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Abstract—High speed multi-input multi-output (MIMO) com-
munication systems suffer from inter-channel and inter-symbol-
interference (ICI and ISI). The vector Viterbi algorithm (VVA)
is a maximum likelihood sequence detection (MLSD) algorithm
for MIMO frequency selective channels. MLSD algorithms are
desired because they minimize the probability of sequence detec-
tion error. However, they suffer from very high computational
complexity. In this work, we show how a sphere decoding like
algorithm can be used to reduce the complexity of VVA while
preserving its optimality. For a 2 × 2 MIMO system with 16-
QAM signal constellation, our algorithm cuts VVA’s complexity
by 50% at an SNR of 10 dB and by 60% at an SNR of 15 dB.

I. INTRODUCTION

The vector Viterbi algorithm (VVA) extends the conven-
tional Viterbi algorithm (VA) to make it operate on vector
transmitted symbols [1], [2]. What helped in the negligence
of this algorithm is the emergence of multi-input multi-
output (MIMO) Orthogonal Frequency Division Multiplexing
(OFDM) which reduced the complexity of the receiver while
still achieving MIMO capacity gains [3]. Let L, N , Nt,
and |A| denote the channel memory, number of transmit-
ted symbols per block, number of transmit antennas, and
size of signal constellation respectively. The computational
complexity of a MIMO OFDM based detection scheme is
O
(
NtN log (N) +N |A|Nt

)
in comparison to O

(
N |A|LNt

)
for the vector Viterbi algorithm. Thus, MIMO OFDM systems
are computationally attractive when L is large. Nonetheless,
this advantage comes at the following expenses:

1) OFDM requires the addition of a cyclic prefix which
reduces the rate of communication. If the channel is
changing rapidly, the size of the block cannot be made
long and hence the percentage overhead is even larger
(up to 25% in some cases).

2) The transmitter’s complexity is increased because Nt

N -point IFFTs have to be computed at the transmitter
side.

3) The orthogonality between sub-carriers might be lost
due to Doppler shifts and channel nonlinearities.

4) The peak to average power (PAPR) ratio of an OFDM
system is significantly larger than that of a single carrier
system.

In addition to the above disadvantages, some communication
technologies, such as under-water acoustic systems and fiber

optic systems, cannot easily make use of OFDM due to various
transmitter and receiver limitations. For example, the laser
sources in fiber optic systems cannot be adequately modulated
by arbitrary shaped signals having very high PAPR. Moreover,
high PAPR signals excite fiber nonlinearities which destroy the
orthogonality between sub-carriers. This is why the state-of-
the-art optical communication systems use simple modulation
schemes such as quadrature phase shift keying.

More importantly, single carrier systems are used in the
latest wireless communication standards. For example, the
Long Term Evolution Advanced (LTE-A) wireless standard
does not use OFDM for the uplink channel due to its high
PAPR [4]. Instead, LTE-A uplink systems use Single Carrier
Frequency Division Multiple Access (SC-FDMA) modulation.
Even though SC-FDMA divides the resources among users
in the frequency domain, the transmission uses single carrier
modulation. Therefore, it is natural to revisit single carrier
systems and look for ways to reduce the computational
complexity of sequence detection. Our sphere decoding (SD)
approach for VVA is a promising technique that reduces VVA’s
complexity significantly while preserving its optimality.

The remainder of this paper is organized as follows. In
Section II, we review the sphere decoding algorithm. In
Section III, we show how SD can be used to perform MIMO
MLSD at a reduced computational cost. In Section IV, we
compare the complexity of VVA to our scheme and show that
for a 2× 2 MIMO system with 16-QAM signal constellation,
up to 60% of VVA’s complexity can be saved using our
approach.

II. SPHERE DECODING

A frequency flat MIMO system is described by

y = Hx+ v, (1)

where x is an Nt-dimensional vector, y is an Nr-dimensional
vector, H is an Nr × Nt matrix, and v is a zero mean
complex Gaussian noise vector with a covariance matrix equal
to N0INr

. The optimal detector, in terms of minimizing the
symbol error rate (SER), is the maximum likelihood (ML)
detector and is given by

x̂ = argmin
x∈ANt

‖y −Hx‖2, (2)



where A represents the signal constellation set. The ML
detector finds the nearest neighbor to the received vector
among all possible constellation points (lattice points) by
performing an exhaustive search. Unfortunately, the compu-
tational complexity of this algorithm is exponential in Nt.
Nonetheless, there exists a clever algorithm that performs ML
detection at a substantially lower cost.

The basic idea of Sphere Decoding (SD) is to perform a
search over the constellation points that lie within a sphere of
radius r centered around the received vector [5]. This is done
by representing the signal constellation via an |A|-ary tree
of depth Nt. The nodes at depth i correspond to instances of
the (Nt − i+ 1)

th entry in x. Thus, the tree has |A|Nt leaves,
each corresponding to an instance of x. Assume that Nr ≥ Nt,
then by the QR decomposition H = Q

[
R∗0Nt×(Nr−Nt)

]∗
,

where Q is an Nr×Nr unitary matrix, R is an Nt×Nt upper
triangular matrix, and A∗ refers to the conjugate transpose of
A. As the norm is invariant to unitary transforms, the ML rule
can be rewritten as

x̂ = argmin
x∈AN

‖y −Hx‖2

= argmin
x∈AN

‖Q∗y −
[

R
0(Nr−Nt)×Nt

]
x‖2

= argmin
x∈AN

‖ỹ −Rx‖2, (3)

where ỹ is a vector containing the first Nt entries of Q∗y.
Due to the triangular structure of R, the vector norm can now
be rewritten as a sum of scalar norms

‖ỹ −Rx‖2 =

Nt∑
i=1

∣∣∣∣∣ỹi −
Nt∑
l=i

ri,lxl

∣∣∣∣∣
2

=

Nt∑
i=1

ei (xi, ..., xNt
)

= e1 (x1, ..., xNt) + ...+ eNt (xNt) , (4)

where ei (xi, ..., xNt
) =

∣∣∣ỹi −∑Nt

l=i ri,lxl

∣∣∣2. Note that the
last Nt − i + 1 summands in (4) depend only on the last
Nt− i+1 transmitted symbols and they are all non-negative.
We define the partial Euclidean distance (PED) as pi =∑Nt

j=Nt−i+1 ej (xj , ..., xNt
) for i = 1, ..., Nt. This sequence

is computed recursively by traversing the tree from the root
node down to a leaf node. For i = 1, p1 = e1 (xNt) and
for i = 2, ..., Nt, pi = pi−1 + eNt−i+1 (xNt−i+1, ..., xNt

).
Notice that pi is a non-negative and non-decreasing sequence
and that pi ≤ ‖ỹ − Rx‖2. Therefore, it is safe to drop all
candidate vectors xj’s that end with the same i symbols if
any pi exceeds a specified radius r. This technique is referred
to as tree pruning.

Tree pruning is a smart way of eliminating the lattice points
that do not lie inside the sphere of radius r. However, we still
do not know how to choose r. This can be done in a variety of
ways. A simple scheme would set r to infinity and run a depth
first search algorithm until the left most leaf node is reached.
At this point, r is updated to become equal to the Euclidean

distance of that particular instance of x. The depth first search
algorithm is then resumed and the aforementioned pruning
process is applied whenever some pi exceeds r. A leaf node
is reached only if the distance between the received vector
and that particular instance of x is less than r. In this case,
the radius is updated to become equal to this new Euclidean
distance and the process is continued until all leafs are either
visited or pruned.

The complexity of SD is random as it depends on the
quality of the channel realization which is a random variable.
Moreover, the performance is a function of SNR. At high
SNRs the savings are large because very few lattice points
lie inside the sphere. However, marginal gains are achieved
if the transformed lattice Hx happened to be such that all
the points are close to each other. Therefore, SD still suffers
from a worst case exponential complexity. Nonetheless, this
happens at a very low probability (especially when the SNR is
high). It was shown in [6], [7] that the expected complexity of
SD is usually polynomial in Nt for a wide range of SNRs and
Nt. In fact for high SNRs, the expected complexity is cubic
in Nt.

III. FREQUENCY SELECTIVE SYSTEMS

A frequency selective MIMO system is described by

y[n] =

L−1∑
k=0

H[k]x[n− k] + v[n], (5)

where y[n] and x[n] are the detected and transmitted sym-
bol vectors respectively. In (5), L represents the number of
nonzero taps in H[n], the channel’s matrix impulse response,
and is given by Td/Ts where Td is the channel’s delay spread
and Ts is the sampling period. In our analysis, we assume
that the channel’s matrix impulse response H[n] is fixed for
N consecutive transmissions.

A. Prior Work

Sphere decoding has been recently introduced as a low com-
plexity detection algorithm for single carrier MIMO frequency
selective systems [8]. We define the following vectors:

y = [y∗[1],y∗[2], . . . ,y∗[N + L− 1]]∗

v = [v∗[1],v∗[2], . . . ,v∗[N + L− 1]]∗

x = [x∗[1],x∗[2], . . . ,x∗[N ]]∗. (6)

Using (5) and (6), we can write the input-output relation for
the dispersive channel in a matrix form as

y = Hx+ v (7)

where H is an Nr (N + L− 1)×NtN block Toeplitz matrix
given by

H =


H[0]
H[1] H[0]

. . . . . .
H[L− 1] H[L− 2]

H[L− 1]

 . (8)



Given x we know that

f (y|x) ∼ CN (Hx, N0IN+L−1) , (9)

where Hx is the mean vector and N0IN+L−1 is the covariance
matrix of the complex Gaussian distribution. Therefore, the
optimal detection rule is given by

x̂ = argmin
x∈ANtN

‖y −Hx‖2. (10)

A straightforward implementation will perform an exhaustive
search over all |A|NtN possible transmit vectors, which is
stupendously expensive for large Nt or N . Observe that the
problem in (10) is identical to the one in (3). Therefore,
sphere decoding can be used to reduce the complexity of
MLSD detection. However, the dimension of the equivalent
frequency flat MIMO system is Nr (N + L− 1)×NtN and
thus, the expected complexity of this approach is at best
polynomial in NtN . This figure can be significantly larger
than O

(
N |A|LNt

)
for large N or small L. Therefore, VVA

seems to be more attractive for large N .

B. The Vector Viterbi Algorithm

The vector Viterbi algorithm (VVA) is the vector version of
the popular Viterbi algorithm [1], [2]. The VVA uses the entire
received sequence y to detect the transmitted sequence x. Both
x and y have been defined in (6). It is convenient to define
the mean vector µ (x) = Hx and divide it into N + L − 1
sub-vectors where the ith sub-vector is given by

µk (x) =

L−1∑
l=0

H[l]x[k − l]. (11)

Similarly, we can divide the vector y into N+L−1 sub-vectors
where the kth sub-vector is yk = y[k]. The optimization
problem in (10) can now be written as

x̂ = argmin
x∈ANtN

‖y − µ (x)‖2

= argmin
x∈ANtN

N+L−1∑
k=1

‖yk − µk (x)‖2

= argmin
x∈ANtN

PN+L−1 (x) , (12)

where Pi (x) =
∑i

k=1‖yk − µk (x)‖2 is called the ith path
metric. The VVA performs the above minimization with a
complexity that is linear in N . Unlike the previously derived
SD algorithm, VVA exploits the fact that the channel has
memory limited to L. This is known as the Markovian property
of the channel. We define the state Sk at time k to be

Sk = (x[k − 1],x[k − 2], . . . ,x[k − L+ 1]) (13)

As shown in Figure 1, the state evolution in time can be
represented using a trellis diagram. Accordingly, finding the
maximum-likelihood sequence estimate is equivalent to find-
ing the shortest path through the trellis. Note that µk (x) is

only a function of x[k] and Sk. Let Sjk and xi[k] represent in-
stances of Sk and x[k] respectively. We associate the following
branch metric

B
(
y[k],Sjk,x

i[k]
)
= ‖yk − µk

(
Sjk,x

i[k]
)
‖2 (14)

with each branch emanating from Sjk and terminating in Sik+1.
Note that the vectors x[k−1], . . . ,x[k−L+2] are exactly the
same for both states. Each state Sjk can terminate in one of
|A|Nt states because the only new entry in Sik+1 is xi[k]. The
vector Viterbi algorithm uses dynamic programming to imple-
ment a breadth-first search on a trellis. The key observation
is that the minimization could be solved recursively by noting
that Pk = Pk−1 + B

(
y[k],Sjk,xi[k]

)
. Therefore, to find the

shortest path, it is sufficient to solve the following problem

Pi
k = min

j∈F
Pj
k−1 + B

(
y[k],Sjk,x

i[k]
)
, (15)

for every Sik ∈ Sk and k = 1, ..., N+L−1. In (15), F contains
the indices of the states, at stage k − 1, that are allowed to
transition to Sik. Observe that for k = N +L−1, the solution
to mini Pi

N+L−1 is the solution to the MIMO MLSD problem
in (12).

C. Combined SD-VVA

The computational complexity of VVA is equal to the
product of the number of computations required per state
(|A|Nt ), the number of states per stage (|A|Nt(L−1)), and the
number of stages (N + L − 1). As a result, the complexity
grows linearly with the block length and exponentially with the
number of transmitters and memory length. In what follows,
we derive a new, lower complexity, optimal sequence detection
algorithm. The aim is to break down the exponential number
of computations required per state to something polynomial
(often cubic) in Nt. This reduction in complexity is made
possible by observing that the selection of the surviving path
for each state can be computed via a tree based algorithm
similar to the one used in sphere decoding. We define a super
state Sk−1 to be the set of states Sk−1 that differ only by
x[k−L+1]. Observe, from Figure 1, that there is a transition
from each Sjk−1 ∈ S

l
k−1 to one Sik ∈ S

m
k . Furthermore, the

first L−2 entries in Sjk−1 are identical to the last L−2 entries
in Sik. Thus, the following holds:

Pi
k = min

j∈F
Pj
k−1 + B

(
y[k],Sjk,x

i[k]
)

= min
j∈F
Pj
k−1 + ‖yk − µk

(
Sjk,x

i[k]
)
‖2

= min
j∈F
Pj
k−1 + ‖zk −Gxj‖2, (16)

where zk = yk −
∑L−2

l=0 H[l]xi[k − l], G = H[L − 1], and
xj = xj [k−L+1]. Had the term Pj

k−1 not existed in (16), this
minimization would have resembled to the standard frequency
flat MIMO ML detection problem in (3). In this case, the
complexity can be reduced by solving for the surviving branch
via a sphere decoding approach as detailed in Section II.
However, in our case every path is biased by a different
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Fig. 1. Trellis super state grouping in a 2× 2 system with BPSK signalling
and memory length of 3

quantity Pj
k−1 that is only determined when we traverse the

tree from the root node down to a leaf node. This problem
is clearly more complicated than the frequency flat MIMO
ML one and cannot be solved using the standard sphere
decoding algorithm. Nonetheless, we suggest modifying the
tree representation by appending the path metrics to the leaf
nodes. This is depicted in Figure 2 where the tree has been

A1 A2

A1 A2 A1 A2

P1
k P2

k P3
k P4

k

R

e12 e22

e11 e21 e31 e41

Fig. 2. Tree representation for a 2× 2 BPSK system at stage k + 1

extended to incorporate the effect of Pj
k’s. Thus, we can now

run a depth first search SD algorithm using the tree in Figure
2 to solve for the ith state’s path metric at k. The very first
time the radius is updated it will include both the branch and
path metrics of the state that corresponds to the left most
branch in the tree. A smart approach that would lead to larger
computational savings would first rearrange the branches of
the tree in Figure 2 so that the left most leaf node corresponds
to the instance that has the smallest path metric and the right
most leaf node corresponds to the instance that has the largest
path metric. This leads to an improved performance as the
radius is always chosen to be as small as possible. However,
this approach necessitates the need to keep a sorted list of
path metrics which complicates the implementation of the
algorithm and increases the number of comparisons needed.

The performance of the combined SD-VVA approach de-
pends on how large the path metrics are relative to the branch
metrics. Little savings can be achieved if the Pj

k’s are much
larger than the weights (eji ’s) shown in Figure 2. In this case,
almost all leaf nodes would have to be visited. Therefore, large
savings can be achieved if the trellis is shortened from N to
5L. This ensures that the path metrics do not accumulate and
are still comparable to all other weights and thus, pruning will
be a lot more effective. However, this technique is sub-optimal.
In addition, we will show in Section IV that computational
gains are large even for N = 103.

IV. COMPLEXITY ANALYSIS & RESULTS

The per state computational complexity of the VVA is given
by

Nadd = 3Nt|A|Nt

Nmult = Nt|A|Nt

Ncmp = |A|Nt − 1, (17)

where Nadd and Nmult represent the number of real additions
and complex multiplications respectively. For Nt ≥ 2, the per
state computational complexity of full tree search, without tree
pruning, is given by

Nadd ≈ 4|A|Nt

Nmult ≈ |A|Nt (18)

The exact expressions and derivation of (19) and (18) can
be found in Appendix A. Observe that we can still achieve
computational gains even if we perform a naive tree search
without any pruning. For example, in a 2× 2 MIMO system
with 16-QAM signal constellation, a full tree search algorithm
saves 33% of the real additions and 46% of the complex multi-
plications when compared to VVA. More importantly, the full
tree search algorithm has a fixed computational complexity.
However, we can achieve larger gains by using the combined
SD-VVA algorithm described in the previous section. Unlike
VVA or full tree search, the combined SD-VVA algorithm has
a random complexity that depends on the SNR and channel
statistics. In order to quantify the average computational gains,
we computed, via simulations, the average complexity of
the combined VVA-SD algorithm and compared it to VVA
for various settings. In our experiments, we chose a 2 × 2
MIMO system with 16-QAM signal constellation, L = 3,
and N = 103. The results are summarized in Table I. As

TABLE I
SD-VVA VS. VVA

constellation Nadd Nmult

16-QAM (5 dB) 43% 49%
16-QAM (10 dB) 53% 54%
16-QAM (15 dB) 64% 62%

discussed in Section II, the algorithm’s performance improves
with increasing SNR. For 16-QAM signal constellations, the
computational complexity of the VVA is reduced by 50% when
the SNR is around 10 dB and by 60% when the SNR is around
15 dB.



V. CONCLUSION

Even though our approach provides substantial complexity
gains, the number of states is still exponential in Nt and L.
Therefore, for large Nt or L, performing exact MLSD might
be expensive despite the reductions shown in the previous
section. In this case, we can use a variety of techniques
to further reduce the complexity. This, however, sacrifices
optimality. For example, when L is large, a linear channel
shortening filter can be used to reshape the channel’s impulse
response such that most of the signal’s energy is concentrated
in the first few L′ taps, where L′ < L. If Nt is large, we
can save a lot by keeping the best K states (states with the
least path metrics) at each stage instead of keeping track of
all |A|Nt(L−1) states. The choice of K is determined by a
reasonable performance-complexity tradeoff assessment.

The combined SD-VVA algorithm reduces the complexity
of VVA while preserving its optimality. This algorithm is
attractive whenever performance is not to be compromised.
In LTE-A systems, the uplink can afford running expensive
detection algorithms because the computations are taking place
at the base station side. Moreover, the combined SD-VVA
algorithm can be easily modified to output likelihoods, soft
decisions, that are fed to the channel decoder. Future work
will look at the architectural implementation and design of
the combined SD-VVA algorithm.

APPENDIX

For VVA, the following operation needs to be performed
for each state

Pi
k = min

j∈F
Pj
k−1 + ‖yk − µk

(
Sjk,x

i[k]
)
‖2,

where µk

(
Sjk,xi[k]

)
=
∑L−2

l=0 H[l]xi[k−l]+H[L−1]xj [k−
L+1] is precomputed for all i and j. There are |A|Nt incoming
branches for each state. To compute each branch metric, Nt

complex additions, Nt complex multiplications, and Nt − 1
real additions are needed. Each computed branch metric has
to be added to its corresponding path metric. This requires an
additional real addition. Finally, to perform the min, |A|Nt−1
comparisons are needed. Therefore, the per-state complexity
of the VVA algorithm is given by

Nadd = 3Nt|A|Nt

Nmult = Nt|A|Nt

Ncmp = |A|Nt − 1. (19)

Here, Nadd refers to the total number of real additions, Nmult

refers to the total number of complex multiplications, and
Ncmp refers to the number of comparisons. We assume that
every complex addition is equivalent to two real additions.

For the full tree search algorithm, the following operation
needs to be performed for each state

Pi
k = min

j∈F
Pj
k−1 + ‖zk −Gxj‖2

= min
j∈F
Pj
k−1 + ‖z̃k −Rxj‖2, (20)

where G = Q
[
R∗0Nt×(Nr−Nt)

]∗
by the QR decomposition

and z̃k corresponds to the first Nt entries of Q∗zk. We assume
that

∑L−2
l=0 H[l]xi[k − l] and Rxj are precomputed for all i

and j. First, to compute zk = yk −
∑L−2

l=0 H[l]xi[k − l], Nr

complex additions are needed. The result has to be multiplied
by Q∗ to obtain z̃k. This requires (Nr − 1)Nt complex
additions and NrNt complex multiplications. Next, we have
to compute all the partial Euclidean distances. In a |A|-ary
tree of depth Nt, there are

∑Nt

i=1 |A|i edges. Therefore, in
order to compute the weights el

(
xj
l , ..., x

j
Nt

)
of all edges, we

need
∑Nt

i=1 |A|i complex additions and
∑Nt

i=1 |A|i complex
multiplications. After having computed the weights of all
edges in the tree, we need to traverse the tree from the root
node to every leaf node to add the weights of all edges to each
other and then add the result to the path metric. This requires∑Nt

i=2 |A|i+ |A|Nt real additions. The number of comparisons
that are needed is identical to VVA. Therefore, the per-state
complexity of full tree search is given by

Nadd =

Nt∑
i=2

|A|i + |A|Nt + 2

Nt∑
i=1

|A|i + 2 (Nr − 1)Nt + 2Nr

Nmult =

Nt∑
i=1

|A|i +NrNt

Ncmp = |A|Nt − 1. (21)
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