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Abstract—We study the problem of multi-party computation
under approximate (ε, δ) differential privacy. We assume an
interactive setting with k parties, each possessing a private bit.
Each party wants to compute a function defined on all the
parties’ bits. Differential privacy ensures that there remains
uncertainty in any party’s bit even when given the transcript
of interactions and all the other parties’ bits. This paper is
a follow up to our work in [1], where we studied multi-party
computation under (ε, 0) differential privacy. We generalize the
results in [1] and prove that a simple non-interactive randomized
response mechanism is optimal. Our optimality result holds for
all privacy levels (all values of ε and δ), heterogenous privacy
levels across parties, all types of functions to be computed, all
types of cost metrics, and both average and worst-case (over the
inputs) measures of accuracy.

I. INTRODUCTION

Multi-party computation (MPC) is a general framework
where multiple parties exchange information over a broadcast
channel towards the goal of computing a function over their
inputs while keeping those inputs private [2], [3], [4], [5].
In this paper, we study the problem of multi-party com-
putation under differential privacy [6], [7], [8], [9]. Each
party possesses a single bit of information; the information
bits are statistically independent. Each party is interested
in computing a function, which could differ from party to
party, and there could be a central observer (observing the
entire transcript of the interactive communication protocol)
interested in computing a separate function. The interactive
communication is achieved via a broadcast channel that all
parties and central observer can hear. It is useful to distinguish
between two types of communication protocols: interactive
and non-interactive. We say that a communication protocol
is non-interactive if a message broadcasted by one party does
not depend on the messages broadcasted by any other party. In
contrast, interactive protocols allow the messages at any stage
of the communication to depend on all the previous messages
that were communicated over the broadcast channel.

Our contributions. Our main result is the exact optimality
of a simple non-interactive protocol in terms of maximizing
accuracy for any given privacy levels: each party randomizes
(sufficiently) its own bit and broadcasts the noisy version.
Each party and the central observer then separately compute
their respective decision functions to maximize the appropriate
notion of their accuracy measure. The optimality is general:

it holds for all types of functions, heterogeneous privacy
conditions on the parties, all types of cost metrics, and both
average and worst-case (over the inputs) measures of accuracy.
Finally, the optimality result is simultaneous, in terms of
maximizing accuracy at each of the parties and the central
observer. Each party only needs to know its own desired level
of privacy, its own function to be computed, and its measure
of accuracy. Optimal data release and optimal decision making
are naturally separated.

Related work. Private MPC was first addressed in [7]. The
study of accuracy-privacy tradeoffs in the MPC context was
first initiated by [6], which studies a paradigm where dif-
ferential privacy and secure function evaluation (SFE) co-
exist. Specific functions, such as the SUM function, were
studied under this setting, but no exact optimality results
were provided. In the context of two parties, privacy-accuracy
tradeoffs have been studied in [8], [9] where a single function
is computed by a “third-party” observing the transcript of an
interactive protocol. [9] showed that every non-trivial privacy
setting incurs loss on any non-trivial boolean function. Further,
focusing on the specific scenario where each one of the two
parties has a single bit of information, [9] characterized the ex-
act accuracy-privacy tradeoff for AND and XOR functions; the
corresponding optimal protocol turns out to be non-interactive.
However, this result was derived under some assumptions:
only two parties are involved, the central observer is the only
entity that computes a function, the function has to be either
XOR or AND, symmetric privacy conditions are used for both
parties, and accuracy is measured only as worst-case over the
four possible inputs. Further, their analysis technique does not
generalize to the case when there are more than two parties.

The proof of our result critically relies on an operational
interpretation of differential privacy which we present in Sec-
tion III. Precisely, we show that a simple non-interactive ran-
domized response protocol dominates all (ε, δ)-differentially
private multi-party protocols. This powerful technique by-
passes the previous results on the same setting, where weaker
results were proved using more sophisticated proof techniques.
Specifically, our work generalizes the results in [1], which only
addressed (ε, 0)-differential privacy.



II. PROBLEM STATEMENT

Consider the setting where there are k parties, each with its
own private binary data xi ∈ {0, 1} generated independently.
The independence assumption here is necessary because with-
out it each party can learn something about others, which
violates differential privacy, even without revealing any infor-
mation. Differential privacy implicitly imposes independence
in a multi-party setting. The goal of each party i ∈ [k]
is to compute an arbitrary function fi : {0, 1}k → Y of
interest by interactively broadcasting messages. There might
be a central observer who listens to all the messages being
broadcasted, and wants to compute another arbitrary function
f0 : {0, 1} → Y . The k parties are honest in the sense that
once they agree on what protocol to follow, every party follows
the rules. At the same time, they can be curious, and each
party needs to ensure that other parties cannot learn its bit
with sufficient confidence. This is done by imposing local
differential privacy constraints. This setting is similar to the
one studied in [10], [11] in the sense that there are multiple
privacy barriers, each one separating an individual party from
the rest of the world. However, the main difference is that
we consider multi-party computation, where there are multiple
functions to be computed, and each node might possess a
different function to be computed.

Let x = [x1, . . . , xk] ∈ {0, 1}k denote the vector of k bits,
and x−i = [x1, . . . , xi−1, xi+1, . . . , xk] ∈ {0, 1}k−1 is the
vector of bits except for the ith bit. The parties agree on
an interactive protocol P to achieve the goal of multi-party
computation. A ‘transcript’ τ is the output of P , and is it
contains the the sequence of messages exchanged between the
parties. Let the probability that a transcript τ is broadcasted
(via a series of interactive communications) when the data is x
be denoted by Px,τ = P(τ |x) for x ∈ {0, 1}k and for τ ∈ T .
Then, a protocol can be represented as a matrix denoting the
probability distribution over a set of transcripts T conditioned
on x: P = [Px,τ ] ∈ [0, 1]2

k×|T |.

In the end, each party makes a decision on what the value
of function fi is, based on its own bit xi and the transcript
τ that was broadcasted. A decision rule is a mapping from
a transcript τ ∈ T and private bit xi ∈ {0, 1} to a decision
y ∈ Y represented by a function f̂i(τ, xi). We allow random-
ized decision rules, in which case f̂i(τ, xi) can be a random
variable. For the central observer, a decision rule is a function
of just the transcript, denoted by a function f̂0(τ).

We consider two notions of accuracy: the average accuracy
and the worst-case accuracy. For the ith party, consider an
accuracy measure wi : Y × Y → R (or equivalently a
negative cost function) such that wi(fi(x), f̂i(τ, xi)) measures
the accuracy when the function to be computed is fi(x) and
the approximation is f̂i(τ, xi). Then the average accuracy for

this ith party is defined as

ACCave(P,wi, fi, f̂i) ≡ (1)
1

2k

∑
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] ,

where the expectation is taken over the random transcript τ and
any randomness in the decision function f̂i. For example, if the
accuracy measure is an indicator such that wi(y, y′) = I(y=y′),
then ACCave measures the average probability of getting
the correct function output. For a given protocol P , it takes
(2k |T |) operations to compute the optimal decision rule:

f∗i,ave(τ, xi) = argmax
y∈Y

∑
x−i∈{0,1}k−1

Px,τ wi(fi(x), y) , (2)

for each i ∈ [k]. The computational cost of (2k |T |) for
computing the optimal decision rule is unavoidable in general,
since that is the inherent complexity of the problem: describing
the distribution of the transcript requires the same cost. We will
show that the optimal protocol requires a set of transcripts
of size |T | = 2k, and the computational complexity of the
decision rule for a general function is 22k. However, for a fixed
protocol, this decision rule needs to be computed only once
before any message is transmitted. Further, it is also possible to
find a closed form solution for the decision rule when f has a
simple structure. One example is the XOR function where the
optimal decision rule is as simple as evaluating the XOR of all
the received bits, which requires O(k) operations. When there
are multiple maximizers y, we can choose either one of them
arbitrarily, and it follows that there is no gain in randomizing
the decision rule for average accuracy.

Similarly, the worst-case accuracy is defined as

ACCwc(P,wi, fi, f̂i) ≡ (3)

min
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] .

For worst-case accuracy, given a protocol P , the optimal
decision rule of the ith party with a bit xi can be computed
by solving the following convex program:

Q(xi) = (4)

arg max
Q∈R|T |×|Y|

min
x−i∈{0,1}k−1

∑
τ∈T

∑
y∈Y

Px,τ wi(fi(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0

The optimal (random) decision rule f∗i,wc(τ, xi) is to output y
given transcript τ according to P(y|τ, xi) = Q

(xi)
τ,y . This can

be formulated as a linear program with |T | × |Y| variables and
2k+ |T | constraints. Again, it is possible to find a closed form
solution for the decision rule when f has a simple structure: for
the XOR function, the optimal decision rule is again evaluating
the XOR of all the received bits requiring O(k) operations.



For a central observer, the accuracy measures are defined
similarly, and the optimal decision rule is now

f∗0,ave(τ) = argmax
y∈Y

∑
x∈{0,1}k

Px,τ w0(f0(x), y) , (5)

and for worst-case accuracy the optimal (random) decision
rule f∗0,wc(τ) is to output y given transcript τ according to
P(y|τ) = Q

(0)
τ,y .

Q(0) = (6)

arg max
Q∈R|T |×|Y|

min
x∈{0,1}k

∑
τ∈T

∑
y∈Y

Px,τ w0(f0(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0

where w0 : Y × Y → R is the measure of accuracy for the
central observer.

III. DIFFERENTIALLY PRIVATE MULTI-PARTY
COMPUTATION

Privacy is measured by approximate differential privacy
[12], [13]. Since we allow for heterogeneous privacy con-
straints across parties, we use (εi, δi) to denote the desired pri-
vacy level of the ith party. We say that a protocol P is (εi, δi)-
differentially private for the ith party if for xi, x′i ∈ {0, 1},
x−i ∈ {0, 1}k−1, and S ⊆ T , we have that

P(τ ∈ S|xi, x−i) ≤ eεi P(τ ∈ S|x′i, x−i) + δi . (7)

A mechanism P is differentially private if it is (εi, δi)-
differentially private for all i ∈ [k]. Differential privacy ensures
that no adversary can infer the private data xi with high
enough confidence, no matter what auxiliary information or
computational power she might have.

Consider the following simple protocol known as the ran-
domized response, which is a term first coined by [14] and
commonly used in many private communications including
the multi-party setting [8]. We will show in Section IV that
this is the optimal protocol that simultaneously maximizes
the accuracy for all the parties. Each party broadcasts a
randomized version of its bit denoted by x̃i such that

x̃i =



0 if xi = 0 with probability δi ,

1 if xi = 0 with probability
(1− δi)eεi
1 + eεi

,

2 if xi = 0 with probability
(1− δi)
1 + eεi

,

3 if xi = 0 with probability 0 ,

x̃i =



0 if xi = 1 with probability 0 ,

1 if xi = 1 with probability
(1− δi)
1 + eεi

,

2 if xi = 1 with probability
(1− δi)eεi
1 + eεi

,

3 if xi = 1 with probability δi .

(8)

The proof of optimality of this randomized response depends
on an operational definition of differential privacy which we
now present.
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Fig. 1: Error region dictated by (εi, δi)-differential privacy

Given a broadcasted transcript τ and x−i (all private bits
except for xi), construct a binary hypothesis test on whether
xi = 0 or xi = 1. A binary hypothesis test is completely
characterized by a, possibly randomized, decision rule x̂i :
(τ, x−i) → {0, 1}. The two types of error associated with
x̂i are: (1) false alarm: x̂i = 1 when xi = 0, and (2) miss
detection: x̂i = 0 when xi = 1. The probability of false alarm
is given by PFA = P(x̂i = 1|xi = 0) while the probability
of miss detection is given by PMD = P(x̂i = 0|xi = 1).
For a fixed privacy protocol P , the convex hull of all pairs
(PMD, PFA) for all decision rules x̂i defines a two-dimensional
error region where PMD is plotted against PFA. For example,
the randomized response mechanism PRR given in (8) has an
error region R(PRR, xi = 0, xi = 1) shown in Figure 1.

The differential privacy constraints in Equation (7) impose
the following conditions on the error regions of all (εi, δi)-
differentially private protocols

PFA + eεiPMD ≥ 1− δi,
eεiPFA + PMD ≥ 1− δi,

for any decision rule x̂i and any i ∈ [k]. The above two
conditions define an error region R(εi, δi) shown in Figure 1.
Interestingly, the next theorem shows that the converse result
is also true.

Lemma 1: A mechanism P is differentially private if and
only if R(P, xi = 0, xi = 1) ⊆ R(εi, δi) for all i ∈ [k].

The proof of the above lemma can be found in [15] (see
Corollary 2.3 on page 4). Notice that it is no coincidence



that R(PRR, xi = 0, xi = 1) = R(εi, δi) (see Figure 1).
This property will be essential in proving the optimality of
the randomized response.

Lemma 1 allows us to benefit from the data processing
inequality (DPI) and its converse, which follows from a
celebrated result by [16]. These inequalities, while simple by
themselves, lead to surprisingly strong technical results. In-
deed, there is a long line of such a tradition in the information
theory literature (see Chapter 17 of [17]).

Recall that τ contains the sequence of messages broadcasted
by all k parties. Let τ(i) represent the messages broadcasted
by the ith party and observe that τ = {τ(1), · · · , τ(k)}.
Consider two privatization protocols, P1 and P2, and let τ1
and τ2 denote the output transcripts under protocols P1 and
P2, respectively. We say that P1 dominates P2 if there exists
a sequence of stochastic transformations {W1, · · · ,Wk} such
that for all i ∈ [k], given x−i, τ2 can be simulated by applying
Wi to τ1(i) and x−i. In other words, given x−i, Wi(τ1(i), x−i)
has the same distribution as τ2 .

Lemma 2: A multi-party privacy protocol P1 dominates
a protocol P2 if and only if R(P2, xi = 0, xi = 1) ⊆
R(P1, xi = 0, xi = 1) for all i ∈ [k].

The proof of the above lemma can be found in [16]. Lemma
2 will be critical in proving the optimality of the randomized
response.

Corollary 3.1: Any differentially private protocol P is
dominated by the randomized response PRR given in Equation
(8). Therefore, there exists a sequence of stochastic transfor-
mations {W1, · · · ,Wk} such that Wi(x̃i, x−i) has the same
distribution as τ for all i ∈ [k].

Corollary 3.1 follows from Lemma 1, Lemma 2, and the fact
thatR(εi, δi) = R(PRR, xi = 0, xi = 1) for all i ∈ [k].

IV. MAIN RESULT

We show, perhaps surprisingly, that the simple randomized
response presented in (8) is the unique optimal protocol in a
very general sense.

Theorem 4.1: Let the optimal decision rule be defined as
in (2) for the average accuracy and (5) for the worst-case
accuracy. Then, for any privacy levels (εi, δi), any function
fi : {0, 1}k → Y , and any accuracy measure wi : Y ×Y → R
for i ∈ [k], together with the optimal decision rule, the
randomized response achieves the maximum accuracy for the
ith party among all differentially private interactive and non-
interactive protocols. For the central observer, the randomized
response with the optimal decision rule defined in (5) and
(7) achieves the maximum accuracy among all {(εi, δi)}-
differentially private interactive protocols and all decision rules

for any arbitrary function f0 and any measure of accuracy w0.

This is a strong optimality result. Every party and the central
observer can simultaneously achieve the optimal accuracy,
using a universal randomized response. Each party only needs
to know its own desired level of privacy, its own function to be
computed, and its measure of accuracy. Optimal data release
and optimal decision making are naturally separated. It is not
immediate at all that such a simple non-interactive randomized
response mechanism would achieve the maximum accuracy.
The proof critically harnesses the data processing inequalities
and is provided in Appendix A.

V. CONCLUSION

In this paper, we studied the problem of differentially
private multi-party computation. We showed that a simple
non-interactive randomized response is optimal for all privacy
levels (all values of ε and δ), heterogenous privacy levels
across parties, all types of functions to be computed, all types
of cost metrics, and both average and worst-case (over the
inputs) measures of accuracy. Though our results are general,
they only handle settings where each party possesses a single
bit. In the more general scenario where parities can have
multiple bits, interaction might be critical to achieving the
optimal privacy-utility tradeoffs.

APPENDIX
PROOF OF THEOREM 4.1

To prove Theorem 4.1, it is sufficient to prove Theorem A.1
stating that any other protocol can be simulated from the ran-
domized response outputs. Let {xi}i∈[k] and τRR = {x̃i}i∈[k]
denote the k private bits and transcript under the randomized
response PRR (Equation (8)), respectively. We will prove that
any differentially private multi-party protocol can be simulated
from τRR. This proves the desired theorem, since the optimal
protocol and the optimal decision rules can be simulated by
each node (and the central observer) upon receiving the ran-
domized responses. Hence, proving that randomized response
is sufficient to achieve optimal performance (on any metric).

Theorem A.1: For any protocol P that generates a random
transcript τ , there exists a stochastic transformation T such
that the joint distribution of the bits and the transcript can be
simulated from the randomized outputs:

(x1, . . . , xk, τ)
D
= (x1, . . . , xk, T (x̃1, . . . , x̃k)) , (9)

where D
= denotes equality in distribution, and x̃i is a random-

ized response of xi.

To prove the above theorem, our strategy is to apply an
induction argument over a class of stochastic transformations
{T1, T2, · · · , Tk}, where T` operates on x̃`1 = (x̃1, . . . , x̃`) and



xk`+1 = (x`+1, . . . , xk). We will prove the following series of
equations:

(x1, . . . , xk, τ)
D
= (x1, . . . , xk, T1(x̃1, x

k
2)) (10)

D
= (x1, . . . , xk, T2(x̃

2
1, x

k
3)) (11)

...
D
= (x1, . . . , xk, Tk(x̃

k
1)) , (12)

We first prove Equation (10). To do so, we show an equivalent
version of this equation, which is (x1, τ)

D
= (x1, T (x̃1, x

k
2))

for all fixed values of xk2 . Equation (10) follows by applying
Bayes rule to this equation. First, note that for all fixed xk2 ,

R
(
P, x1 = 0, x1 = 1

)
⊆ R(ε1, δ1) , (13)

by the fact that τ is (ε1, δ1)-differentially private and Lemma
1. Next, notice that by construction, the randomized response
achieves this outer bound, i.e.

R
(
PRR, x1 = 0, x1 = 1

)
= R(ε1, δ1) , (14)

for all values of xk2 which holds only under the current as-
sumption that xk1 are independent. Hence from the reverse data
processing inequality in Corollary 3.1, it follows that for each
instance of xk2 , there exists a stochastic transformation such
that τ is simulated from x̃1, i.e. (x1, τ)

D
= (x1, T (x̃1, x

k
2)).

This proves the desired Equation (10).

We now prove an inductive step that allows us to recursively
show Equations (11) and (12). We want to prove that there
always exists a stochastic transformation T`+1 such that

(xk1 , T`(x̃
`
1, x

k
`+1))

D
= (xk1 , T`+1(x̃

`+1
1 , xk`+2)) , (15)

for any stochastic transformation T` satisfying
(ε`+1, δ`+1)-differential privacy. Again, we prove that
(x`+1, T`(x̃

`
1, x

k
`+1))

D
= (x`+1, T`+1(x̃

`+1
1 , xk`+2)) for all

values of (x`1, x̃
`
1, x

k
`+1). Then, Equation (15) follows

from Bayes rule. First note that from the assumption that
T`(x̃

`
1, x

k
`+1) is (ε`+1, δ`+1)-differentially private with respect

to x`+1, we know that for any fixed values of (x`1, x̃
`
1, x

k
`+2),

binary hypothesis testing on x`+1 based on the observation
T`(x̃

`
1, x

k
`+1) must obey the differential privacy constraint:

P(T`(x̃`1, xk`+1) ∈ S|x`+1, x
`
1, x̃

`
1, x

k
`+2) ≤

eε`+1P(T`(x̃`1, xk`+1) ∈ S|x`+1, x
`
1, x̃

`
1, x

k
`+2) + δ`+1 , (16)

and since T`(x̃
`
1, x

k
`+1) is conditionally independent of x`1

given x̃`1, we get

P(T`(x̃`1, xk`+1) ∈ S|x`+1, x̃
`
1, x

k
`+2) ≤

eε`+1P(T`(x̃`1, xk`+1) ∈ S|x`+1, x̃
`
1, x

k
`+2) + δ`+1 . (17)

This implies that for each value of (x̃`1, x
k
`+2),

R
(
T`, x`+1 = 0, x`+1 = 1

)
⊆ R(ε`+1, δ`+1) .

Next, notice that by construction, the randomized response
achieves this outer bound, i.e.

R
(
PRR, x`+1 = 0, x`+1 = 1

)
= R(ε`+1, δ`+1) , (18)

for all values of (x̃`1, x
k
`+2) which holds only under the

current assumption that xk1 are independent. Hence from the
reverse data processing inequality in Corollary 3.1, it follows
that for each instance of (x̃`1, x

k
`+2), there exists a stochastic

transformation such that T` is simulated from x̃`+1, i.e.
(x`+1, T`(x̃

`
1, x

k
`+1))

D
= (x`+1, T`+1(x̃`+1, x̃

`
1, x

k
`+2)). This

proves the desired induction step in Equation (15). Conse-
quently, by induction Equation (12) holds, and this proves
Theorem A.1.
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