generalize to

approximate differential privacy. To account for this, we use the operational

interpretation of approximate differential privacy (developed in [50]) to prove

that a simple mechanism maximizes utility for all levels of privacy when the

data is binary.

3.1.4 Related work

Our work is closely related to the recent work of [47] where an upper bound

on Dkl(M0||M1) was derived under the same local differential privacy set-

ting. Precisely, Duchi et. al. proved that the KL-divergence maximization

problem in (3.4) is at most 4(eε − 1)2‖P1 − P2‖2
TV . This bound was further

used to provide a minimax bound on statistical estimation using information

theoretic converse techniques such as Fano’s and Le Cam’s inequalities. Such

tradeoffs also provide tools for comparing various notions of privacy [51].

In a similar spirit, we are also interested in maximizing information theo-

retic quantities of the marginals under local differential privacy. We gener-

alize the results of [47], and provide stronger results in the sense that we (a)

consider a broader class of information theoretic utilities; (b) provide explicit

constructions of the optimal mechanisms; and (c) recover the existing result

of [47, Theorem 1] (with a stronger condition on ε).

Our work provides a formal connection to information-theoretical notion

of privacy, where privacy loss is defined as information leakage. Information

leakage has been widely studied as a practical notion of privacy [52, 53]. Such

a connection to differential privacy has been studied only indirectly through

comparisons to how much distortion is incurred under the two notions of

privacy [54]. Given a privatization mechanism, mutual information privacy

is measured by the mutual information between the data and the released
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output, i.e. I(X;Y ). We show that under ε-locally differentially, mutual

information is bounded by I(X;Y ) = 0.5ε2 maxA⊆X P (A)P (Ac) + O(ε3).

Moreover, we provide an explicit privatization mechanism that achieves this

bound.

While there is a vast literature on differential privacy, exact optimality

results are only known for a few cases. The typical recipe is to propose a

differentially private mechanism inspired by the work of [44, 45, 55] and [56],

and then establish its near-optimality by comparing the achievable utility to a

converse, for example in principal component analysis [57, 58, 59, 60], linear

queries [61, 62], logistic regression [63] and histogram release [64]. In this

work, we take a different route and solve the utility maximization problem

exactly.

Optimal differentially private mechanisms are known only in a few cases.

[65] showed that the geometric noise adding mechanism is optimal (under a

Bayesian setting) for monotone utility functions under count queries (sen-

sitivity one). This was generalized by Geng et. al. (for a worst-case in-

put setting) who proposed a family of mechanisms and proved its optimal-

ity for monotone utility functions under queries with arbitrary sensitivity

[66, 67, 68]. The family of optimal mechanisms was called staircase mecha-

nisms because for any y and any neighboring x and x′, the ratio of Q(y|x)

to Q(y|x′) takes one of three possible values eε, e−ε, or 1. Since the optimal

mechanisms we develop also have an identical property, we retain the same

nomenclature.

3.1.5 Organization

The remainder of this chapter is organized as follows. In Section 3.2, we in-

troduce the family of staircase mechanisms, prove its optimality for a broad

class of convex utility functions, and study its combinatorial structure. In

Section 3.3, we study the problem of private hypothesis testing and prove

that two staircase mechanisms, the binary and randomized response mech-

anisms, are optimal for KL-divergence in the high and low privacy regimes,

respectively, and (nearly) optimal the intermediate regime. We show, in Sec-

tion 3.4, similar results for mutual information. In Section 3.5, we study

approximate local differential privacy, a more general notion of local pri-

42



Draft of April 12, 2015 at 01 : 45

vacy. Finally, we conclude this chapter with a few interesting and nontrivial

extensions in Section 3.6.

3.2 Main Results

In this section, we provide a formal definition for staircase mechanisms and

show that they are the optimal solutions to optimization problems of the

form (3.8). Using the structure of staircase mechanisms, we propose a com-

binatorial representation of staircase mechanisms. This allows us to reduce

the infinite dimensional nonlinear program of (3.8) to a linear program with

2|X | variables. Potentially, for any instance of the problem, one can solve this

linear program to obtain the optimal privatization mechanism, albeit with

significant computational challenges since the number of variables scales ex-

ponentially in the alphabet size. To address this issue, we prove, in Sections

3.3 and 3.4, that two simple staircase mechanisms, which we call the binary

mechanism and the randomized response mechanism, are optimal in the high

and low privacy regimes, respectively, and well approximate the intermediate

regime.

3.2.1 Optimality of staircase mechanisms

For an input alphabet X with |X | = k, we represent the set of ε-locally

differentially private mechanisms that lead to output alphabets Y with |Y| =
` by

Dε,` = Qk×` ∩
{
Q : ∀ x, x′ ∈ X , S ⊆ Y ,

∣∣∣ ln
Q (S|x)

Q (S|x′)

∣∣∣ ≤ ε

}
,

where Qk×` denotes the set of all k× ` dimensional conditional distributions.

The set of all ε-locally differentially private mechanisms is given by

Dε = ∪`∈NDε,`. (3.7)

The set of all conditional distributions acting on X is given by Q = ∪`∈NQk,`.
We consider two types of utility functions, one for the hypothesis testing

setup and another for the mutual information setup. In the hypothesis testing
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setup, the utility is a function of the privatization mechanism and two priors

defined on the input alphabet. Namely, U (P0, P1, Q) : Sk × Sk × Q → R+,

where P0 and P1 are positive priors defined on X and Sk is the (k − 1)-

dimensional probability simplex. Pν is said to be positive if Pν (x) > 0 for

all x ∈ X . In the information preservation setup, the utility is a function

of the privatization mechanism and a prior defined on the input alphabet.

Namely, U (P,Q) : Sk ×Q → R+, where P is a positive prior defined on X .

For notational convenience, we will use U (Q) to refer to both U (P,Q) and

U (P0, P1, Q).

Definition 3.2.1 (Sublinear Functions) A function µ (z) : Rk → R is

said to be sublinear if the following two conditions are met

1. µ (γz) = γµ (z) for all γ ∈ R+.

2. µ (z1 + z2) ≤ µ (z1) + µ (z2) for all z1, z2 ∈ R.

Let Qy be the column of Q corresponding to Q(y|·) and µ be any sub-

linear function. We are interested in utilities that can be decomposed as a

summation of sublinear functions. We study the fundamental tradeoff be-

tween privacy and utility by solving the following constrained maximization

problem

maximize
Q

U (Q) =
∑
y∈Y

µ(Qy)

subject to Q ∈ Dε
. (3.8)

This includes maximization over information theoretic quantities of interest

in statistical estimation and hypothesis testing such as mutual information,

total variation, KL-divergence, and χ2-divergence [48]. Since sub-linearity

implies convexity in this case, this is in general a complicated nonlinear pro-

gram: we are maximizing (instead of minimizing) a convex function in Q;

further, the dimension of Q might be unbounded: the optimal privatization

mechanism Q∗ might produce an infinite output alphabet Y . The follow-

ing theorem proves that one never needs an output alphabet larger than

the input alphabet in order to achieve the maximum utility, and provides a

combinatorial representation of the optimal solution.

Theorem 3.2.2 For any sublinear function µ and any ε ≥ 0, there exists

an optimal mechanism Q∗ maximizing the utility in (3.8) over all ε-locally

differentially private mechanisms, such that
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(a) the output alphabet size is at most the input alphabet size, i.e. |Y| ≤
|X |; and

(b) for all y ∈ Y, and x, x′ ∈ X∣∣∣ ln Q∗(y|x)

Q∗(y|x′)

∣∣∣ ∈ {0, ε} . (3.9)

The first claim of bounded alphabet size is more generally true for any general

utility U (Q) that is convex in Q (not necessarily decomposing into a sum of

sublinear functions as in (3.8)). The second claim establishes that there is

an optimal mechanism with an extremal structure; the absolute value of the

log-likelihood ratios can only take one of the two extremal values: zero or eε

(see Figure 3.2 for example). We refer to such a mechanism as a staircase

mechanism, and define the family of staircase mechanisms formally as

Sε ≡ {Q | satisfying (3.9)} .

For all choices of U (Q) =
∑
Y µ(Qy) and any ε ≥ 0, Theorem 3.2.2 implies

that the family of staircase mechanisms includes the optimal solutions to

maximization problems of the form (3.8). Notice that staircase mechanisms

are ε-locally differentially private, since any Q satisfying (3.9) implies that

Q(y|x)/Q(y|x′) ≤ eε.

y = 1

2

x = 1 2 3 4 5

eε

1+eε

1
1+eε

QT = 1
1+eε

[
eε eε 1 eε 1
1 1 eε 1 eε

]

y = 1

2

3

4

x = 1 2 3 4

eε

3+eε

1
3+eε

QT = 1
3+eε


eε 1 1 1
1 eε 1 1
1 1 eε 1
1 1 1 eε



Figure 3.2: Examples of staircase mechanisms: the binary (left) and the
randomized response (right) mechanisms.
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For global differential privacy, we can generalize the definition of staircase

mechanisms to hold for all neighboring database queries x, x′ (or equiva-

lently within some sensitivity), and recover all known existing optimal mech-

anisms. Precisely, the geometric mechanism shown to be optimal in [65],

and the mechanisms shown to be optimal in [66, 67] (also called staircase

mechanisms) are special cases of the staircase mechanisms defined above.

We believe that the characterization of these extremal mechanisms and the

analysis techniques developed in this chapter can be of independent interest

to researchers interested in optimal mechanisms for global privacy and more

general utilities.

3.2.2 Combinatorial representation of staircase mechanisms

Now that we know staircase mechanisms are optimal, we can try to com-

binatorially search for the best staircase mechanism for an instance of the

function µ and a fixed ε. To this end, we give a simple representation of

all staircase mechanisms, exploiting the fact that they are scaled copies of a

finite number of patterns.

Let Q ∈ R|X |×|Y| be a staircase mechanism, and k = |X | denote the

input alphabet size. Then, from the definition of staircase mechanisms,

Q(y|x)/Q(y|x′) ∈ {e−ε, 1, eε} and each column Q(y|·) must be proportional

to one of the canonical staircase patterns we define next.

Definition 3.2.3 (Staircase Pattern Matrix) Let bj be the k-dimensional

binary vector corresponding to the binary representation of j for j ≤ 2k − 1.

A matrix S(k) ∈ {1, eε}k×2k is called a staircase pattern matrix if the j-th

column of S(k) is S
(k)
j = (eε − 1) bj−1 + 1, for j ∈ {1, . . . , 2k}. Each column

of S(k) is a staircase pattern.

When k = 3, there are 2k = 8 staircase patterns and the staircase pattern

matrix is given by

S(3) =

1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε

 .

For all values of k, there are exactly 2k such patterns, and any column Q(y|·)
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of Q, a staircase mechanism, is a scaled version of one of the columns of S(k).

Using this pattern matrix, we will show that we can represent (an equivalence

class of) any staircase mechanism Q as

Q = S(k)Θ , (3.10)

where Θ = diag(θ) is a 2k × 2k diagonal matrix and θ is a 2k-dimensional

vector representing the scaling of the columns of S(k). We can now formulate

the problem of maximizing the utility as a linear program and prove their

equivalence.

Theorem 3.2.4 For any sublinear function µ and any ε ≥ 0, the nonlinear

program of (3.8) and the following linear program have the same optimal

value

maximize
θ∈R2k

2k∑
j=1

µ(S
(k)
j )θj = µT θ (3.11)

subject to S(k)θ = 1

θ ≥ 0 ,

and the optimal solutions are related by (3.10).

The infinite dimensional nonlinear program of (3.8) is now reduced to a finite

dimensional linear program. The constraints in (3.11) ensure that we get a

valid probability matrix Q = S(k)Θ with rows that sum to one. One could

potentially solve this LP with 2k variables but its computational complexity

scales exponentially in the alphabet size k = |X |. For practical values of k

this might not always be possible. However, in the following sections, we

prove that in the high privacy regime (ε ≤ ε∗ for some positive ε∗), there

is a single optimal mechanism, which we call the binary mechanism, which

dominates over all other mechanisms in a very strong sense for all utility

functions of practical interest.

In order to understand the above theorem, observe that both the objective

function and differential privacy constraints are invariant under permutation

(or relabelling) of the columns of a privatization mechanism Q. Similarly,

both the objective function and differential privacy constraints are invariant

under merging/splitting of outputs with the same pattern. To be specific,
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consider a privatization mechanism Q and suppose there exist two outputs y

and y′ that have the same pattern, i.e. Q(y|·) = C Q(y′|·) for some positive

constant C. Then, we can consider a new mechanism Q′ by merging the two

columns corresponding to y and y′. Let y′′ denote this new output. It follows

that Q′ satisfies the differential privacy constraints and the resulting utility

is also preserved. Precisely, using the fact that Q(y|·) = C Q(y′|·), it follows

that

µ(Qy) + µ(Qy′) = µ((1 + C)Qy) = µ(Q′y′′) ,

by the homogeneity of µ. We can naturally define equivalence classes for

staircase mechanisms that are equivalent up to a permutation of columns

and merging/splitting of columns with the same pattern:

[Q] = {Q′ ∈ Sε |

∃ a sequence of permutations and merge/split of columns from Q′ to Q} .

To represent an equivalence class, we use a mechanism in [Q] that is or-

dered and merged to match the patterns of the pattern matrix S(k). For any

staircase mechanism Q, there exists a possibly different staircase mechanism

Q′ ∈ [Q] such that Q′ = S(k)Θ for some diagonal matrix Θ with nonnegative

entries. Therefore, to solve optimization problems of the form (3.8), we can

restrict our attention to such representatives of equivalent classes. Further,

for privatization mechanisms of the form Q = S(k)Θ, the objective function

takes the form
∑

j µ(S
(k)
j )θj, a simple linear function of Θ.

3.3 Hypothesis Testing

In this section, we study the fundamental tradeoff between local privacy and

hypothesis testing. In this setting, there are n individuals each with data

Xi from a distribution Pν for a fixed ν ∈ {0, 1}. Let Q be a non-interactive

privatization mechanism guaranteeing ε-local differential privacy. The out-

put of the privatization mechanism Yi is distributed according to the induced

marginal Mν defined in (3.2). With a slight abuse of notation, we will use

Mν and Pν to represent both probability distributions and probability mass
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functions. The power to discriminate data from P0 to the data from P1

depends on the ‘distance’ between the marginals M0 and M1. To measure

the ability of such statistical discrimination, our choice of utility of a priva-

tization mechanism Q is an information theoretic quantity called Csiszár’s

f -divergence defined as

Df (M0||M1) =
∑
Y

M1(y)f
(M0(y)

M1(y)

)
= U (P0, P1, Q) = U (Q) , (3.12)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL)

divergence Dkl(M0||M1) is a special case of f -divergence with f(x) = x log x,

and total variation ‖M0 −M1‖TV is a special case with f(x) = (1/2)|x− 1|.
Note that the f -divergence is not a distance since it might not be symmet-

ric or satisfy triangular inequality. We are interested in characterizing the

optimal solution to

maximize
Q∈Dε

Df (M0||M1) , (3.13)

where Dε is the set of all ε-locally differentially private mechanisms defined

in (3.7).

A motivating example for this choice of utility is the Neyman-Pearson

hypothesis testing framework [69]. Given the privatized views {Yi}ni=1, the

data analyst wants to test whether they are generated from M0 or M1. Let

the null hypothesis be H0 : Yi’s are generated from M0, and the alternative

hypothesis H1 : Yi’s are generated from M1. For a choice of rejection region

R ⊆ Yn, the probability of false alarm (type I error) is α = Mn
0 (R) and

the probability of miss detection (type II error) is β = Mn
1 (Yn \ R). Let

βδ = minR⊆Yn,α<α∗ β denote the minimum type II error achievable while

keeping type I error rate at most α∗. According to Chernoff-Stein lemma

[69], we know that

lim
n→∞

1

n
log βα

∗
= −Dkl(M0||M1) .

Suppose the analyst knows P0, P1, and Q. Then in order to achieve optimal

asymptotic error rate, one would want to maximize the KL divergence of

the induced marginals, over all ε-locally differentially private mechanisms

Q. The results we present in this section (Theorems 3.3.1 and 3.3.4 to be
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precise) provide an explicit construction of optimal mechanisms in high and

low privacy regimes. Using those optimality results, we prove a fundamental

limit on the achievable error rates under differential privacy. Precisely, with

data collected from an ε-locally differentially privatization mechanism, one

cannot achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −(1 + δ)(eε − 1)2

(eε + 1)
‖P0 − P1‖2

TV

≥ −(1 + δ)(eε − 1)2

2(eε + 1)
Dkl(P0||P1) ,

whenever ε ≤ ε∗, where ε∗ is dictated by Theorem 3.3.1 and δ > 0 is some

positive constant. In the equation above, the second inequality follows from

Pinsker’s inequality. Since (eε− 1)2 = O(ε2) for small ε, the effective sample

size is now reduced from n to ε2n. This is the price of privacy. In the low

privacy regime where ε ≥ ε∗, for ε∗ dictated by Theorem 3.3.4, one cannot

achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −Dkl(P0||P1) + (1− δ)G(P0, P1)e−ε .

3.3.1 Optimal staircase mechanisms

From the definition of Df (M0||M1), we have that

Df (M0||M1) =
∑
Y

(P T
1 Qy)f(P T

0 Qy/P
T
1 Qy) =

∑
Y

µ (Qy) ,

where P T
ν Qy =

∑
X Pν (x)Q (y|x) and µ (Qy) = (P T

1 Qy)f(P T
0 Qy/P

T
1 Qy). For

any γ > 0,

µ (γQy) =
(
P T

1 (γQy)
)
f
(
P T

0 (γQy) /P
T
1 (γQy)

)
= γ

(
P T

1 Qy

)
f
(
P T

0 Qy/P
T
1 Qy

)
= γµ (Qy) .

Moreover, since the function φ(z, t) = tf
(
z
t

)
is convex in (z, t) for 0 ≤

z, t ≤ 1, then µ is convex in Qy. Convexity and homogeniety together imply

sublinearlity. Therefore, Theorems 3.2.2 and 3.2.4 apply to Df (M0||M1) and

we have that staircases are optimal.
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For a given P0 and P1, the binary mechanism is defined as a staircase

mechanism with only two outputs y ∈ {0, 1} satisfying (see Figure 3.2)

Q(0|x) =

{
eε

1+eε
if P0(x) ≥ P1(x) ,

1
1+eε

if P0(x) < P1(x) .
(3.14)

Q(1|x) =

{
eε

1+eε
if P0(x) < P1(x) ,

1
1+eε

if P0(x) ≥ P1(x) .
(3.15)

Although this mechanism is extremely simple, perhaps surprisingly, we will

establish that this is the optimal mechanism when high level of privacy is

required. Intuitively, the output is very noisy in the high privacy regime, and

we are better off sending just one bit of information that tells you whether

your data is more likely to have come from P0 or P1.

Theorem 3.3.1 For any pair of distributions P0 and P1, there exists a pos-

itive ε∗ that depends on P0 and P1 such that for any f -divergences and any

positive ε ≤ ε∗, the binary mechanism maximizes the f -divergence between

the induced marginals over all ε-locally differentially private mechanisms.

This implies that in the high privacy regime, which is a typical setting stud-

ied in much of differential privacy literature, the binary mechanism is a uni-

versally optimal solution for all f -divergences in (3.13). In particular this

threshold ε∗ is universal, in that it does not depend on the particular choice

of which f -divergence we are maximizing. This is established by proving

a very strong statistical dominance using Blackwell’s celebrated result on

comparisons of statistical experiments [70]. In a nutshell, we prove that any

ε-differentially private mechanism for sufficiently small ε, and can be simu-

lated from the output of the binary mechanism. Hence, the binary mech-

anism dominates over all other mechanisms and at the same time achieves

the maximum divergence. A similar idea has been used previously in [50] to

exactly characterize how much privacy degrades under composition.

The optimality of binary mechanisms is not just for high privacy regimes.

The next theorem shows that it is the optimal solution of (3.13) for all ε, when

the objective function is the total variation Df (M0||M1) = ‖M0 −M1‖TV.

Theorem 3.3.2 For any pair of distributions P0 and P1, and any ε ≥ 0, the

binary mechanism maximizes total variation of the induced marginals M0 and

M1 among all ε-locally differentially private mechanisms.
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When maximizing the KL divergence between the induced marginals, we

show that the binary mechanism still achieves good performance for ε ≤ C

where C now does not depend on P0 and P1. For a special case of KL

divergence, let OPT denote the maximum value of (3.13) and BIN denote

the KL divergence when the binary mechanism is used. The next theorem

shows that

BIN ≥ 1

2(eε + 1)2
OPT .

Theorem 3.3.3 For any ε and for any pair of distributions P0 and P1, the

binary mechanism is an 1/(2(eε + 1)2) approximation of the maximum KL

divergence of the induced marginals M0 and M1 among all ε-locally differen-

tially private mechanisms.

Note that 2(eε + 1)2 ≤ 32 for ε ≤ 1, and for any ε ≤ 1 which is the typical

regime of interest in differential privacy, we can always use the simple binary

mechanism and the resulting divergence is at most a constant factor away

from the optimal.

The randomized response mechanism is defined as a staircase mechanism

with the same set of outputs as the input, Y = X , satisfying (see Figure 3.2)

Q(y|x) =

{
eε

|X |−1+eε
if y = x ,

1
|X |−1+eε

if y 6= x .
(3.16)

It is a randomization over the same alphabet, and we are more likely to

give an honest response. We view it as a multiple choice generalization of

the randomized response method proposed by [43], assuming equal level of

sensitivity for all choices. We establish that this is the optimal mechanism

when low level of privacy is required. Intuitively, the noise is small in the

low privacy regime, and we want to send as much information about our

current data as allowed, but no more. For a special case of maximizing KL

divergence, we show that the randomized response mechanism is the optimal

solution of (3.13) in the low privacy regime (ε ≥ ε∗).

Theorem 3.3.4 There exists a positive ε∗ that depends on P0 and P1 such

that for any P0 and P1, and all ε ≥ ε∗, the randomized response mechanism

maximizes the KL divergence between the induced marginals over all ε-locally

differentially private mechanisms.
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3.3.2 Numerical Experiments

A typical approach for achieving ε-local differential privacy is to add geo-

metric noise with appropriately chosen variance. For an input with alphabet

size |X | = k, this amounts to relabelling the input as integers {1, . . . , k} and

adding geometric noise, i.e., Q(y|x) = ((1−ε1/(k−1))/(1+ε1/(k−1)))ε|y−x|/(k−1).

The output is then truncated at 1 and k to preserve the support.

For 100 instances of randomly chosen P0 and P1 over input alphabet of

size |X | = 6, we compare the average performance of the binary, randomized

response, and the geometric mechanisms to the optimal staircase mechanism.

The optimal staircase mechanism is computed by solving the linear program

in Equation (3.11) for each fixed pair (P0, P1) and ε. We plot (in Figure

3.3, left) the average performance measured by the normalized divergence

Dkl(M0||M1)/Dkl(P0||P1) for all 4 mechanisms. The average is taken over

the 100 instances of P0 and P1. In the low privacy (large ε) regime, the

randomized response achieves optimal performance as predicted, which con-

verges to one. In the high privacy regime (small ε), the binary mechanism

achieves optimal performance as predicted. In all regimes, both mechanisms

significantly improve over the geometric mechanism.
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Figure 3.3: The binary and randomized response mechanisms are optimal
in the high-privacy (small ε) and low-privacy (large ε) regimes, respectively,
and improve over the geometric mechanism significantly (left). When the
regimes are mismatched, Dkl(M0||M1) under these mechanisms can be as
bad as 10% of the optimal one (right).

To illustrate how much worse the binary and the randomized response

mechanisms can be (relative to the optimal extremal mechanism), we plot
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(in Figure 3.3, right) the divergence under each mechanism normalized by the

divergence under the optimal mechanism. This is done for all 100 instances

of P0 and P1. In all instances, the binary mechanism is optimal for small

ε and the randomized response mechanism is optimal for large ε. However,

Dkl(M0||M1) under the randomized response mechanism can be as bad as

10% of the optimal one (for small ε). Similarly, Dkl(M0||M1)) under the

binary mechanism can be as bad as 25% of the optimal one (for large ε). To

overcome this issue, we propose the following simple strategy: use the better

among these two mechanisms. The performance of this strategy is illustrated

in Figure 3.4. For various input alphabet size |X | ∈ {3, 4, 5, 6}, we plot the

performance of this mixed strategy for each value of ε and each of the 100

randomly generated instances of P0 and P1. This mixed strategy achieves

60% of the optimal divergence for all instances. Further, it is not sensitive

to the size of the alphabet k. This strategy provides a good mechanism that

can be readily used in practice for any value of ε.

3.3.3 Lower bounds

In this section, we provide converse results on the fundamental limit of dif-

ferentially private mechanisms; these results follow from our main theorems

and are of independent interest in other applications where lower bounds in

statistical analysis are studied [71, 61, 72, 73]. For example, a bound similar

to the one we present next was used to provide converse results on the sample

complexity for statistical estimation with differentially private data in [47].

Corollary 3.3.5 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1 and any positive δ > 0, there exists a positive ε∗ that depends on P0

and P1 and δ such that for any ε ≤ ε∗ the induced marginals M0 and M1

satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 2(1 + δ)(eε − 1)2

(eε + 1)

∥∥P0 − P1

∥∥2

TV
.
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Figure 3.4: For varying input alphabet size |X | ∈ {3, 4, 5, 6}, at least 60%
of the optimal divergence can be achieved by taking the better one between
the binary and the randomized response mechanisms.

This follows from Theorem 3.3.1 and observing that the binary mechanism

achieves

Dkl

(
M0||M1

)
=

(eε − 1)P0(T ) + 1

eε + 1
log
(1 + (eε − 1)P0(T )

1 + (eε − 1)P1(T )

)
+

(eε − 1)P0(T c) + 1

eε + 1
log
(1 + (eε − 1)P0(T c)

1 + (eε − 1)P1(T c)

)
=

(eε − 1)2

eε + 1
(P0(T )− P1(T )) +O(ε3)

=
(eε − 1)2

eε + 1

∥∥P0 − P1

∥∥2

TV
+O(ε3) , (3.17)
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where T ⊆ X is the set of x such that P0(x) ≥ P1(x). Compared to [47,

Theorem 1], we recover their bound of 4(eε − 1)2‖P0 − P1‖2
TV with a smaller

constant. We want to note that Duchi et al.’s bound holds for all values

of ε and uses a different technique of bounding the KL divergence directly,

however no achievable mechanism has been provided. We instead provide an

explicit mechanism, that is optimal in high privacy regime.

Similarly, in the low privacy regime, we can show the following converse

result.

Corollary 3.3.6 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1 and any positive δ > 0, there exists a positive ε∗ that depends on P0

and P1 and δ such that for any ε ≥ ε∗ the induced marginals M0 and M1

satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ Dkl(P0||P1)− (1− δ)G(P0, P1)e−ε ,

where G(P0, P1) =
∑
X (1− P0(x)) log(P1(x)/P0(x)).

This follows directly from Theorem 3.3.4 and observing that the randomized

response mechanism achieves

Dkl(M0||M1) = Dkl(P0||P1)−G(P0, P1)e−ε +O(e−2ε) . (3.18)

Similarly, for total variation, we can get the following converse result.

This follows from Theorem 3.3.2 and explicitly computing the total variation

achieved by the binary mechanism.

Corollary 3.3.7 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1, the induced marginals M0 and M1 satisfy the bound
∥∥M0−M1

∥∥
TV
≤

((eε − 1)/(eε + 1))
∥∥P0−P1

∥∥
TV

, and equality is achieved by the binary mech-

anism.

Figure 3.5 illustrates the gap between the divergence achieved by the geo-

metric mechanism described in the previous section and the optimal mecha-

nisms (the binary mechanism for the high privacy regime and the randomized

response mechanism for the low privacy regime). For each instance of the

100 randomly generated P0 and P1 over input of size k = 6, we plot the
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resulting divergence Dkl(M0||M1) as a function of ‖P0 − P1‖TV for ε = 0.1,

and as a function of Dkl(P0||P1) for ε = 10. The binary and the randomized

response mechanisms exhibit the scaling predicted by Equation (3.17) and

(3.18), respectively.
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Figure 3.5: For small ε = 0.1 (left) the binary mechanism achieves the
optimal KL divergence, which scales as Equation (3.17). For large ε = 10
(right) the randomized response achieves the optimal KL divergence, which
scales as Equation (3.18). Both mechanisms improve significantly over the
geometric mechanism.

3.4 Information Preservation

In this section, we study the fundamental tradeoff between local privacy and

mutual information. Consider a random variable X distributed according to

P . The information content in X is captured by entropy

H (X) = −
∑
X

P (x) logP (x) .

We are interested in releasing a differentially private version of X represented

by Y . The random variable Y should preserve the information content of X

as much as possible while meeting the local differential privacy constraints.

Similar to the hypothesis testing setting, we will show that a variant of the

binary mechanism is optimal in the high privacy regime and the randomized

response mechanism is optimal in the low privacy regime.
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Let Q be a non-interactive privatization mechanism guaranteeing ε-local

differential privacy. The output of the privatization mechanism Y is dis-

tributed according to the induced marginal M given by

M(S) =
∑
x∈X

Q(S|x)P (x) ,

for S ⊆ Y . With a slight abuse of notation, we will use M and P to represent

both probability distributions and probability mass functions. The informa-

tion content in Y about X is captured by the well celebrated information

theoretic quantity called mutual information. The mutual information be-

tween X and Y is given by

I (X;Y ) =
∑
X

∑
Y

P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
= U (P,Q) = U (Q) .

(3.19)

Notice that I (X;Y ) ≤ H (X) and I (X;Y ) is convex in Q [69]. To preserve

the information context in X, we wish to choose a privatization mechanism

Q such that the mutual information between X and Y is maximized sub-

ject to differential privacy constraints. In other words, we are interested in

characterizing the optimal solution to

maximize
Q

I (X;Y )

subject to Q ∈ Dε
, (3.20)

where Dε is the set of all ε-locally differentially private mechanisms defined in

(3.7). The above mutual information maximization problem can be thought

of as a conditional entropy minimization problem since I (X;Y ) = H (X)−
H (X|Y ).

3.4.1 Optimal staircase mechanisms

From the definition of I (X;Y ), we have that

I (X;Y ) =
∑
Y

∑
X

P (x)Q (y|x) log

(
Q (y|x)

P TQy

)
=
∑
Y

µ (Qy) ,
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where P TQy =
∑
X P (x)Q (y|x) and

µ (Qy) =
∑
X

P (x)Q (y|x) log
(
Q (y|x) /P TQy

)
.

Notice that µ (γQy) = γµ (Qy), and by the log-sum inequality, µ is convex.

Convexity and homogeneity together imply sublinearity. Therefore, Theo-

rems 3.2.2 and 3.2.4 apply to I (X;Y ) and we have that staircase mechanisms

are optimal.

For a given P , the binary mechanism for mutual information is defined as

a staircase mechanism with only two outputs y ∈ {0, 1} (see Figure 3.2). Let

T ⊆ X be the set that partitions X into two partitions, T and T c, such that

|P (T )− P (T c)| is minimized. Precisely,

T ∈ arg min
A⊆X

∣∣∣P (A)− 1

2

∣∣∣ . (3.21)

Observe that there are always multiple choices for T . Indeed, for any mini-

mizing set T , T c is also a minimizing set since |P (T )− 1/2| = |P (T c)− 1/2|.
When there is only one such pair, the binary mechanism is uniquely defined

as

Q(0|x) =

{
eε

1+eε
if x ∈ T ,

1
1+eε

if x /∈ T .
Q(1|x) =

{
eε

1+eε
if x /∈ T ,

1
1+eε

if x ∈ T .
(3.22)

When there are multiple pairs, any pair (T, T c) can be chosen to define the

binary mechanism. All resulting binary mechanisms are equivalent from a

utility maximization perspective.

In what follows, we will establish that this simple mechanism is the optimal

mechanism in the high privacy regime. Intuitively, in the high privacy regime,

we cannot release more than one bit of information, and hence, the input al-

phabet is reduced to a binary output alphabet. In this case we have to maxi-

mize the information contained in the released bit by maximizing its entropy:

T ∈ arg max
A⊆X

(
− P (A) logP (A)− P (Ac) logP (Ac)

)
= arg max

A⊆X
|P (A)− 1/2|.

Theorem 3.4.1 For any distribution P , there exists a positive ε∗ that de-

pends on P such that for any positive ε ≤ ε∗, the binary mechanism maxi-

mizes the mutual information between the input and the output of a privati-

zation mechanism over all ε-locally differentially private mechanisms.
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This implies that in the high privacy regime, the binary mechanism is the

optimal solution for (3.20).

Next, we show that the binary mechanism achieves near-optimal perfor-

mance for all (X , P ) and ε ≤ 1 even when ε∗ < 1. Let OPT denote the

maximum value of (3.20) and BIN denote the mutual information achieved

by the binary mechanism given in (3.22). The next theorem shows that

BIN ≥ 1

1 + eε
OPT .

Theorem 3.4.2 For any ε ≤ 1 and any distribution P , the binary mech-

anism is an (1 + eε)-approximation of the maximum mutual information

between the input and the output of a privatization mechanism among all

ε-locally differentially private mechanisms.

Note that 1 + eε ≤ 4 for ε ≤ 1 which is a commonly studied regime in

differential privacy applications. Therefore, we can always use the simple

binary mechanism and the resulting mutual information is at most a constant

factor away from the optimal.

In the low privacy regime (ε ≥ ε∗), the randomized response mechanism

defined in(3.16) is optimal.

Theorem 3.4.3 There exists a positive ε∗ that depends on P such that for

any distribution P and all ε ≥ ε∗, the randomized response mechanism max-

imizes the mutual information between the input and the output of as priva-

tization mechanism over all ε-locally differentially private mechanisms.

3.4.2 Numerical Experiments

For 100 instances of randomly chosen P defined over input alphabet of size

|X | = 6, we compare the average performance of the binary, randomized

response, and the geometric mechanisms to the optimal mechanism. We plot

(in Figure 3.6, left) the average performance measured by the normalized

mutual information I (X;Y )/H (X) for all 4 mechanisms. The average is

taken over the 100 instances of P . In the low privacy (large ε) regime,

the randomized response achieves optimal performance as predicted, which

converges to one. In the high privacy regime (small ε), the binary mechanism

achieves optimal performance as predicted. In all regimes, both mechanisms
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Figure 3.6: The binary and randomized response mechanisms are optimal
in the high-privacy (small ε) and low-privacy (large ε) regimes, respectively,
and improve over the geometric mechanism significantly (left). When the
regimes are mismatched, I (X;Y ) under these mechanisms can each be as
bad as 35% of the optimal one (right).

significantly improve over the geometric mechanism. To illustrate how much

worse the binary and randomized response mechanisms can be (relative to

the optimal staircase mechanism), we plot (in Figure 3.6, right) the mutual

information under each mechanism normalized by the mutual information

under the optimal staircase mechanism. This is done for all 100 instances

of P . In all instances, the binary mechanism is optimal for small ε and the

randomized response mechanism is optimal for large ε. However, I (X;Y )

under the randomized response mechanism can be as bad as 35% of the

optimal one (for small ε). Similarly, I (X;Y ) under the binary mechanism

can be as bad as 40% of the optimal one (for large ε).

For |X | ∈ {3, 4, 5, 6}, we plot (in Figure 3.7) the performance of better

between the binary and randomized response mechanisms normalized by the

optimal mechanism for all 100 randomly generated instances of P . This

mixed strategy achieves at least 75% of the optimal mutual infirmation for

all instances of P . Moreover, it is not sensitive to the size of the alphabet

|X |.
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Figure 3.7: For varying input alphabet size |X | ∈ {3, 4, 5, 6}, at least 75%
of the maximum mutual information can be achieved by taking the better
one between the binary and the randomized response mechanisms.
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3.4.3 Lower bounds

In this section, we provide converse results on the fundamental limit of lo-

cally differentially private mechanisms when utility is measured via mutual

information.

Corollary 3.4.4 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any distribution P and any

positive δ > 0, there exists a positive ε∗ that depends on P and δ such that

for any ε ≤ ε∗ the following bound holds

I (X;Y ) ≤ (1 + δ)
1

2
P (T )P (T c) ε2,

where T is defined in (3.21).

This follows from Theorem 3.4.1 (optimality of the binary mechanism) and

observing that the binary mechanism achieves

I (X;Y ) =
1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
. (3.23)

Similarly, in the low privacy regime, we can show the following converse

result.

Corollary 3.4.5 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any distributions P and any

positive δ > 0, there exists a positive ε∗ that depends on P and δ such that

for any ε ≥ ε∗ the following bound holds

I (X;Y ) ≤ H (X)− (1− δ) (k − 1) εe−ε.

This follows directly from Theorem 3.4.3 (optimality of the randomized re-

sponse mechanism) and observing that the randomized response mechanism

achieves

I (X;Y ) = H (X)− (k − 1) εe−ε +O(e−2ε). (3.24)
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Figure 3.8 illustrates the gap between the mutual information achieved by

the geometric mechanism and the optimal mechanisms (the binary mecha-

nism for the high privacy regime and the randomized response mechanism

for the low privacy regime). For each instance of the 100 randomly generated

P over input of size k = 6, we plot the resulting mutual information I (X;Y )

as a function of P (T )P (T c) for ε = 0.1, and as a function of H (X) for

ε = 10. The binary and the randomized response mechanisms exhibit the

scaling predicted by Equations (3.23) and (3.24), respectively.
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Figure 3.8: For small ε = 0.1 (left) the binary mechanism achieves the
optimal mutual information, which scales as Equation (3.23). For large
ε = 10 (right) the randomized response mechanism achieves the optimal
mutual information, which scales as Equation (3.24). Both mechanisms
improve significantly over the geometric mechanism.

3.5 Generalizations to approximate differential privacy

In this section, we generalize the results of the previous sections in the fol-

lowing ways.

1. We consider the class of utility functions that obey the data processing

inequality. Consider the composition of two privatization mechanisms

QW = Q ◦W where the output of the first mechanism Q is applied

to another mechanism W . We say that a utility function U(·) obeys

the data processing inequality if the following inequality holds for all
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Q and W

U(QW ) ≤ U(Q) .

The following proposition, proved in [25], shows that the class of utili-

ties obeying the data processing inequality includes all the utility func-

tions we studied in Section 3.2.

Proposition 3.5.1 Any utility function that can be written in the form

of U (Q) =
∑
Y µ(Qy), where µ is any sublinear function, obeys the data

processing inequality.

2. We consider (ε, δ)-differential privacy which generalizes the notion of

ε-differential privacy. (ε, δ)-differential privacy is commonly referred to

as approximate differential privacy and it was first introduced in [49].

For the release of a random variable X ∈ X , we say that a mechanism

Q is (ε, δ)-locally differentially private if

Q (S|x) ≤ eεQ (S|x′) + δ, (3.25)

for all S ⊆ Y and all x, x′ ∈ X . Note that ε-local differential privacy is

a special case of (ε, δ)-local differential privacy where δ = 0.

3. We prove that the quaternary mechanism, defined in Equation (3.26),

is optimal for any ε and any δ. This is different from the treatment

conducted in the previous sections where we proved the optimality

of the binary (randomized response) mechanism for sufficiently small

(large) ε and δ = 0.

The treatment in this section, even though more general than the one in pre-

vious sections in the ways described above, holds only for binary alphabets

(i.e., |X | = 2). Finding optimal privatization mechanisms under (ε, δ)-local

differential privacy for larger input alphabets (i.e., |X | > 2) is an interest-

ing open question. Unlike ε-local differential privacy, the privacy constraints

under (ε, δ)-local differential privacy no longer decompose into separate con-

straints on each output y. This makes it difficult to generalize the techniques

developed in previous sections of this chapter. However, for the special case

of binary input alphabets, we can prove the optimality of one mechanism
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for all values of (ε, δ) and all utility functions that obey the data processing

inequality.

For a binary random variable X ∈ X = {0, 1}, the quaternary mechanism

maps X to a quaternary random variable Y ∈ Y = {0, 1, 2, 3} and is defined

as

QQT(0|x) =

{
δ if x = 0 ,

0 if x = 1 .
QQT(1|x) =

{
0 if x = 0 ,

δ if x = 1 .
(3.26)

QQT(2|x) =

{
(1− δ) 1

1+eε
if x = 0 ,

(1− δ) eε

1+eε
if x = 1 .

QQT(3|x) =

{
(1− δ) eε

1+eε
if x = 0 ,

(1− δ) 1
1+eε

if x = 1 .

In other words, the quaternary mechanism passes X unchanged with prob-

ability δ and applies the binary mechanism (defined in previous sections) with

probability 1 − δ. The main result of this section can be stated formally as

follows.

Theorem 3.5.1 If |X | = 2, then for any ε, any δ, and any U (Q) that

obeys the data processing inequality, the quaternary mechanism maximizes

U (Q) subject to Q ∈ D(ε,δ), the set of all (ε, δ)-locally differentially private

mechanism.

The proof of Theorem 3.5.1 depends on an operational definition of differ-

ential privacy which we describe next. Consider a privatization mechanism

Q that maps X ∈ {0, 1} stochastically to Y ∈ Y . Given Y , construct a

binary hypothesis test on whether X = 0 or X = 1. Any binary hypoth-

esis test is completely described by a, possibly randomized, decision rule

X̂ : Y → {0, 1}. The two types of error associated with X̂ are false alarm:

X̂ = 1 when X = 0, and miss detection: X̂ = 0 when X = 1. The probabil-

ity of false alarm is given by PFA = P(X̂ = 1|X = 0) while the probability of

miss detection is given by PMD = P(X̂ = 0|X = 1). For a fixed Q, the convex

hull of all pairs (PMD, PFA) for all decision rules X̂ defines a two-dimensional

error region where PMD is plotted against PFA. For example, the quaternary

mechanism given in Figure 3.9a has an error region RQQT
shown in Figure

3.9b.

It turns out that (ε, δ)-local differential privacy imposes the following con-

ditions on the error region of all (ε, δ)-locally differentially private mecha-
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Figure 3.9: The quaternary mechanism

nisms

PFA + eεPMD ≥ 1− δ , and eεPFA + PMD ≥ 1− δ ,

for any decision rule X̂. These two conditions define an error region Rε,δ

shown in Figure 3.9b. Interestingly, the next theorem shows that the converse

result is also true.

Theorem 3.5.2 A mechanism Q is (ε, δ)-locally differentially private if and

only if RQ ⊆ Rε,δ.

The proof of the above theorem can be found in [50]. Notice that it is no

coincidence that RQQT
= Rε,δ. This property will be essential to proving the

optimality of the quaternary mechanism.

Theorem 3.5.2 allows us to benefit from the data processing inequality

(DPI) and its converse, which follows from a celebrated result by [70]. These

inequalities, while simple by themselves, lead to surprisingly strong technical

results. Indeed, there is a long line of such a tradition in the information

theory literature (see Chapter 17 of [69]). Consider two privatization mech-

anisms, Q(1) and Q(2). Let Y and Z denote the output of the mechanisms

Q(1) and Q(2), respectively. We say that Q(1) dominates Q(2) if there exists

a coupling of Y and Z such that X–Y –Z forms a Markov chain. In other
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words, we say Q(1) dominates Q(2) if there exists a stochastic mapping Q

such that Q(2) = Q(1) ◦Q.

Theorem 3.5.3 A mechanism Q(1) dominates a mechanism Q(2) if and only

if RQ(2) ⊆ RQ(1).

The proof of the above theorem can be found in [70]. Observe that by

Theorems 3.5.3 and 3.5.2, and the fact that RQQT
= Rε,δ, the quaternary

mechanism dominates any other differentially private mechanism. In other

words, for any differentially private mechanism Q, there exists a stochastic

mapping W such that Q = W ◦ QQT. Therefore, for any (ε, δ) and any

utility function U(.) obeying the data processing inequality, we have that

U(Q) ≤ U(QQT). This finishes the proof of Theorem 3.5.1.

3.6 Discussion

In this chapter, we have considered a broad class of convex utility functions

and assumed a setting where individuals cannot collaborate (communicate

with each other) before releasing their data. It turns out that the techniques

developed in this work can be generalized to find optimal privatization mech-

anisms in a setting where different individuals can collaborate interactively

and each individual can be an analyst [74].

Binary hypothesis testing and information preservation are two canonical

problems with a wide range of applications. However, there are a number of

non-trivial and interesting extensions to our work.

Correlation among data. In some scenarios the Xi’s could be correlated

(e.g., when different individuals observe different functions of the same ran-

dom variable). In this case, the data analyst is interested in inferring whether

the data was generated from P n
0 or P n

1 , where P n
ν is one of two possible joint

priors on X1, ..., Xn. This is a challenging problem because knowing Xi

reveals information about Xj, j 6= i. Therefore, the utility maximization

problems for different individuals are coupled in this setting.

Robust and m-ary hypothesis testing. In some cases the data analyst

need not have access to P0 and P1, but rather two classes of prior distribution

Pθ0 and Pθ1 for θ0 ∈ Λ0 and θ1 ∈ Λ1. Such problems are studied under the
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rubric of universal hypothesis testing and robust hypothesis testing. One

possible direction is to select the privatization mechanism that maximizes

the worst case utility: Q∗ = arg maxQ∈Dε minθ0∈Λ0,θ1∈Λ1 Df (Mθ0||Mθ1), where

Mθν is the induced marginal under Pθν .

The more general problem of private m-ary hypothesis testing is also an

interesting but challenging one. In this setting, the Xi’s can follow one of m

distributions P0, P1, ..., Pm−1. Consequently, the Yi’s can follow one of m

distributions M0, M1, ..., Mm−1. The utility can be defined as the average

f -divergence between any two distributions: 1/(m(m−1))
∑

i 6=j Df (Mi||Mj),

or the worst case one: mini 6=j Df (Mi||Mj).

Non-exchangeable utility functions. The utility studied in this chapter

was measured by functions that are exchangeable, i.e. the utility did not

depend on the naming (labelling) of the private and privatized data (X and

Y ). This made sense for statistical learning applications that depend on

information theoretic quantities such as f -divergences and mutual informa-

tion. However, in some other applications, the utility might be defined over

X ∪ Y in a metric space, where there exists a natural measure of distance

(or distortion) between the data points. In this case, we can formulate the

problem as a distortion minimization one

minimizeQ∈Dε
∑
x,y

d(x, y)P (x)Q(y|x) ,

where d(x, y) is some distortion metric. [54] studied this problem, and showed

that the mechanism Q(y|x) ∝ eε(1−d(x,y))/(k − 1 + eε) achieves near optimal

performance when ε is large enough, which is the low privacy regime. Notice

that when Hamming distance is used, d(x, y) = I(x 6= y), this recovers

the randomized response mechanism exactly. This provides a starting point

for generalizing the search for optimal mechanisms under non-exchangeable

utility functions.
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