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Abstract—We consider the problem of cooperative distributed estima-
tion within a network of heterogeneous agents. In particular, we study the
situation where each agent observes an independent stream of Bernoulli
random variables, and the goal is for each to determine its own Bernoulli
parameter. The agents of this population can be categorized into a small
number of subgroups, where within each group the agents all have
identical Bernoulli parameters. For a distributed algorithm based on
consensus strategies, we examine the rate at which the agent’s estimates
converge to the correct values. We show that the expected squared error
decreases nearly as fast as centralized ML estimation in a homogeneous
population. In a heterogeneous population, we derive an approximation to
the expected squared error, as a function of the number of observations.
Finally, we present simulation results that compare the predicted expected
squared error to that observed in the simulations.

Index Terms—gossip algorithms, consensus, diffusion, adaptation, dis-
tributed estimation, distributed signal processing

I. INTRODUCTION

The problem of distributed estimation within a network of agents
has been extensively studied. This includes such topics as gossip
algorithms [1]–[3], consensus [4]–[6], distributed adaptation and
estimation [7]–[10], and others. Related to these is sequential learning
or estimation, which includes least mean squares, recursive least
squares, kalman filters [11], stochastic approximation [12], etc. In
this paper, we contribute to these research areas by considering the
problem of distributed estimation within a network of heterogeneous
agents. Specifically, we consider populations of agents, each of which
is trying to learn the parameters of a model for observed data,
but these parameters are only consistent (i.e., the optimal model
parameters are the same for all agents) within subpopulations of the
whole. We extend the results of [13] by more precisely studying the
convergence properties of the algorithm.

We first recall the framework for the problem first given in [13]. We
consider a population of N agents, indexed i ∈ {1, ..., N}. At each
time instant t ∈ {1, 2, ...}, agent i makes an observation xi(t) ∈
{0, 1} drawn according to a Bernoulli distribution with parameter
pi. The observations xi(t) are independent random variables for all
i and all t. Furthermore, we suppose that there is a partitioning of
the population of agents into a number of subpopulations, i.e., G1 ∪
... ∪GK = {1, ..., N}, such that pi = Pj if and only if i ∈ Gj . We
let G(i) denote the subpopulation that agent i belongs to. Lastly, the
agents are connected to each other in a network given by adjacency
matrix A, such that Ai,j = 1 if nodes i and j are connected, and
zero otherwise. Typically, we have Ai,i = 1 for each agent i, and
A = AT . From this adjacency matrix, we can also determine the
neighborhood Ni for each agent i. Since Ai,i = 1, we have that
i ∈ Ni.

In [7] and [8], the authors study the problem of distributed pa-
rameter estimation using a diffusion protocol for cooperation. In [9],
the authors study the problem of distributed parameter estimation for
linear state-space models. However, in these works it is assumed that
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Fig. 1. A homogeneous population of Bernoulli agents.

the underlying model parameters woi to be estimated by each agent i
are identical, i.e., woi = wo for all i. However, it is conceivable that
the population of agents actually consists of a number of subgroups,
such that the model parameters to be estimated are the same within a
group, but different between different groups. The authors of [13]
begin the study of this problem by proposing the heterogeneous
framework and presenting a simple algorithm based on consensus
strategies. In this paper, we extend the results of [13] by more
precisely studying the convergence properties of the algorithm. To
this end, we begin in Section II by looking closely at the convergence
properties of Bernoulli parameter estimation in a homogeneous popu-
lation, using a slight variation on the algorithm from [13]. In Section
III, we use the results from Section II to approximate the convergence
behavior of the algorithm for heterogeneous populations. In Section
IV, we present simulation results that compare the predicted expected
squared error to that observed in the simulations. Finally, we give
some concluding remarks in Section V.

II. BERNOULLI POPULATIONS

We begin with the case of a homogeneous population of agents,
where each agent observes IID Bernoulli random variables with the
same parameter P . This situation is depicted in Fig. 1. Here, each
agent makes one observation per time instance t = {1, 2, ...}. This
is given by xi(t) for i ∈ {1, ..., N} for N agents in the network.
The vector of observations at time t consisting of the observations of
each agent is given by x(t). The vector p̂(t) is one consisting of the
estimates for each agent, i.e., [p̂i(t), ..., p̂N (t)]T . Furthermore, we
will assume that the agents cooperate by mixing estimates according
to a doubly stochastic, symmetric, irreducible matrix D ∈ RN×N
such that D1N×1 = DT1N×1 = 1N×1 and 0 ≤ Di,j ≤ 1, i.e.,
each entry in D is in the range [0, 1]. Finally, since the agents are
only able to communicate with each other over the network edges, we
have that Di,j = 0 if Ai,j = 0. Then, we have that the cooperative



algorithm is given by

p̂(t) = D

(
t− 1

t
p̂(t− 1) +

1

t
x(t)

)
, (1)

i.e. the update of p̂(t) involves the incorporation of the new data
followed by a diffusion step.

In [13], the authors show that the estimates of all the agents
converge to P (in probability). However, there was no discussion of
whether the rate of convergence is better than, e.g., noncooperative
estimation or how the rate compares to a centralized maximum
likelihood estimate. We will now provide results relating to these
issues.

First, suppose E [p̂(t− 1)] = P1N×1. Then

E [p̂(t)] = E

[
D

(
t− 1

t
p̂(t− 1) +

1

t
x(t)

)]
= D

t− 1

t
E [p̂(t− 1)] + D

1

t
E [x(t)]

= P1N×1.

Furthermore, note that

E [p̂(1)] = E [Dx(1)]

= DE [x(1)]

= DP1N×1

= P1N×1.

Thus, by induction, we have that E[p̂i(t)] = P for each agent i.
We will now consider the variance of p̂i(t). Since E [p̂i(t)] =

P , this variance is equal to the expected squared estimation error.
Let D have an eigenvalue decomposition such that D = UΣUT ,
where the columns of U are orthonormal eigenvectors and Σ is a
diagonal matrix consisting of decreasing eigenvalues 1 = |λ1| >
|λ2| ≥ ... ≥ |λN |. (This is possible since we have assumed that D
is a real symmetric doubly stochastic irreducible matrix.)

It is then possible to show that for some positive constant C,
Dt
i,j ≤ 1

N
+C|λ2|t for all i and j, where the notation Dt

i,j indicates
the element of matrix Dt at row i and column j.

To consider var [p̂i(t)], we note that

p̂(t) =
1

t

t∑
j=1

Dt−j+1x(j). (2)

Therefore, we have that

p̂i(t) =
1

t

t∑
j=1

d
(t−j+1)
i x(j), (3)

where d
(t−j1)
i is the ith row of the matrix Dt−j+1. We can then

conclude that
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Fig. 2. A heterogeneous population of Bernoulli agents. Cooperation over
the solid green edges is helpful. Cooperation over the dashed red edges is
detrimental.
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.

In particular, we note that the rate is dominated by P (1−P )
Nt

. This
is important because P (1−P )

Nt
is the expected squared error for a

centralized maximum likelihood estimate of the Bernoulli parameter,
based on all of the observations from the N agents over t time
instants. In other words, the distributed cooperative estimation suffers
a small, asymptotically negligible regret with respect to centralized
estimation.

III. HETEROGENEOUS BERNOULLI POPULATIONS

We will now consider heterogeneous populations, i.e., the situation
where there are various subgroups observing different types of
sources, as shown in Fig. 2. The algorithm used in this setting
involves having each agent compute an estimate of the parameter
pi based on only it’s own observations. This will be written as p`i(t)
and we will call it the private estimate. In particular, this is taken to
be

p`i(t) =

{
1
2

if t = 0
1
t

∑t
τ=1 xi(τ) if t > 0.

We will then choose the elements of D(t) as follows: First, each
agent will decide which neighboring agents it will take messages
from by comparing its own private estimate to those of its neighbors.
In particular, agent i will take a message from neighbor j ∈ Ni
if |p`i − p`j | ≥ γt, where γt is a threshold for cooperation between
agents. Hence, agent i will take messages from |Ñi(t)| neighbors,
where Ñi(t) is the subset of neighbors that agent i will cooperate
with during time t. Once this has been determined, the diffusion



weights can be determined as follows:

Di,j(t) =



1

max{|Ñi(t)|,|Ñj(t)|}
if


|p`i − p`j | < γt
i 6= j
and Ai,j = 1

0 if
{
|p`i − p`j | ≥ γt
or Ai,j = 0

1−
∑
k 6=iDi,k(t) if i = j,

Therefore, D(t) is essentially a time varying Metropolis weight
matrix, as in [14]. It it possible to show that if we choose γt = Ctδ

for some positive constant C and − 1
2
< δ < 0, the subpopulations

will be correctly differentiated and each agent’s estimate p̂i(t) will
converge to the true parameter of the model of its observations.

We will now study the convergence properties of this distributed
algorithm. To this end, we will attempt to approximate the expected
squared error. In particular, suppose that we choose γt = Ctδ such
that γ1 is large, causing all of the agents to initially collaborate with
their neighbors. What will happen is that the estimates of all of
the agents will converge to the neighborhood of the global mean
parameter, and the expected squared error will remain approximately
constant for some time. At some point, the subpopulations will
disconnect from each other, as a result of the private estimates
improving and the collaboration radius γt becoming more selective
(smaller). We will call this the time to disconnect and represent it
by t∗. After the time t∗, the subpopulations quickly disconnect from
each other, and the expected squared error gradually converges to
that of the centralized maximum likelihood estimate within connected
subsets of the subpopulations.

To approximate the time to disconnect, we will use basic meth-
ods from large deviations theory. In particular, we would like to
approximate the time when an edge between agents of different
subpopulations (a “bad link”) has a low probability of being used
for collaboration. Consider a scenario with two subpopulations, with
parameters P1 and P2 > P1. The probability of collaboration on
the bad edge between connected agents i with P1 and j with P2 is
P [|p`i−p`j | < γt], which can be approximated using large deviations.
Specifically, we note that p`i − p`j = 1

t

∑
τ (xi(τ)− xj(τ)). The

result is that
P [bad connection] ≈ e−tI(−γt),

where I(p) is the large deviations rate function, given by

I(p) = pθ(p)− ln
(
ae−θ(p) + b+ ceθ(p)

)
.

For shorthand, we will define I(t) as I(−γt). Here, we have that
a = (1 − P1)P2, b = P1P2 + (1 − P1)(1 − P2), c = P1(1 − P2),
and

eθ(p) =
bp+

√
b2p2 + 4ac(1− p2)

2c(1− p)
Since the natural scales for studying features of this convergence
are logarithmic in time and magnitude, we will convert e−tI(−γt)

to such a scale. This gives us p̃(t̃) ≈ −et̃I(et̃), where p̃(t̃) =
ln(P [bad connection]) and t̃ = ln(t). The time when p̃(t̃) begins
to rapidly decrease is approximately when d

dt̃ p̃(t̃) = −1. This occurs
approximately when tI(t) = 1, and this can be found numerically.
Hence, we choose t∗ such that t∗I(γt∗) = 1 and γt∗ < |P1 − P2|.
At this point, we will simply note that this does not take into account
the number of edges that connect agents of different groups. Many
edges should increase the time to disconnect, so the estimate of t∗

presented here should be somewhat too early.
To approximate the convergence behavior after the disconnect time,

we assume that the estimates converged to the global average of the
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Fig. 3. Simulation with two Bernoulli subpopulations. The upper thin line
shows the simulated noncooperative average squared error. The lower thin
line shows the predicted centralized maximum likelihood squared error. The
thick solid line shows the simulated cooperative average squared error in a
heterogeneous population. The thick dashed line shows the estimated average
squared error for the estimation algorithm for heterogeneous populations.

parameters. We will also assume that the subgroups have completely
disconnected from each other, the agents within subgroups are
connected by some path, and that the mixing time is instantaneous.
Then the expected squared error within the group associated with P1

after t∗ is approximately given by

E

[(
t∗N(P1 + d) +

∑t
τ=t∗+1

∑N
i=1 xi(τ)

Nt
− P1

)2]
,

where d = P1+P2
2
− P1 is the estimated error right before the

subgroups disconnect and the agents 1, ..., N belong to subgroup
P1. It can be shown that this leads us to

E[(p̂i(t)− P1)2] ≈ P1(1− P1)

Nt
+
d2t∗2 − 1

N
t∗P1(1− P1)

t2
.

Again, as in the homogeneous case, we see that the convergence is
dominated by P1(1−P1)

Nt
, and therefore the convergence rate is nearly

as good as centralized maximum likelihood within the subpopulation.

IV. SIMULATIONS

To evaluate the quality of our approximation to the expected
squared error of the heterogeneous cooperative algorithm, we ran-
domly placed 200 agents within a 1 unit by 1 unit square. We
formed a network connection if two agents were within 0.25 unit
of each other. We used two subpopulations: one with a Bernoulli
parameter P1 = 0.35, and the other with parameter P2 = 0.65.
The cooperation radius is given by Ctδ = t−0.4. Figure 3 shows
results from this simulation. In this plot, the upper thin line shows
the simulated noncooperative average squared error. As expected, this
decreases like 0.35×0.65

t
. The lower thin line shows the predicted

centralized maximum likelihood squared error, which decreases like
0.35×0.65

100t
, since there are 100 agents in each subpopulation. It should

not be possible to do better than this lower thin line. The thick
solid line shows the simulated cooperative average squared error in
the heterogeneous population. It can be observed that the estimates
indeed converge to a particular squared error and stay here until a
certain point. After this point, the average squared error begins to
decrease, eventually coming very close to the predicted centralized
maximum likelihood squared error curve. The thick dashed line shows
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Fig. 4. Simulation with two Bernoulli subpopulations. The thin curves and
the thick solid curve are the same as in Fig. 3. The thick dashed curve uses
the value of t∗ that fits the downward trend of the average squared error.

the estimated average squared error for the estimation algorithm.
We can see that the estimated disconnect time in this instance was
t∗ ≈ 69. As suggested earlier, the approximation method for t∗ gives
a value that is a bit early compared to what the simulations indicate.
Determining a better method for approximating t∗ could be a point
for future study. In this case, fitting the downward portion of the
simulated curve to our predicted trend indicates that t∗ ≈ 96. This
fit is shown in Fig. 4.

V. CONCLUSION

In this paper, we considered convergence rates for the problem of
cooperative distributed estimation within a network of heterogeneous
agents. First, we studied homogeneous populations of Bernoulli
agents, and demonstrated that such a population can achieve a
convergence rate that is nearly as good as centralized maximum
likelihood parameter estimation. We then considered the case of
heterogeneous populations, and derived an approximation to the
expected squared error. Finally, we presented simulation results that
compared the approximated expected squared error to that observed
in the simulations.

There are many directions that could be looked at from here.
For example, we could consider the consequence of knowing the
number of subpopulations or knowing the minimum distance between
the underlying optimal subpopulation parameter values. For a more
adaptive algorithm, rather than asymptotic, we could consider an
algorithm with fixed, rather than decreasing, step size, in order to

accomodate time varying underlying model parameters. It would
also be interesting to consider the types of messages that would be
sent over communication links. In our case, we assume that both
cooperative and noncooperative infinite precision estimates are sent
to neighbors over the links, but restricting this communication to
only the cooperative estimate could be considered, or we may even
consider sending quantized messages, such as resampled symbols as
is done in [15].
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