
entropy

Article

Context-Aware Generative Adversarial Privacy

Chong Huang 1,†, Peter Kairouz 2,† ID , Xiao Chen 2, Lalitha Sankar 1,* and Ram Rajagopal 2

1 School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA;
chuang83@asu.edu

2 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA;
kairouzp@stanford.edu (P.K.); markcx@stanford.edu (X.C.); ramr@stanford.edu (R.R.)

* Correspondence: lsankar@asu.edu; Tel.: +1-480-965-4953
† These authors contributed equally to this work.

Received: 12 October 2017; Accepted: 22 November 2017; Published: 1 December 2017

Abstract: Preserving the utility of published datasets while simultaneously providing provable
privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions,
such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction
in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy,
achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset
statistics. We circumvent these limitations by introducing a novel context-aware privacy framework
called generative adversarial privacy (GAP). GAP leverages recent advancements in generative
adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset
itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game
between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference
attacks on the individuals’ private variables, and an adversary that tries to infer the private variables
from the sanitized dataset. To evaluate GAP’s performance, we investigate two simple (yet canonical)
statistical dataset models: (a) the binary data model; and (b) the binary Gaussian mixture model.
For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show
that the privacy mechanisms learned from data (in a generative adversarial fashion) match the
theoretically optimal ones. This demonstrates that our framework can be easily applied in practice,
even in the absence of dataset statistics.

Keywords: generative adversarial privacy; generative adversarial networks; privatizer network;
adversarial network; statistical data privacy; differential privacy; information theoretic privacy;
mutual information privacy; error probability games; machine learning

1. Introduction

The explosion of information collection across a variety of electronic platforms is enabling the
use of inferential machine learning (ML) and artificial intelligence to guide consumers through a myriad
of choices and decisions in their daily lives. In this era of artificial intelligence, data is quickly
becoming the most valuable resource [1]. Indeed, large scale datasets provide tremendous utility in
helping researchers design state-of-the-art machine learning algorithms that can learn from and make
predictions on real life data. Scholars and researchers are increasingly demanding access to larger
datasets that allow them to learn more sophisticated models. Unfortunately, more often than not,
in addition to containing public information that can be published, large scale datasets also contain
private information about participating individuals (see Figure 1). Thus, data collection and curation
organizations are reluctant to release such datasets before carefully sanitizing them, especially in light
of recent public policies on data sharing [2,3].
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Figure 1. An example privacy preserving mechanism for smart meter data.

To protect the privacy of individuals, datasets are typically anonymized before their release. This is
done by stripping off personally identifiable information (e.g., first and last name, social security
number, IDs, etc.) [4–6]. Anonymization, however, does not provide immunity against correlation and
linkage attacks [7,8]. Indeed, several successful attempts to re-identify individuals from anonymized
datasets have been reported in the past ten years. For instance, ref. [7] were able to successfully
de-anonymize watch histories in the Netflix Prize, a public recommender system competition. In a more
recent attack, ref. [9] showed that participants of an anonymized DNA study were identified by linking
their DNA data with the publicly available Personal Genome Project dataset. Even more recently,
ref. [10] successfully designed re-identification attacks on anonymized fMRI imaging datasets. Other
annoymization techniques, such as generalization [11–13] and suppression [14–16], also cannot prevent
an adversary from performing the sensitive linkages or recover private information from published
datasets [17].

Addressing the shortcomings of anonymization techniques requires data randomization. In recent
years, two randomization-based approaches with provable statistical privacy guarantees have emerged:
(a) context-free approaches that assume worst-case dataset statistics and adversaries; (b) context-aware
approaches that explicitly model the dataset statistics and adversary’s capabilities.

Context-free privacy. One of the most popular context-free notions of privacy is differential
privacy (DP) [18–20]. DP, quantified by a leakage parameter ε (Smaller ε ∈ [0, ∞) implies smaller
leakage and stronger privacy guarantees), restricts distinguishability between any two “neighboring”
datasets from the published data. DP provides strong, context-free theoretical guarantees against
worst-case adversaries. However, training machine learning models on randomized data with DP
guarantees often leads to a significantly reduced utility and comes with a tremendous hit in sample
complexity [21–33] in the desired leakage regimes. For example, learning population level histograms
under local DP suffers from a stupendous increase in sample complexity by a factor proportional to
the size of the dictionary [27,29,30].

Context-aware privacy. Context-aware privacy notions have been so far studied by information
theorists under the rubric of information theoretic (IT) privacy [34–54]. IT privacy has predominantly
been quantified by mutual information (MI) which models how well an adversary, with access to the
released data, can refine its belief about the private features of the data. Recently, Issa et al. introduced
maximal leakage (MaxL) to quantify leakage to a strong adversary capable of guessing any function
of the dataset [55]. They also showed that their adversarial model can be generalized to encompass
local DP (wherein the mechanism ensures limited distinction for any pair of entries—a stronger DP
notion without a neighborhood constraint [27,56]) [57]. When one restricts the adversary to guessing
specific private features (and not all functions of these features), the resulting adversary is a maximum
a posteriori (MAP) adversary that has been studied by Asoodeh et al. in [52,53,58,59]. Context-aware
data perturbation techniques have also been studied in privacy preserving cloud computing [60–62].

Compared to context-free privacy notions, context-aware privacy notions achieve a better
privacy-utility tradeoff by incorporating the statistics of the dataset and placing reasonable restrictions
on the capabilities of the adversary. However, using information theoretic quantities (such as MI)



Entropy 2017, 19, 656 3 of 35

as privacy metrics requires learning the parameters of the privatization mechanism in a data-driven
fashion that involves minimizing an empirical information theoretic loss function. This task is
remarkably challenging in practice [63–67].

Generative adversarial privacy. Given the challenges of existing privacy approaches, we take
a fundamentally new approach towards enabling private data publishing with guarantees on both
privacy and utility. Instead of adopting worst-case, context-free notions of data privacy (such as
differential privacy), we introduce a novel context-aware model of privacy that allows the designer to
cleverly add noise where it matters. An inherent challenge in taking a context-aware privacy approach
is that it requires having access to priors, such as joint distributions of public and private variables.
Such information is hardly ever present in practice. To overcome this issue, we take a data-driven
approach to context-aware privacy. We leverage recent advancements in generative adversarial networks
(GANs) to introduce a unified framework for context-aware privacy called generative adversarial privacy
(GAP). Under GAP, the parameters of a generative model, representing the privatization mechanism,
are learned from the data itself.

1.1. Our Contributions

We investigate a setting where a data holder would like to publish a dataset D in a privacy
preserving fashion. Each row in D contains both private variables (represented by Y) and public
variables (represented by X). The goal of the data holder is to generate X̂ in a way such that:
(a) X̂ is as good of a representation of X as possible; and (b) an adversary cannot use X̂ to reliably
infer Y. To this end, we present GAP, a unified framework for context-aware privacy that includes
existing information-theoretic privacy notions. Our formulation is inspired by GANs [68–70] and
error probability games [71–75]. It includes two learning blocks: a privatizer, whose task is to output
a sanitized version of the public variables (subject to some distortion constraints); and an adversary,
whose task is to learn the private variables from the sanitized data. The privatizer and adversary
achieve their goals by competing in a constrained minimax, zero-sum game. On the one hand,
the privatizer (a conditional generative model) is designed to minimize the adversary’s performance
in inferring Y reliably. On the other hand, the adversary (a classifier) seeks to find the best inference
strategy that maximizes its performance. This generative adversarial framework is represented
in Figure 2.

Privatizer Adversary
X, Y X̂ = g(X, Y) Ŷ = h(g(X, Y))

Noise Sequence

Figure 2. Generative Adversarial Privacy.

At the core of GAP is a loss function (We quantify the adversary’s performance via a loss function
and the quality of the released data via a distortion function) that captures how well an adversary does
in terms of inferring the private variables. Different loss functions lead to different adversarial models.
We focus our attention on two types of loss functions: (a) a 0-1 loss that leads to a maximum a posteriori
probability (MAP) adversary; and (b) an empirical log-loss that leads to a minimum cross-entropy adversary.
Ultimately, our goal is to show that our data-driven approach can provide privacy guarantees against
a MAP adversary. However, derivatives of a 0-1 loss function are ill-defined. To overcome this issue,
the ML community uses the more analytically tractable log-loss function. We do the same by choosing
the log-loss function as the adversary’s loss function in the data-driven framework. We show that
it leads to a performance that matches the performance of game-theoretically optimal mechanisms
under a MAP adversary. We also show that GAP recovers mutual information privacy when a log-loss
function is used (see Section 2.2).
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To showcase the power of our context-aware, data-driven framework, we investigate two simple,
albeit canonical, statistical dataset models: (a) the binary data model; and (b) the binary Gaussian
mixture model. Under the binary data model, both X and Y are binary. Under the binary Gaussian
mixture model, Y is binary whereas X is conditionally Gaussian. For both models, we derive and
compare the performance of game-theoretically optimal privatization mechanisms with those that are
directly learned from data (in a generative adversarial fashion).

For the above-mentioned statistical dataset models, we present two approaches towards designing
privacy mechanisms: (i) private-data dependent (PDD) mechanisms, where the privatizer uses both
the public and private variables; and (ii) private-data independent (PDI) mechanisms, where the
privatizer only uses the public variables. We show that the PDD mechanisms lead to a superior
privacy-utility tradeoff.

1.2. Related Work

In practice, a context-free notion of privacy (such as DP) is desirable because it places no
restrictions on the dataset statistics or adversary’s strength. This explains why DP has been remarkably
successful in the past ten years, and has been deployed in array of systems, including Google’s Chrome
browser [76] and Apple’s iOS [77]. Nevertheless, because of its strong context-free nature, DP has
suffered from a sequence of impossibility results. These results have made the deployment of DP
with a reasonable leakage parameter practically impossible. Indeed, it was recently reported that
Apple’s DP implementation suffers from several limitations—most notable of which is Apple’s use of
unacceptably large leakage parameters [78].

Context-aware privacy notions can exploit the structure and statistics of the dataset to design
mechanisms matched to both the data and adversarial models. In this context, information-theoretic
metrics for privacy are naturally well suited. In fact, the adversarial model determines the appropriate
information metric: an estimating adversary that minimizes mean square error is captured by
χ2-squared measures [40], a belief refining adversary is captured by MI [39], an adversary that can
make a hard MAP decision for a specific set of private features is captured by the Arimoto MI of order
∞ [58,59], and an adversary that can guess any function of the private features is captured by the
maximal (over all distributions of the dataset for a fixed support) Sibson information of order ∞ [55,57].

Information-theoretic metrics, and in particular MI privacy, allow the use of Fano’s inequality
and its variants [79] to bound the rate of learning the private variables for a variety of learning metrics,
such as error probability and minimum mean-squared error (MMSE). Despite the strength of MI in
providing statistical utility as well as capturing a fairly strong adversary that involves refining beliefs,
in the absence of priors on the dataset, using MI as an empirical loss function leads to computationally
intractable procedures when learning the optimal parameters of the privatization mechanism from
data. Indeed, training algorithms with empirical information theoretic loss functions is a challenging
problem that has been explored in specific learning contexts, such as determining randomized
encoders for the information bottleneck problem [63] and designing deep auto-encoders using
a rate-distortion paradigm [64–66]. Even in these specific contexts, variational approaches were taken
to minimize/maximize a surrogate function instead of minimizing/maximizing an empirical mutual
information loss function directly [80]. In an effort to bridge theory and practice, we present a general
data-driven framework to design privacy mechanisms that can capture a range of information-theoretic
privacy metrics as loss functions. We will show how our framework leads to very practical (generative
adversarial) data-driven formulations that match their corresponding theoretical formulations.

In the context of publishing datasets with privacy and utility guarantees, a number of similar
approaches have been recently considered. We briefly review them and clarify how our work is
different. In [81], the author presents a data-driven methodology to design filters in a way that allows
non-malicious entities to learn some public features from the filtered data, while preventing malicious
entities from learning other private features. While this approach is the closest to ours, the privatizer
model considered in [81] is quite restrictive: a deterministic, compressive mapping of the input data
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with differentially private noise added either before or after the mapping. However, differentially
private noise often leads to significant reduction in utility since it assumes worst-case dataset statistics.
We capture a broader class of randomization-based mechanisms via a generative model which allows
the privatizer to tailor the noise to the statistics of the dataset. Another restriction of [81] is the
approach considered to trade off utility and privacy: a weighted combination of two functions,
one that quantifies the utility of the privatized dataset and another that quantifies the adversary’s
performance. Such a Lagrangian formulation is commonly used to regularize machine learning
algorithms without having to solve constrained optimization problems. However, this approach
suffers from two important drawbacks: (i) it is often the case that the optimal privatization mechanism
lies on the boundary of the distortion constraints (this means that the Lagrangian formulation does not
make much sense for privacy applications because the Lagrangian objective is invariant/constant with
respect to the Lagrange multiplier when the optimal solution lies on the boundary of the constraint);
and (ii) the Lagragian formulation (whenever applicable) necessitates an excruciating tuning phase
where the privacy designer carefully selects the Lagrange multiplier to get a meaningful privacy-utility
tradeoff. Our formulation allows the designer to place a meaningful distortion constraint thereby
directly capturing the privacy-utility tradeoff.

In [82], the authors focus on inferences in mobile sensing applications by presenting an algorithmic
approach to preserving utility and privacy. Their approach relies on using auto-encoders to determine
the relevant feature space to add noise to, eliminating the need to add noise to the original data
(which can be very high dimensional). Thus, the data is compressed via a deep auto-encoder which
extracts the necessary features to enable learning of select public features. After extracting those low
dimensional features, differentially private noise is added to all the features and the original signal
is reconstructed. It is worthwhile to note that the autoencoder parameters are carefully selected not
just to minimize the `2 loss between the original and reconstructed signal but also to maximize the
performance of a linear classifier that attempts to learn the public features from the reconstructed
signal. This novel approach leverages deep auto-encoders to incorporate a notion of context-aware
privacy and achieve a better privacy-utility tradeoff while using DP to enforce privacy. However,
fundamentally, DP will still incur an insurmountable utility cost. Our approach follows similar steps
but replaces differential privacy (a context free notion) with a more meaningful context-aware notion
of privacy.

In [83], the authors consider linear adversarial models and linear privatizers. Specifically, they
ensure privacy by adding noise in directions that are orthogonal to the public features in the hope that
the “spaces” of the public and private features are orthogonal (or nearly orthogonal). Ideally, if the
public and private features are statistically orthogonal, the privatizer can add noise in directions along
which private features are concentrated. This allows the privatizer to achieve full privacy without
sacrificing utility. This work, though interesting, provides no rigorous quantification of privacy and
only investigates a restrictive class of linear adversaries and privatizers.

Our work is also closely related to adversarial neural cryptography [84] and learning censored
representations [85], in which adversarial learning is used to learn how to protect communications
by encryption or hide/remove sensitive information. Similar to these problems, our model includes
a minimax formulation and uses adversarial neural networks to learn privatization schemes. However,
in [85], the authors use non-generative auto-encoders to remove sensitive information, which do not
have an obvious generative interpretation. Instead, we use a GANs-like approach to learn privatization
schemes that prevent an adversary from inferring the private features. Furthermore, we go beyond
these works by studying a game-theoretic setting with constrained optimization and comparing the
performance of the privatization schemes learned in an adversarial fashion with the game-theoretically
optimal ones.

Finally, in [32], the authors take an approach similar to ours in considering an adversarial
formulation to share images between consumers and data curators. Their framework is not precisely
a GANs-like one but more analogous to [81] in that it takes a specific learning function for the attacker
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(adversary), which in turn is the loss function for the obfuscator (privatizer) and considers a Lagrangian
formulation for the utility-privacy tradeoff that the obfuscator computes.

We use conditional generative models to represent privatization schemes. Generative models
have recently received a lot of attention in the machine learning community [68–70,86,87]. Ultimately,
deep generative models hold the promise of discovering and efficiently internalizing the statistics
of the target signal to be generated. State-of-the-art generative models are trained in an adversarial
fashion [68,70]: the generated signal is fed into a discriminator which attempts to distinguish whether
the data is real (i.e., sampled from the true underlying distribution) or synthetic (i.e., generated from
a low dimensional noise sequence). Training generative models in an adversarial fashion has proven
to be successful in computer vision and enabled several exciting applications. Analogous to how the
generator is trained in GANs, we train the privatizer in an adversarial fashion by making it compete
with an attacker.

1.3. Outline

The remainder of our paper is organized as follows. We formally present our GAP model in
Section 2. We also show how, as a special case, it can recover several information theoretic notions
of privacy. We then study a simple (but canonical) binary dataset model in Section 3. In particular,
we present theoretically optimal PDD and PDI privatization schemes, and show how these schemes
can be learned from data using a generative adversarial network. In Section 4, we investigate binary
Gaussian mixture dataset models, and provide a variety of privatization schemes. We comment on
their theoretical performance and show how their parameters can be learned from data in a generative
adversarial fashion. Our proofs are deferred to Appendix A–C. We conclude our paper in Section 5
with a few remarks and interesting extensions.

2. Generative Adversarial Privacy Model

We consider a dataset D which contains both public and private variables for n individuals
(see Figure 1). We represent the public variables by a random variable X ∈ X , and the private
variables (which are typically correlated with the public variables) by a random variable Y ∈ Y .
Each dataset entry contains a pair of public and private variables denoted by (X, Y). Instances of
X and Y are denoted by x and y, respectively. We assume that each entry pair (X, Y) is distributed
according to P(X, Y), and is independent from other entry pairs in the dataset. Since the dataset
entries are independent of each other, we restrict our attention to memoryless mechanisms: privacy
mechanisms that are applied on each data entry separately. Formally, we define the privacy mechanism
as a randomized mapping given by

g(X, Y) : X ×Y → X .

We consider two different types of privatization schemes: (a) private data dependent (PDD)
schemes; and (b) private data independent (PDI) schemes. A privatization mechanism is PDD if its
output is dependent on both Y and X. It is PDI if its output only depends on X. PDD mechanisms are
naturally superior to PDI mechanisms. We show, in Sections 3 and 4, that there is a sizeable gap in
performance between these two approaches.

In our proposed GAP framework, the privatizer is pitted against an adversary. We model the
interactions between the privatizer and the adversary as a non-cooperative game. For a fixed g,
the goal of the adversary is to reliably infer Y from g(X, Y) using a strategy h. For a fixed adversarial
strategy h, the goal of the privatizer is to design g in a way that minimizes the adversary’s capability of
inferring the private variable from the perturbed data. The optimal privacy mechanism is obtained as
an equilibrium point at which both the privatizer and the adversary can not improve their strategies
by unilaterally deviating from the equilibrium point.
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2.1. Formulation

Given the output X̂ = g(X, Y) of a privacy mechanism g(X, Y), we define Ŷ = h(g(X, Y)) to
be the adversary’s inference of the private variable Y from X̂. To quantify the effect of adversarial
inference, for a given public-private pair (x, y), we model the loss of the adversary as

`(h(g(X = x, Y = y)), Y = y) : Y × Y → R.

Therefore, the expected loss of the adversary with respect to (w.r.t.) X and Y is defined to be

L(h, g) , E[`(h(g(X, Y)), Y)], (1)

where the expectation is taken over P(X, Y) and the randomness in g and h.
Intuitively, the privatizer would like to minimize the adversary’s ability to learn Y reliably from

the published data. This can be trivially done by releasing an X̂ independent of X. However, such
an approach provides no utility for data analysts who want to learn non-private variables from X̂.
To overcome this issue, we capture the loss incurred by privatizing the original data via a distortion
function d(x̂, x) : X ×X → R, which measures how far the original data X = x is from the privatized
data X̂ = x̂. Thus, the average distortion under g(X, Y) is E[d(g(X, Y), X)], where the expectation is
taken over P(X, Y) and the randomness in g.

On the one hand, the data holder would like to find a privacy mechanism g that is both privacy
preserving (in the sense that it is difficult for the adversary to learn Y from X̂) and utility preserving
(in the sense that it does not distort the original data too much). On the other hand, for a fixed choice
of privacy mechanism g, the adversary would like to find a (potentially randomized) function h that
minimizes its expected loss, which is equivalent to maximizing the negative of the expected loss.
To achieve these two opposing goals, we model the problem as a constrained minimax game between
the privatizer and the adversary:

min
g(·)

max
h(·)

− L(h, g) (2)

s.t. E[d(g(X, Y), X)] ≤ D,

where the constant D ≥ 0 determines the allowable distortion for the privatizer and the expectation is
taken over P(X, Y) and the randomness in g and h.

2.2. GAP under Various Loss Functions

The above formulation places no restrictions on the adversary. Indeed, different loss functions
and decision rules lead to different adversarial models. In what follows, we will discuss a variety of
loss functions under hard and soft decision rules, and show how our GAP framework can recover
several popular information theoretic privacy notions.

Hard Decision Rules. When the adversary adopts a hard decision rule, h(g(X, Y)) is an estimate
of Y. Under this setting, we can choose `(h(g(X, Y)), Y) in a variety of ways. For instance, if Y is
continuous, the adversary can attempt to minimize the difference between the estimated and true
private variable values. This can be achieved by considering a squared loss function

`(h(g(X, Y)), Y) = (h(g(X, Y))−Y)2, (3)

which is known as the `2 loss. In this case, one can verify that the adversary’s optimal decision rule
is h∗ = E[Y|g(X, Y)], which is the conditional mean of Y given g(X, Y). Furthermore, under the
adversary’s optimal decision rule, the minimax problem in (2) simplifies to

min
g(·)
−mmse(Y|g(X, Y)) = −max

g(·)
mmse(Y|g(X, Y)),



Entropy 2017, 19, 656 8 of 35

subject to the distortion constraint. Here mmse(Y|g(X, Y)) is the resulting minimum mean square error
(MMSE) under h∗ = E[Y|g(X, Y)]. Thus, under the `2 loss, GAP provides privacy guarantees against
an MMSE adversary. On the other hand, when Y is discrete (e.g., age, gender, political affiliation, etc.),
the adversary can attempt to maximize its classification accuracy. This is achieved by considering a 0-1
loss function [88] given by

`(h(g(X, Y)), Y) =

{
0 if h(g(X, Y)) = Y
1 otherwise

. (4)

In this case, one can verify that the adversary’s optimal decision rule is the maximum a posteriori
probability (MAP) decision rule: h∗ = argmaxy∈Y P(y|g(X, Y)), with ties broken uniformly at random.
Moreover, under the MAP decision rule, the minimax problem in (2) reduces to

min
g(·)
−(1−max

y∈Y
P(y, g(X, Y))) = min

g(·)
max
y∈Y

P(y, g(X, Y))− 1, (5)

subject to the distortion constraint. Thus, under a 0-1 loss function, the GAP formulation provides
privacy guarantees against a MAP adversary.

Soft Decision Rules. Instead of a hard decision rule, we can also consider a broader class of soft
decision rules where h(g(X, Y)) is a distribution over Y ; i.e., h(g(X, Y)) = Ph(y|g(X, Y)) for y ∈ Y .
In this context, we can analyze the performance under a log-loss

`(h(g(X, Y)), y) = log
1

Ph(y|g(X, Y))
. (6)

In this case, the objective of the adversary simplifies to

max
h(·)
−E[log

1
Ph(y|g(X, Y))

] = −H(Y|g(X, Y)),

and that the maximization is attained at P∗h (y|g(X, Y)) = P(y|g(X, Y)). Therefore, the optimal
adversarial decision rule is determined by the true conditional distribution P(y|g(X, Y)), which
we assume is known to the data holder in the game-theoretic setting. Thus, under the log-loss function,
the minimax optimization problem in (2) reduces to

min
g(·)
−H(Y|g(X, Y)) = min

g(·)
I(g(X, Y); Y)− H(Y),

subject to the distortion constraint. Thus, under the log-loss in (6), GAP is equivalent to using MI as
the privacy metric [38].

The 0-1 loss captures a strong guessing adversary; in contrast, log-loss or information-loss models
a belief refining adversary. Next, we consider a more general α-loss function [89] that allows continuous
interpolation between these extremes via

`(h(g(X, Y)), y) =
α

α− 1

(
1− Ph(y|g(X, Y))1− 1

α

)
, (7)

for any α > 1. As shown in [89], for very large α (α → ∞), this loss approaches that of the 0-1
(MAP) adversary. As α decreases, the convexity of the loss function encourages the estimator Ŷ to
be probabilistic, as it increasingly rewards correct inferences of lesser and lesser likely outcomes
(in contrast to a hard decision rule by a MAP adversary of the most likely outcome) conditioned on
the revealed data. As α → 1, (7) yields the logarithmic loss, and the optimal belief PŶ is simply the
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posterior belief. Denoting Ha
α(Y|g(Y, X)) as the Arimoto conditional entropy of order α, one can verify

that [89]

max
h(·)
−E
[

α

α− 1

(
1− Ph(y|g(X, Y))1− 1

α

) ]
= −Ha

α(Y|g(X, Y)),

which is achieved by a ‘α-tilted’ conditional distribution [89]

P∗h (y|g(X, Y)) =
P(y|g(X, Y))α

∑
y∈Y

P(y|g(X, Y))α
.

Under this choice of a decision rule, the objective of the minimax optimization in (2) reduces to

min
g(·)
−Ha

α(Y|g(X, Y)) = min
g(·)

Ia
α(g(X, Y); Y)− Hα(Y), (8)

where Ia
α is the Arimoto mutual information and Hα is the Rényi entropy. Note that as α → 1,

we recover the classical MI privacy setting and when α→ ∞, we recover the 0-1 loss.

2.3. Data-Driven GAP

So far, we have focused on a setting where the data holder has access to P(X, Y). When P(X, Y)
is known, the data holder can simply solve the constrained minimax optimization problem in (2)
(theoretical version of GAP) to obtain a privatization mechanism that would perform best against
a chosen type of adversary. In the absence of P(X, Y), we propose a data-driven version of GAP
that allows the data holder to learn privatization mechanisms directly from a dataset of the form
D = {(x(i), y(i))}n

i=1. Under the data-driven version of GAP, we represent the privacy mechanism via
a conditional generative model g(X, Y; θp) parameterized by θp. This generative model takes (X, Y)
as inputs and outputs X̂. In the training phase, the data holder learns the optimal parameters θp by
competing against a computational adversary: a classifier modeled by a neural network h(g(X, Y; θp); θa)

parameterized by θa. After convergence, we evaluate the performance of the learned g(X, Y; θ∗p) by
computing the maximal probability of inferring Y under the MAP adversary studied in the theoretical
version of GAP.

We note that in theory, the functions h and g can (in general) be arbitrary; i.e., they can capture all
possible learning algorithms. However, in practice, we need to restrict them to a rich hypothesis class.
Figure 3 shows an example of the GAP model in which the privatizer and adversary are modeled as
multi-layer “randomized” neural networks. For a fixed h and g, we quantify the adversary’s empirical
loss using a continuous and differentiable function

LEMP(θp, θa) =
1
n

n

∑
i=1

`(h(g(x(i), y(i); θp); θa), y(i)), (9)

where (x(i), y(i)) is the ith row of D and `(h(g(x(i), y(i); θp); θa), y(i)) is the adversary loss in the
data-driven context. The optimal parameters for the privatizer and adversary are the solution to

min
θp

max
θa

− LEMP(θp, θa) (10)

s.t. ED [d(g(X, Y; θp), X)] ≤ D,

where the expectation is taken over the dataset D and the randomness in g.
In keeping with the now common practice in machine learning, in the data-driven approach for

GAP, one can use the empirical log-loss function [90,91] given by (9) with

`(h(g(x(i), y(i); θp); θa), y(i)) = −y(i) log h(g(x(i), y(i); θp); θa)− (1− y(i)) log(1− h(g(x(i), y(i); θp); θa)),
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which leads to a minimum cross-entropy adversary. As a result, the empirical loss of the adversary is
quantified by the cross-entropy

LXE(θp, θa) = −
1
n

n

∑
i=1

y(i) log h(g(x(i), y(i); θp); θa) + (1− y(i)) log(1− h(g(x(i), y(i); θp); θa)). (11)

An alternative loss that can be readily used in this setting is the α-loss introduced in Section 2.2.
In the data-driven context, the α-loss can be written as

`(h(g(x(i), y(i); θp); θa), y(i)) =
α

α− 1

(
y(i)(1− h(g(x(i), y(i); θp); θa)

1− 1
α )

+(1− y(i))(1− (1− h(g(x(i), y(i); θp); θa))
1− 1

α )
)

, (12)

for any constant α > 1. As discussed in Section 2.2, the α-loss captures a variety of adversarial models
and recovers both the log-loss (when α→ 1) and 0-1 loss (when α→ ∞). Futhermore, (12) suggests
that α-leakage can be used as a surrogate (and smoother) loss function for the 0-1 loss (when α is
relatively large).

Privatizer Adversary

𝑋 𝑌

𝜃𝑝 𝜃𝑎

Input layer Hidden layer Output layer Input layer Hidden layer Output layer

𝑌

𝑋
Sampling

Noise

Figure 3. A multi-layer neural network model for the privatizer and adversary.

The minimax optimization problem in (10) is a two-player non-cooperative game between the
privatizer and the adversary. The strategies of the privatizer and adversary are given by θp and
θa, respectively. Each player chooses the strategy that optimizes its objective function w.r.t. what
its opponent does. In particular, the privatizer must expect that if it chooses θp, the adversary will
choose a θa that maximizes the negative of its own loss function based on the choice of the privatizer.
The optimal privacy mechanism is given by the equilibrium of the privatizer-adversary game.

In practice, we can learn the equilibrium of the game using an iterative algorithm presented in
Algorithm 1. We first maximize the negative of the adversary’s loss function in the inner loop to
compute the parameters of h for a fixed g. Then, we minimize the privatizer’s loss function, which is
modeled as the negative of the adversary’s loss function, to compute the parameters of g for a fixed
h. To avoid over-fitting and ensure convergence, we alternate between training the adversary for k
epochs and training the privatizer for one epoch. This results in the adversary moving towards its
optimal solution for small perturbations of the privatizer [70].
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Algorithm 1 Alternating minimax privacy preserving algorithm

Input: dataset D, distortion parameter D, iteration number T
Output: Optimal privatizer parameter θp

procedure ALERNATE MINIMAX(D, D, T)
Initialize θ1

p and θ1
a

for t = 1, ..., T do
Random minibatch of M datapoints {x(1), ..., x(M)} drawn from full dataset
Generate {x̂(1), ..., x̂(M)} via x̂(i) = g(x(i), y(i); θt

p)

Update the parameter θt+1
a for the adversary

θt+1
a = arg max

θa
− 1

M

M

∑
i=1

`(h(x̂(i); θa), y(i))

Compute the descent direction ∇θp l(θp, θt+1
a ), where

`(θp, θt+1
a ) = − 1

M

M

∑
i=1

`(h(g(x(i), y(i); θp); θt+1
a ), y(i))

subject to 1
M ∑M

i=1[d(g(x(i), y(i); θp), x(i))] ≤ D
Perform line search along ∇θp l(θp, θt+1

a ) and update

θt+1
p = θt

p − αt∇θp`(θp, θt+1
a ), αt > 0

Exit if solution converged

return θt+1
p

To incorporate the distortion constraint into the learning algorithm, we use the penalty method [92]
and augmented Lagrangian method [93] to replace the constrained optimization problem by a series of
unconstrained problems whose solutions asymptotically converge to the solution of the constrained
problem. Under the penalty method, the unconstrained optimization problem is formed by adding
a penalty to the objective function. The added penalty consists of a penalty parameter ρt multiplied
by a measure of violation of the constraint. The measure of violation is non-zero when the constraint
is violated and is zero if the constraint is not violated. Therefore, in Algorithm 1, the constrained
optimization problem of the privatizer can be approximated by a series of unconstrained optimization
problems with the loss function

`(θp, θt+1
a ) =− 1

M

M

∑
i=1

`(h(g(x(i), y(i); θp); θt+1
a ), y(i)) (13)

+ ρt max{0,
1
M

M

∑
i=1

d(g(x(i), y(i); θp), x(i))− D},

where ρt is a penalty coefficient which increases with the number of iterations t. For convex
optimization problems, the solution to the series of unconstrained problems will eventually converge
to the solution of the original constrained problem [92].

The augmented Lagrangian method is another approach to enforce equality constraints by
penalizing the objective function whenever the constraints are not satisfied. Different from the penalty
method, the augmented Lagrangian method combines the use of a Lagrange multiplier and a quadratic
penalty term. Note that this method is designed for equality constraints. Therefore, we introduce
a slack variable δ to convert the inequality distortion constraint into an equality constraint. Using the
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augmented Lagrangian method, the constrained optimization problem of the privatizer can be replaced
by a series of unconstrained problems with the loss function given by

`(θp, θt+1
a , δ) =− 1

M

M

∑
i=1

`(h(g(x(i), y(i); θp); θt+1
a ), y(i)) (14)

+
ρt

2
(

1
M

M

∑
i=1

d(g(x(i), y(i); θp), x(i)) + δ− D)2

− λt(
1
M

M

∑
i=1

d(g(x(i), y(i); θp), x(i)) + δ− D),

where ρt is a penalty coefficient which increases with the number of iterations t and λt is updated

according to the rule λt+1 = λt − ρt(
1
M

M
∑

i=1
d(g(x(i), y(i); θp), x(i)) + δ− D). For convex optimization

problems, the solution to the series of unconstrained problems formulated by the augmented
Lagrangian method also converges to the solution of the original constrained problem [93].

2.4. Our Focus

Our GAP framework is very general and can be used to capture many notions of privacy via
various decision rules and loss funcitons. In the rest of this paper, we investigate GAP under 0-1 loss for
two simple dataset models: (a) the binary data model (Section 3); and (b) the binary Gaussian mixture
model (Section 4). Under the binary data model, both X and Y are binary. Under the binary Gaussian
mixture model, Y is binary whereas X is conditionally Gaussian. We use these results to validate that
the data-driven version of GAP can discover “theoretically optimal” privatization schemes.

In the data-driven approach of GAP, since P(X, Y) is typically unknown in practice and our
objective is to learn privatization schemes directly from data, we have to consider the empirical
(data-driven) version of (5). Such an approach immediately hits a roadblock because taking derivatives
of a 0-1 loss function w.r.t. the parameters of h and g is ill-defined. To circumvent this issue, similar to
the common practice in the ML literature, we use the empirical log-loss (see Equation (11)) as the loss
function for the adversary. We derive game-theoretically optimal mechanisms for the 0-1 loss function,
and use them as a benchmark against which we compare the performance of the data-driven GAP
mechanisms.

3. Binary Data Model

In this section, we study a setting where both the public and private variables are binary valued
random variables. Let pi,j denote the joint probability of (X, Y) = (i, j), where i, j ∈ {0, 1}. To prevent
an adversary from correctly inferring the private variable Y from the public variable X, the privatizer
applies a randomized mechanism on X to generate the privatized data X̂. Since both the original
and privatized public variables are binary, the distortion between x and x̂ can be quantified by the
Hamming distortion; i.e., d(x̂, x) = 1 if x̂ 6= x and d(x̂, x) = 0 if x̂ = x. Thus, the expected distortion is
given by E[d(X̂, X)] = P(X̂ 6= X).

3.1. Theoretical Approach for Binary Data Model

The adversary’s objective is to correctly guess Y from X̂. We consider a MAP adversary who
has access to the joint distribution of (X, Y) and the privacy mechanism. The privatizer’s goal is to
privatize X in a way that minimizes the adversary’s probability of correctly inferring Y from X̂ subject
to the distortion constraint. We first focus on private-data dependent (PDD) privacy mechanisms that
depend on both Y and X. We later consider private-data independent (PDI) privacy mechanisms that
only depend on X.
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3.1.1. PDD Privacy Mechanism

Let g(X, Y) denote a PDD mechanism. Since X, Y, and X̂ are binary random variables,
the mechanism g(X, Y) can be represented by the conditional distribution P(X̂|X, Y) that maps the
public and private variable pair (X, Y) to an output X̂ given by

P(X̂ = 0|X = 0, Y = 0) = s0,0, P(X̂ = 0|X = 0, Y = 1) = s0,1,

P(X̂ = 1|X = 1, Y = 0) = s1,0, P(X̂ = 1|X = 1, Y = 1) = s1,1.

Thus, the marginal distribution of X̂ is given by

P(X̂ = 0) = ∑
X,Y

P(X̂ = 0|X, Y)P(X, Y) = s0,0 p0,0 + s0,1 p0,1 + (1− s1,0)p1,0 + (1− s1,1)p1,1,

P(X̂ = 1) = ∑
X,Y

P(X̂ = 1|X, Y)P(X, Y) = (1− s0,0)p0,0 + (1− s0,1)p0,1 + s1,0 p1,0 + s1,1 p1,1.

If X̂ = 0, the adversary’s inference accuracy for guessing Ŷ = 1 is

P(Y = 1, X̂ = 0) = ∑
X

P(X, Y = 1)P(X̂ = 0|X, Y = 1) = p1,1(1− s1,1) + p0,1s0,1, (15)

and the inference accuracy for guessing Ŷ = 0 is

P(Y = 0, X̂ = 0) = ∑
X

P(X, Y = 0)P(X̂ = 0|X, Y = 0) = p1,0(1− s1,0) + p0,0s0,0. (16)

Let s = {s0,0, s0,1, s1,0, s1,1}. For X̂ = 0, the MAP adversary’s inference accuracy is given by

P(B)
d (s, X̂ = 0) = max{P(Y = 1, X̂ = 0), P(Y = 0, X̂ = 0)}. (17)

Similarly, if X̂ = 1, the MAP adversary’s inference accuracy is given by

P(B)
d (s, X̂ = 1) = max{P(Y = 1, X̂ = 1), P(Y = 0, X̂ = 1)}, (18)

where

P(Y = 1, X̂ = 1) = ∑
X

P(X, Y = 1)P(X̂ = 1|X, Y = 1) = p1,1s1,1 + p0,1(1− s0,1), (19)

P(Y = 0, X̂ = 1) = ∑
X

P(X, Y = 0)P(X̂ = 1|X, Y = 0) = p1,0s1,0 + p0,0(1− s0,0).

As a result, for a fixed privacy mechanism s, the MAP adversary’s inference accuracy can be
written as

P(B)
d = max

h(·)
P(h(g(X, Y)) = Y) = P(B)

d (s, X̂ = 0) + P(B)
d (s, X̂ = 1).

Thus, the optimal PDD privacy mechanism is determined by solving

min
s

P(B)
d (s, X̂ = 0) + P(B)

d (s, X̂ = 1) (20)

s.t. P(X̂ = 0, X = 1) + P(X̂ = 1, X = 0) ≤ D

s ∈ [0, 1]4.
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Notice that the above constrained optimization problem is a four dimensional optimization
problem parameterized by p = {p0,0, p0,1, p1,0, p1,1} and D. Interestingly, we can formulate (20) as
a linear program (LP) given by

min
s1,1,s0,1,s1,0,s0,0,t0,t1

t0 + t1 (21)

s.t. 0 ≤ s1,1, s0,1, s1,0, s0,0 ≤ 1

p1,1(1− s1,1) + p0,1s0,1 ≤ t0

p1,0(1− s1,0) + p0,0s0,0 ≤ t0

p1,1s1,1 + p0,1(1− s0,1) ≤ t1

p1,0s1,0 + p0,0(1− s0,0) ≤ t1

p1,1(1− s1,1) + p0,1(1− s0,1) + p1,0(1− s1,0) + p0,0(1− s0,0) ≤ D,

where t0 and t1 are two slack variables representing the maxima in (17) and (18), respectively. The optimal
mechanism can be obtained by numerically solving (21) using any off-the-shelf LP solver.

3.1.2. PDI Privacy Mechanism

In the previous section, we considered PDD privacy mechanisms. Although we were able to
formulate the problem as a linear program with four variables, determining a closed form solution for
such a highly parameterized problem is not analytically tractable. Thus, we now consider the simple
(yet meaningful) class of PDI privacy mechanisms. Under PDI privacy mechanisms, the Markov chain
Y→ X→ X̂ holds. As a result, P(Y, X̂ = x̂) can be written as

P(Y, X̂ = x̂) = ∑
X

P(Y, X̂ = x̂|X)P(X) (22)

= ∑
X

P(Y|X)P(X̂ = x̂|X)P(X) (23)

= ∑
X

P(Y, X)P(X̂ = x̂|X), (24)

where the second equality is due to the conditional independence property of the Markov chain
Y→ X→ X̂.

For the PDI mechanisms, the privacy mechanism g(X, Y) can be represented by the conditional
distribution P(X̂|X). To make the problem more tractable, we focus on a slightly simpler setting in
which Y = X⊕ N, where N ∈ {0, 1} is a random variable independent of X and follows a Bernoulli
distribution with parameter q. In this setting, the joint distribution of (X, Y) can be computed as

P(X = 1, Y = 1) = P(Y = 1|X = 1)P(X = 1) = p(1− q), (25)

P(X = 0, Y = 1) = P(Y = 1|X = 0)P(X = 0) = (1− p)q, (26)

P(X = 1, Y = 0) = P(Y = 0|X = 1)P(X = 1) = pq, (27)

P(X = 0, Y = 0) = P(Y = 0|X = 0)P(X = 0) = (1− p)(1− q). (28)

Let s = {s0, s1} in which s0 = P(X̂ = 0|X = 0) and s1 = P(X̂ = 1|X = 1). The joint distribution of
(Y, X̂) is given by

P(Y = 1, X̂ = 0) = p(1− q)(1− s1) + (1− p)qs0,

P(Y = 0, X̂ = 0) = pq(1− s1) + (1− p)(1− q)s0,

P(Y = 1, X̂ = 1) = p(1− q)s1 + (1− p)q(1− s0),

P(Y = 0, X̂ = 1) = pqs1 + (1− p)(1− q)(1− s0).
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Using the above joint probabilities, for a fixed s, we can write the MAP adversary’s inference
accuracy as

P(B)
d = max

h(·)
P(h(g(X, Y)) = Y) = max{P(Y = 1, X̂ = 0), P(Y = 0, X̂ = 0)} (29)

+max{P(Y = 1, X̂ = 1), P(Y = 0, X̂ = 1)}.

Therefore, the optimal PDI privacy mechanism is given by the solution to

min
s

P(B)
d (30)

s.t. P(X̂ = 0, X = 1) + P(X̂ = 1, X = 0) ≤ D

s ∈ [0, 1]2,

where the distortion in (30) is given by (1− s0)(1− p) + (1− s1)p. By (29), P(B)
d can be considered as

a sum of two functions, where each function is a maximum of two linear functions. Therefore, it is
convex in s0 and s1 for different values of p, q and D.

Theorem 1. For fixed p, q and D, there exists infinitely many PDI privacy mechanisms that achieve the optimal
privacy-utility tradeoff. If q = 1

2 , any privacy mechanism that satisfies {s0, s1|ps1 +(1− p)s0 ≥ 1−D, s0, s1 ∈
[0, 1]} is optimal. If q 6= 1

2 , the optimal PDI privacy mechanism is given as follows:

• If 1− D > max{p, 1− p}, the optimal privacy mechanism is given by {s0, s1|ps1 + (1− p)s0 = 1−
D, s0, s1 ∈ [0, 1]}. The adversary’s accuracy of correctly guessing the private variable is{

(1− 2q)(1−D) + q if q < 1
2

(2q− 1)(1−D) + 1− q if q > 1
2

. (31)

• Otherwise, the optimal privacy mechanism is given by {s0, s1|max{min{p, 1− p}, 1−D} ≤ ps1 + (1−
p)s0 ≤ max{p, 1− p}, s0, s1 ∈ [0, 1]} and the adversary’s accuracy of correctly guessing the private
variable is {

p(1− q) + (1− p)q if p ≥ 1
2 , q < 1

2 or p ≤ 1
2 , q > 1

2
pq + (1− p)(1− q) if p ≥ 1

2 , q > 1
2 or p ≤ 1

2 , q < 1
2

. (32)

Proof sketch: The proof of Theorem 1 is provided in Appendix A. We briefly sketch the proof details
here. For the special case q = 1

2 , the solution is trivial since the private variable Y is independent of
the public variable X. Thus, the optimal solution is given by any s0, s1 that satisfies the distortion
constraint {s0, s1|ps1 + (1− p)s0 ≥ 1− D, s0, s1 ∈ [0, 1]}. For q 6= 1

2 , we separate the optimization
problem in (30) into four subproblems based on the decision of the adversary. We then compute the
optimal privacy mechanism of the privatizer in each subproblem. Summarizing the optimal solutions
to the subproblems for different values of p, q and D yields Theorem 1.

3.2. Data-driven Approach for Binary Data Model

In practice, the joint distribution of (X, Y) is often unknown to the data holder. Instead, the
data holder has access to a dataset D, which is used to learn a good privatization mechanism in
a generative adversarial fashion. In the training phase, the data holder learns the parameters of
the conditional generative model (representing the privatization scheme) by competing against a
computational adversary represented by a neural network. The details of both neural networks are
provided later in this section. When convergence is reached, we evaluate the performance of the learned
privatization scheme by computing the accuracy of inferring Y under a strong MAP adversary that:
(a) has access to the joint distribution of (X, Y); (b) has knowledge of the learned privacy mechanism;



Entropy 2017, 19, 656 16 of 35

and (c) can compute the MAP rule. Ultimately, the data holder’s hope is to learn a privatization scheme
that matches the one obtained under the game-theoretic framework, where both the adversary and
privatizer are assumed to have access to P(X, Y). To evaluate our data-driven approach, we compare
the mechanisms learned in an adversarial fashion on D with the game-theoretically optimal ones.

Since the private variable Y is binary, we use the empirical log-loss function for the
adversary (see Equation (11)). For a fixed θp, the adversary learns the optimal θ∗a by maximizing
−LXE(h(g(X, Y; θp); θa), Y) given in Equation (11). For a fixed θa, the privatizer learns the optimal θ∗p by
minimizing−LXE(h(g(X, Y; θp); θa), Y) subject to the distortion constraint (see Equation (10)). Since both
X and Y are binary variables, we can use the privatizer parameter θp to represent the privacy mechanism
s directly. For the adversary, we define θa = (θa,0, θa,1), where θa,0 = P(Y = 0|X̂ = 0) and θa,1 = P(Y =

1|X̂ = 1). Thus, given a privatized public variable input g(x(i), y(i); θp) ∈ {0, 1}, the output belief of the
adversary guessing y(i) = 1 can be written as (1− θa,0)(1− g(x(i), y(i); θp)) + θa,1g(x(i), y(i); θp).

For PDD privacy mechanisms, we have θp = s = {s0,0, s0,1, s1,0, s1,1}. Given the fact that both x(i)
and y(i) are binary, we use two simple neural networks to model the privatizer and the adversary.
As shown in Figure 4, the privatizer is modeled as a single-layer neural network parameterized by s,
while the adversary is modeled as a two-layer neural network classifier. From the perspective of the
privatizer, the belief of an adversary guessing y(i) = 1 conditioned on the input (x(i), y(i)) is given by

h(g(x(i), y(i); s); θa) = θa,1P(x̂(i) = 1) + (1− θa,0)P(x̂(i) = 0), (33)

where

P(x̂(i) = 1) =x(i)y(i)s1,1 + (1− x(i))y(i)(1− s0,1)

+ x(i)(1− y(i))s1,0 + (1− x(i))(1− y(i))(1− s0,0),

P(x̂(i) = 0) =x(i)y(i)(1− s1,1) + (1− x(i))y(i)s0,1

+ x(i)(1− y(i))(1− s1,0) + (1− x(i))(1− y(i))s0,0.

Privatizer Network

Input

θ𝑎,0

Adversary Network

𝑋
(𝑋, 𝑌)

𝑠0,1

𝑠0,0

𝑠1,0

𝑠1,1
θ𝑎,1

𝑌 = θ𝑎,1 𝑋 + θ𝑎,0(1 − 𝑋 )

Sampling

Noise

Figure 4. Neural network structure of the privatizer and adversary for binary data model.

Furthermore, the expected distortion is given by

ED[d(g(X, Y; s), X)] =
1
n

n

∑
i=1

[x(i)y(i)(1− s1,1) + x(i)(1− y(i))(1− s1,0) (34)

+ (1− x(i))y(i)(1− s0,1) + (1− x(i))(1− y(i))(1− s0,0)].

Similar to the PDD case, we can also compute the belief of guessing y(i) = 1 conditional on the
input (x(i), y(i)) for the PDI schemes. Observe that in the PDI case, θp = s = {s0, s1}. Therefore, we have

h(g(x(i), y(i); s); θa) = θa,1[x(i)s1 + (1− x(i))(1− s0)] + (1− θa,0)[(1− x(i))s0 + x(i)(1− s1)]. (35)
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Under PDI schemes, the expected distortion is given by

ED [d(g(X, Y; s), X)] =
1
n

n

∑
i=1

[x(i)(1− s1) + (1− x(i))(1− s0)]. (36)

Thus, we can use Algorithm 1 proposed in Section 2.3 to learn the optimal PDD and PDI privacy
mechanisms from the dataset.

3.3. Illustration of Results

We now evaluate our proposed GAP framework using synthetic datasets. We focus on the setting
in which Y = X⊕ N, where N ∈ {0, 1} is a random variable independent of X and follows a Bernoulli
distribution with parameter q. We generate two synthetic datasets with (p, q) equal to (0.75, 0.25) and
(0.5, 0.25), respectively. Each synthetic dataset used in this experiment contains 10, 000 training samples
and 2000 test samples. We use Tensorflow [94] to train both the privatizer and the adversary using
Adam optimizer with a learning rate of 0.01 and a minibatch size of 200. The distortion constraint is
enforced by the penalty method provided in (13).

Figure 5a illustrates the performance of both optimal PDD and PDI privacy mechanisms against
a strong theoretical MAP adversary when (p, q) = (0.5, 0.25). It can be seen that the inference accuracy
of the MAP adversary reduces as the distortion increases for both optimal PDD and PDI privacy
mechanisms. As one would expect, the PDD privacy mechanism achieves a lower inference accuracy
for the adversary, i.e., better privacy, than the PDI mechanism. Furthermore, when the distortion
is higher than some threshold, the inference accuracy of the MAP adversary saturates regardless
of the distortion. This is due to the fact that the correlation between the private variable and the
privatized public variable cannot be further reduced once the distortion is larger than the saturation
threshold. Therefore, increasing distortion will not further reduce the accuracy of the MAP adversary.
We also observe that the privacy mechanism obtained via the data-driven approach performs very
well when pitted against the MAP adversary (maximum accuracy difference around 3% compared
to the theoretical approach). In other words, for the binary data model, the data-driven version of
GAP can yield privacy mechanisms that perform as well as the mechanisms computed under the
theoretical version of GAP, which assumes that the privatizer has access to the underlying distribution
of the dataset.

Figure 5b shows the performance of both optimal PDD and PDI privacy mechanisms against the
MAP adversary for (p, q) = (0.75, 0.25). Similar to the equal prior case, we observe that both PDD
and PDI privacy mechanisms reduce the accuracy of the MAP adversary as the distortion increases
and saturate when the distortion goes above a certain threshold. It can be seen that the saturation
thresholds for both PDD and PDI privacy mechanisms in Figure 5b are lower than the “equal prior”
case plotted in Figure 5a. The reason is that when (p, q) = (0.75, 0.25), the correlation between Y and X
is weaker than the “equal prior” case. Therefore, it requires less distortion to achieve the same privacy.
We also observe that the performance of the GAP mechanism obtained via the data-driven approach is
comparable to the mechanism computed via the theoretical approach.

The performance of the GAP mechanism obtained using the log-loss function (i.e., MI privacy)
is plotted in Figure 5c,d. Similar to the MAP adversary case, as the distortion increases, the mutual
information between the private variable and the privatized public variable achieved by the optimal
PDD and PDI mechanisms decreases as long as the distortion is below some threshold. When the
distortion goes above the threshold, the optimal privacy mechanism is able to make the private variable
and the privatized public variable independent regardless of the distortion. Furthermore, the values of
the saturation thresholds are very close to what we observe in Figure 5a,b.
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Figure 5. Privacy-distortion tradeoff for binary data model. (a) Performance of privacy mechanisms
against MAP adversary for p = 0.5; (b) Performance of privacy mechanisms against MAP adversary for
p = 0.75; (c) Performance of privacy mechanisms under MI privacy metric for p = 0.5; (d) Performance
of privacy mechanisms under MI privacy metric for p = 0.75.

4. Binary Gaussian Mixture Model

Thus far, we have studied a simple binary dataset model. In many real datasets, the sample
space of variables often takes more than just two possible values. It is well known that the Gaussian
distribution is a flexible approximate for many distributions [95]. Therefore, in this section, we study
a setting where Y ∈ {0, 1} and X is a Gaussian random variable whose mean and variance are
dependent on Y. Without loss of generality, let E[X|Y = 1] = −E[X|Y = 0] = µ and P(Y = 1) = p̃.
Thus, X|Y = 0 ∼ N (−µ, σ2

0 ) and X|Y = 1 ∼ N (µ, σ2
1 ).

Similar to the binary data model, we study two privatization schemes: (a) private-data
independent (PDI) schemes (where X̂ = g(X)); and (b) private-data dependent (PDD) schemes
(where X̂ = g(X, Y)). In order to have a tractable model for the privatizer, we assume g(X, Y) is
realized by adding an affine function of an independently generated random noise to the public
variable X. The affine function enables controlling both the mean and variance of the privatized data.
In particular, we consider g(X, Y) = X + (1−Y)β0 −Yβ1 + (1−Y)γ0N + Yγ1N, in which N is a one
dimensional random variable and β0, β1, γ0, γ1 are constant parameters. The goal of the privatizer is
to sanitze the public data X subject to the distortion constraint EX̂,X ||X̂− X||22 ≤ D.



Entropy 2017, 19, 656 19 of 35

4.1. Theoretical Approach for Binary Gaussian Mixture Model

We now investigate the theoretical approach under which both the privatizer and the adversary
have access to P(X, Y). To make the problem more tractable, let us consider a slightly simpler setting
in which σ0 = σ1 = σ. We will relax this assumption later when we take a data-driven approach.
We further assume that N is a standard Gaussian random variable. One might, rightfully, question our
choice of focusing on adding (potentially Y-dependent) Gaussian noise. Though other distributions
can be considered, our approach is motivated by the following two reasons:

(a) Even though it is known that adding Gaussian noise is not the worst case noise adding mechanism
for non-Gaussian X [72], identifying the optimal noise distribution is mathematically intractable.
Thus, for tractability and ease of analysis, we choose Gaussian noise.

(b) Adding Gaussian noise to each data entry preserves the conditional Gaussianity of the
released dataset.

In what follows, we will analyze a variety of PDI and PDD mechanisms.

4.1.1. PDI Gaussian Noise Adding Privacy Mechanism

We consider a PDI noise adding privatization scheme which adds an affine function of the
standard Gaussian noise to the public variable. Since the privacy mechanism is PDI, we have g(X, Y) =
X + β + γN, where β and γ are constant parameters and N ∼ N (0, 1). Using the classical Gaussian
hypothesis testing analysis [96], it is straightforward to verify that the optimal inference accuracy
(i.e., probability of detection) of the MAP adversary is given by

P(G)
d = p̃Q

(
−α

2
+

1
α

ln
(

1− p̃
p̃

))
+ (1− p̃)Q

(
−α

2
− 1

α
ln
(

1− p̃
p̃

))
, (37)

where α = 2µ√
γ2+σ2

and Q(x) = 1√
2π

∫ ∞
x exp(− u2

2 )du. Moreover, since EX̂,X [d(X̂, X)] = β2 + γ2,

the distortion constraint is equivalent to β2 + γ2 ≤ D.

Theorem 2. For a PDI Gaussian noise adding privatization scheme given by g(X, Y) = X + β + γN, with
β ∈ R and γ ≥ 0, the optimal parameters are given by

β∗ = 0, γ∗ =
√

D. (38)

Let α∗ = 2µ√
D+σ2 . For this optimal scheme, the accuracy of the MAP adversary is

P(G)*
d = p̃Q

(
−α∗

2
+

1
α∗

ln
(

1− p̃
p̃

))
+ (1− p̃)Q

(
−α∗

2
− 1

α∗
ln
(

1− p̃
p̃

))
. (39)

The proof of Theorem 2 is provided in Appendix B. We observe that the PDI Gaussian noise
adding privatization scheme which minimizes the inference accuracy of the MAP adversary with
distortion upper-bounded by D is to add a zero-mean Gaussian noise with variance D.

4.1.2. PDD Gaussian Noise Adding Privacy Mechanism

For PDD privatization schemes, we first consider a simple case in which γ0 = γ1 = 0. Without
loss of generality, we assume that both β0 and β1 are non-negative. The privatized data is given by
X̂ = X + (1− Y)β0 − Yβ1. This is a PDD mechanism since X̂ depends on both X and Y. Intuitively,
this mechanism privatizes the data by shifting the two Gaussian distributions (under Y = 0 and Y = 1)
closer to each other. Under this mechanism, it is easy to show that the adversary’s MAP probability
of inferring the private variable Y from X̂ is given by P(G)

d in (37) with α = 2µ−(β1+β0)
σ . Observe that
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since d(X̂, X) = ((1−Y)β0 −Yβ1)
2, we have EX̂,X [d(X̂, X)] = (1− p̃)β2

0 + p̃β2
1. Thus, the distortion

constraint implies (1− p̃)β2
0 + p̃β2

1 ≤ D.

Theorem 3. For a PDD privatization scheme given by g(X, Y) = X + (1 − Y)β0 − Yβ1, β0, β1 ≥ 0,
the optimal parameters are given by

β∗0 =

√
p̃D

1− p̃
, β∗1 =

√
(1− p̃)D

p̃
. (40)

For this optimal scheme, the accuracy of the MAP adversary is given by (37) with α =
2µ−(

√
(1− p̃)D

p̃ +
√

p̃D
1− p̃ )

σ .

The proof of Theorem 3 is provided in Appendix C. When P(Y = 1) = P(Y = 0) = 1
2 , we have

β0 = β1 =
√

D, which implies that the optimal privacy mechanism for this particular case is to shift
the two Gaussian distributions closer to each other equally by

√
D regardless of the variance σ2. When

P(Y = 1) = p̃ > 1
2 , the Gaussian distribution with a lower prior probability, in this case, X|Y = 0, gets

shifted p̃
1− p̃ times more than X|Y = 1.

Next, we consider a slightly more complicated case in which γ0 = γ1 = γ ≥ 0. Thus, the privacy
mechanism is given by g(X, Y) = X + (1− Y)β0 − Yβ1 + γN, where N ∼ N (0, 1). Intuitively, this
mechanism privatizes the data by shifting the two Gaussian distributions (under Y = 0 and Y = 1)
closer to each other and add another Gaussian noise N ∈ N (0, 1) scaled by a constant γ. In this case,
the MAP probability of inferring the private variable Y from X̂ is given by (37) with α = 2µ−(β1+β0)√

γ2+σ2
.

Furthermore, the distortion constraint is equivalent to (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D.

Theorem 4. For a PDD privatization scheme given by g(X, Y) = X + (1 − Y)β0 − Yβ1 + γN with
β0, β1, γ ≥ 0, the optimal parameters β∗0, β∗1, γ∗ are given by the solution to

min
β0,β1,γ

2µ− β0 − β1√
γ2 + σ2

(41)

s.t. (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D

β0, β1, γ ≥ 0.

Using this optimal scheme, the accuracy of the MAP adversary is given by (37) with α =
2µ−β∗0−β∗1√
(γ∗)2+σ2

.

Proof. Similar to the proofs of Theorem 2 and 3, we can compute the derivative of P(G)
d w.r.t. α. It is

easy to verify that P(G)
d is monotonically increasing with α. Therefore, the optimal mechanism is given

by the solution to (41). Substituting the optimal parameters into (37) yields the MAP probability of
inferring the private variable Y from X̂.

Remark: Note that the objective function in (41) only depends on β0 + β1 and γ. We define
β = β0 + β1. Thus, the above objective function can be written as

min
β,γ

2µ− β√
γ2 + σ2

. (42)

It is straightforward to verify that the determinant of the Hessian of (42) is always non-positive.
Therefore, the above optimization problem is non-convex in β and γ.

Finally, we consider the PDD Gaussian noise adding privatization scheme given by g(X, Y) = X +

(1−Y)β0−Yβ1 + (1−Y)γ0N +Yγ1N, where N ∼ N (0, 1). This PDD mechanism is the most general
one in the Gaussian noise adding setting and includes the two previous mechanisms. The objective of
the privatizer is to minimize the adversary’s probability of correctly inferring Y from g(X, Y) subject
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to the distortion constraint given by p̃((β1)
2 + (γ1)

2) + (1− p̃)((β0)
2 + (γ0)

2) ≤ D. As we have
discussed in the remark after Theorem 4, the problem becomes non-convex even for the simpler case
in which γ0 = γ1 = γ. In order to obtain the optimal parameters for this case, we first show that the
optimal privacy mechanism lies on the boundary of the distortion constraint.

Proposition 1. For the privacy mechanism given by g(X, Y) = X + (1− Y)β0 − Yβ1 + (1− Y)γ0N +

Yγ1N, the optimal parameters β∗0, β∗1, γ∗0 , γ∗1 satisfy p̃((β∗1)
2 + (γ∗1)

2) + (1− p̃)((β∗0)
2 + (γ∗0)

2) = D.

Proof. We prove the above statement by contradiction. Assume that the optimal parameters satisfy
p̃((β∗1)

2 + (γ∗1)
2) + (1 − p̃)((β∗0)

2 + (γ∗0)
2) < D. Let β̃1 = β∗1 + c, where c > 0 is chosen so that

p̃((β̃1)
2 + (γ∗1)

2) + (1 − p̃)((β∗0)
2 + (γ∗0)

2) = D. Since the inference accuracy is monotonically
decreasing with β1, the resultant inference accuracy can only be lower for replacing β∗1 with β̃1.
This contradicts with the assumption that p̃((β∗1)

2 + (γ∗1)
2) + (1− p̃)((β∗0)

2 + (γ∗0)
2) < D. Using the

same type of analysis, we can show that any parameter that deviates from p̃((β∗1)
2 + (γ∗1)

2) + (1− p̃)
((β∗0)

2 + (γ∗0)
2) = D is suboptimal.

Let e2
0 = (β∗0)

2 + (γ∗0)
2 and e2

1 = (β∗1)
2 + (γ∗1)

2. Since the optimal parameters of the privatizer
lie on the boundary of the distortion constraint, we have p̃e2

1 + (1− p̃)e2
0 = D. This implies (e0, e1)

lies on the boundary of an ellipse parametrized by p̃ and D. Thus, we have e1 =
√

D
p̃

1−ε2

1+ε2 and

e0 = 2
√

D
1− p̃

ε
1+ε2 , where ε ∈ [0, 1]. Therefore, the optimal parameters satisfy

(β∗0)
2 + (γ∗0)

2 =

[
2

√
D

1− p̃
ε

1 + ε2

]2

, (β∗1)
2 + (γ∗1)

2 =

[√
D
p̃

1− ε2

1 + ε2

]2

. (43)

This implies (β∗i , γ∗i ), i ∈ {0, 1} lie on the boundary of two circles parametrized by D, p̃ and ε.
Thus, we can write β∗0, β∗1, γ∗0 , γ∗1 as

β∗0 = 2

√
D

1− p̃
ε

1 + ε2
1− w2

0
1 + w2

0
, β∗1 =

√
D
p̃

1− ε2

1 + ε2
1− w2

1
1 + w2

1
, (44)

γ∗0 = 4

√
D

1− p̃
ε

1 + ε2
w0

1 + w2
0

, γ∗1 = 2

√
D
p̃

1− ε2

1 + ε2
w1

1 + w2
1

,

where ε, w0, w1 ∈ [0, 1]. The optimal parameters β∗0, β∗1, γ∗0 , γ∗1 can be computed by a grid search in
the cube parametrized by ε, w0, w1 ∈ [0, 1] that minimizes the accuracy of the MAP adversary. In the
following section, we will use this general PDD Gaussian noise adding privatization scheme in our
data-driven simulations and compare the performance of the privacy mechanisms obtained by both
theoretical and data-driven approaches.

4.2. Data-driven Approach for Binary Gaussian Mixture Model

To illustrate our data-driven GAP approach, we assume the privatizer only has access to
the dataset D but does not know the joint distribution of (X, Y). Finding the optimal privacy
mechanism becomes a learning problem. In the training phase, we use the empirical log-loss function
LXE(h(g(X, Y; θp); θa), Y) provided in (11) for the adversary. Thus, for a fixed privatizer parameter
θp, the adversary learns the optimal parameter θ∗a that maximizes −LXE(h(g(X, Y; θp); θa), Y). On the
other hand, the optimal parameter for the privacy mechanism is obtained by solving (10). After
convergence, we use the learned data-driven GAP mechanism to compute the accuracy of inferring the
private variable under a strong MAP adversary. We evaluate our data-driven approach by comparing
the mechanisms learned in an adversarial fashion on D with the game-theoretically optimal ones in
which both the adversary and privatizer are assumed to have access to P(X, Y).



Entropy 2017, 19, 656 22 of 35

We consider the PDD Gaussian noise adding privacy mechanism given by g(X, Y) = X + (1−
Y)β0−Yβ1 + (1−Y)γ0N +Yγ1N. Similar to the binary setting, we use two neural networks to model
the privatizer and the adversary. As shown in Figure 6, the privatizer is modeled by a two-layer neural
network with parameters β0, β1, γ0, γ1 ∈ R. The adversary, whose goal is to infer Y from privatized
data X̂, is modeled by a three-layer neural network classifier with leaky ReLU activations. The random
noise is drawn from a standard Gaussian distribution N ∼ N (0, 1).

Privatizer Network

Input

Adversary Network

Gaussian Noise

Figure 6. Neural network structure of the privatizer and adversary for binary Gaussian mixture model.

In order to enforce the distortion constraint, we use the augmented Lagrangian method to penalize
the learning objective when the constraint is not satisfied. In the binary Gaussian mixture model
setting, the augmented Lagrangian method uses two parameters, namely λt and ρt to approximate the
constrained optimization problem by a series of unconstrained problems. Intuitively, a large value
of ρt enforces the distortion constraint to be binding, whereas λt is an estimate of the Lagrangian
multiplier. To obtain the optimal solution of the constrained optimization problem, we solve a series of
unconstrained problems given by (14).

4.3. Illustration of Results

We use synthetic datasets to evaluate our proposed GAP framework. We consider four synthetic
datasets shown in Table 1. Each synthetic dataset used in this experiment contains 20,000 training
samples and 2000 test samples. We use Tensorflow to train both the privatizer and the adversary using
Adam optimizer with a learning rate of 0.01 and a minibatch size of 200.

Table 1. Synthetic datasets.

Dataset P(Y = 1) X|Y = 0 X|Y = 1

1 0.5 N (−3, 1) N (3, 1)
2 0.5 N (−3, 4) N (3, 1)
3 0.75 N (−3, 1) N (3, 1)
4 0.75 N (−3, 4) N (3, 1)

Figure 7a,b illustrate the performance of the optimal PDD Gaussian noise adding mechanisms
against the strong theoretical MAP adversary when P(Y = 1) = 0.5 and P(Y = 1) = 0.75, respectively.
It can be seen that the optimal mechanisms obtained by both theoretical and data-driven approaches
reduce the inference accuracy of the MAP adversary as the distortion increases. Similar to the binary
data model, we observe that the accuracy of the adversary saturates when the distortion crosses
some threshold. Moreover, it is worth pointing out that for the binary Gaussian mixture setting,
we also observe that the privacy mechanism obtained through the data-driven approach performs very
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well when pitted against the MAP adversary (maximum accuracy difference around 6% compared
with theoretical approach). In other words, for the binary Gaussian mixture model, the data-driven
approach for GAP can generate privacy mechanisms that are comparable, in terms of performance,
to the theoretical approach, which assumes the privatizer has access to the underlying distribution of
the data.
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Figure 7. Privacy-distortion tradeoff for binary Gaussian mixture model. (a) Performance of PDD
mechanisms against MAP adversary for p = 0.5; (b) Performance of PDD mechanisms against MAP
adversary for p = 0.75.

Figures 8–13 show the privatization schemes for different datasets. The intuition of this Gaussian
noise adding mechanism is to shift distributions of X|Y = 0 and X|Y = 1 closer and scale the variances
to preserve privacy. When P(Y = 0) = P(Y = 1) and σ0 = σ1, the privatizer shifts and scales the
two distributions almost equally. Furthermore, the resultant X̂|Y = 0 and X̂|Y = 1 have very similar
distributions. We also observe that if P(Y = 0) 6= P(Y = 1), the public variable whose corresponding
private variable has a lower prior probability gets shifted more. It is also worth mentioning that when
σ0 6= σ1, the public variable with a lower variance gets scaled more.

The optimal privacy mechanisms obtained via the data-driven approach under different datasets
are presented in Tables 2–5. In each table, D is the maximum allowable distortion. β0, β1, γ0, and γ1

are the parameters of the privatizer neural network. These learned parameters dictate the statistical
model of the privatizer, which is used to sanitize the dataset. We use acc to denote the inference
accuracy of the adversary using a test dataset and xent to denote the converged cross-entropy of
the adversary. The column titled distance represents the average distortion ED‖X− X̂‖2 that results
from sanitizing the test dataset via the learned privatization scheme. Pdetect is the MAP adversary’s
inference accuracy under the learned privatization scheme, assuming that the adversary: (a) has access
to the joint distribution of (X, Y); (b) has knowledge of the learned privatization scheme; and (c) can
compute the MAP rule. Pdetect-theory is the “lowest” inference accuracy we get if the privatizer had
access to the joint distribution of (X, Y), and used this information to compute the parameters of the
privatization scheme based on the approach provided at the end of Section 4.1.2.
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Figure 8. Raw test samples, equal variance.

(a) (b) (c)

Figure 9. Prior P(Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1). (a) D = 1; (b) D = 3;
(c) D = 8.

(a) (b) (c)

Figure 10. Prior P(Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1). (a) D = 1; (b) D = 3;
(c) D = 8.
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Figure 11. Raw test samples, unequal variance.

(a) (b) (c)

Figure 12. Prior P(Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4). (a) D = 1; (b) D = 3;
(c) D = 8.

(a) (b) (c)

Figure 13. Prior P(Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4). (a) D = 1; (b) D = 3;
(c) D = 8.
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Table 2. Prior P(Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1).

D β0 β1 γ0 γ1 acc xent Distance Pdetect Pdetect−theory

1 0.5214 0.5214 0.7797 0.7797 0.9742 0.0715 0.9776 0.9747 0.9693
2 0.9861 0.9861 1.0028 1.0029 0.9169 0.1974 1.9909 0.9225 0.9213
3 1.3819 1.3819 1.0405 1.0403 0.8633 0.3130 3.0013 0.8689 0.8682
4 1.5713 1.5713 1.2249 1.2249 0.8123 0.4066 4.0136 0.8169 0.8144
5 1.8199 1.8199 1.3026 1.3024 0.7545 0.4970 4.9894 0.7638 0.7602
6 1.9743 1.9745 1.436 1.4359 0.7122 0.5564 5.9698 0.7211 0.7035
7 2.5332 2.5332 0.7499 0.7500 0.6391 0.6326 7.0149 0.6456 0.6384
8 2.8284 2.8284 0.0044 0.0028 0.5727 0.6787 7.9857 0.5681 0.5681
9 2.9999 3.0000 0.0003 0.0004 0.4960 0.6938 8.9983 0.5000 0.5000

Table 3. Prior P(Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1).

D β0 β1 γ0 γ1 acc xent Distance Pdetect Pdetect−theory

1 0.8094 0.2698 0.844 0.8963 0.9784 0.0591 0.9533 0.9731 0.9630
2 1.4998 0.5000 0.9676 1.1612 0.9314 0.1635 1.9098 0.9271 0.9176
3 0.9808 0.3269 1.3630 1.5762 0.911 0.2054 2.9833 0.9205 0.8647
4 2.2611 0.7536 1.1327 1.6225 0.8359 0.3519 4.0559 0.8355 0.8023
5 2.5102 0.8368 1.0724 1.8666 0.792 0.401 5.0445 0.7963 0.7503
6 2.8238 0.9412 1.2894 1.9752 0.7627 0.4559 6.0843 0.7643 0.7500
7 3.2148 1.0718 0.6938 2.1403 0.7500 0.4468 7.0131 0.7500 0.7500
8 3.3955 1.1320 1.0256 2.2789 0.7500 0.4799 8.0484 0.7500 0.7500
9 4.1639 1.3878 0.0367 2.0714 0.7500 0.4745 8.9343 0.7500 0.7500

Table 4. Prior P(Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4).

D β0 β1 γ0 γ1 acc xent Distance Pdetect Pdetect−theory

1 0.8660 0.8660 0.0079 0.7074 0.9122 0.2103 1.0078 0.9107 0.9105
2 1.2781 1.2781 0.0171 0.8560 0.8595 0.3239 2.0181 0.8550 0.8539
3 1.5146 1.5146 0.0278 1.1352 0.8084 0.4211 3.0264 0.8042 0.8011
4 1.7587 1.7587 0.0330 1.2857 0.7557 0.4970 4.0274 0.7554 0.7513
5 2.0923 2.0923 0.0142 1.0028 0.7057 0.5589 5.0082 0.7113 0.7043
6 2.3079 2.2572 0.0211 1.1185 0.6650 0.5999 6.0377 0.6676 0.6600
7 2.5351 2.5351 0.0567 1.0715 0.6100 0.6509 7.0125 0.6225 0.6185
8 2.7056 2.7056 0.0358 1.1665 0.5770 0.6738 8.0088 0.5868 0.5803
9 2.8682 2.8682 0.0564 1.2435 0.5445 0.6844 9.0427 0.5601 0.5457

Table 5. Prior P(Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4).

D β0 β1 γ0 γ1 acc xent Distance Pdetect Pdetect−theory

1 0.8214 0.2739 0.0401 1.0167 0.9514 0.1357 0.9909 0.9448 0.9328
2 1.4164 0.4722 0.0583 1.2959 0.9026 0.2402 2.0257 0.9033 0.8891
3 2.2354 0.7450 0.0246 1.3335 0.8665 0.3354 2.9617 0.8514 0.8481
4 2.6076 0.8693 0.0346 1.5199 0.8269 0.4034 3.9522 0.8148 0.8120
5 2.9919 0.9977 0.0143 1.6399 0.7885 0.4625 5.0034 0.7833 0.7824
6 3.3079 1.1027 0.0094 1.7707 0.7616 0.5013 6.0022 0.7606 0.7500
7 3.1458 1.0488 0.0565 2.1606 0.7496 0.4974 7.0091 0.7500 0.7500
8 3.9707 1.3237 0.0142 1.9129 0.7500 0.5470 7.9049 0.7500 0.7500
9 4.0835 1.3613 0.0625 2.1364 0.7500 0.5489 8.8932 0.7500 0.7500

5. Concluding Remarks

We have presented a unified framework for context-aware privacy called generative adversarial
privacy (GAP). GAP allows the data holder to learn the privatization mechanism directly from the
dataset (to be published) without requiring access to the dataset statistics. Under GAP, finding
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the optimal privacy mechanism is formulated as a game between two players: a privatizer and an
adversary. An iterative minimax algorithm is proposed to obtain the optimal mechanism under the
GAP framework.

To evaluate the performance of the proposed GAP model, we have focused on two types of
datasets: (i) binary data model; and (ii) binary Gaussian mixture model. For both cases, the optimal
GAP mechanisms are learned using an empirical log-loss function. For each type of dataset, both
private-data dependent and private-data independent mechanisms are studied. These results are
cross-validated against the privacy guarantees obtained by computing the game-theoretically optimal
mechanism under a strong MAP adversary. In the MAP adversary setting, we have shown that for the
binary data model, the optimal GAP mechanism is obtained by solving a linear program. For the binary
Gaussian mixture model, the optimal additive Gaussian noise privatization scheme is determined.
Simulations with synthetic datasets for both types (i) and (ii) show that the privacy mechanisms learned
via the GAP framework perform as well as the mechanisms obtained from theoretical computation.

Binary and Gaussian models are canonical models with a wide range of applications. However,
moving next, we would like to consider more sophisticated dataset models that can capture real life
signals (such as time series data and images). The generative models we have considered in this paper
were tailored to the statistics of the datasets. In the future, we would like to experiment with the idea of
using a deep generative model to automatically generate the sanitized data. Another straightforward
extension to our work is to use the GAP framework to obtain data-driven mutual information privacy
mechanisms. Finally, it would be interesting to investigate adversarial loss functions that allow us to
move from weak to strong adversaries.
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Appendix A. Proof of Theorem 1

Proof. If q = 1
2 , X is independent of Y. The optimal solution is given by any (s0, s1) that satisfies

the distortion constraint ({s0, s1|ps1 + (1− p)s0 ≥ 1− D, s0, s1 ∈ [0, 1]}) since X and Y are already
independent. If q 6= 1

2 , since each maximum in (30) can only be one of the two values (i.e., the inference
accuracy of guessing Ŷ = 0 or Ŷ = 1), the objective function of the privatizer is determined by the
relationship between P(Y = 1, X̂ = i) and P(Y = 0, X̂ = i), i ∈ {0, 1}. Therefore, the optimization
problem in (30) can be decomposed into the following four subproblems:

Subproblem 1: P(Y = 1, X̂ = 0) ≥ P(Y = 0, X̂ = 0) and P(Y = 1, X̂ = 1) ≤ P(Y = 0, X̂ = 1),
which implies p(1− 2q)(1− s1)− (1− p)(1− 2q)s0 ≥ 0 and (1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≥ 0.
As a result, the objective of the privatizer is given by P(Y = 1, X̂ = 0) + P(Y = 0, X̂ = 1). Thus,
the optimization problem in (30) can be written as

min
s0,s1

(2q− 1)[ps1 + (1− p)s0] + 1− q

s.t. 0 ≤ s0 ≤ 1
0 ≤ s1 ≤ 1
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D− 1.

(A1)
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• If 1 − 2q > 0, i.e., q < 1
2 , we have ps1 + (1 − p)s0 ≤ p and ps1 + (1 − p)s0 ≤ 1 − p.

The privatizer must maximize ps1 + (1− p)s0 to reduce the adversary’s probability of correctly
inferring the private variable. Thus, if 1− D ≤ min{p, 1− p}, the optimal value is given by
(2q− 1)min{p, 1− p}+ 1− q; the corresponding optimal solution is given by {s0, s1|ps1 +(1− p)s0

= min{p, 1− p}, 0 ≤ s0, s1 ≤ 1}. Otherwise, the problem is infeasible.
• If 1− 2q < 0, i.e., q > 1

2 , we have ps1 + (1− p)s0 ≥ p and ps1 + (1− p)s0 ≥ 1− p. In this case,
the privatizer has to minimize ps1 + (1− p)s0. Thus, if 1−D ≥ max{p, 1− p}, the optimal value
is given by (2q− 1)(1−D) + 1− q; the corresponding optimal solution is {s0, s1|ps1 + (1− p)s0 =

1− D, 0 ≤ s0, s1 ≤ 1}. Otherwise, the optimal value is (2q− 1)max{p, 1− p}+ 1− q and the
corresponding optimal solution is given by {s0, s1|ps1 + (1− p)s0 = max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Subproblem 2: P(Y = 1, X̂ = 0) ≤ P(Y = 0, X̂ = 0) and P(Y = 1, X̂ = 1) ≥ P(Y = 0, X̂ = 1),
which implies p(1− 2q)(1− s1)− (1− p)(1− 2q)s0 ≤ 0 and (1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≤ 0.
Thus, the objective of the privatizer is given by P(Y = 0, X̂ = 0) + P(Y = 1, X̂ = 1). Therefore,
the optimization problem in (30) can be written as

min
s0,s1

(1− 2q)[ps1 + (1− p)s0] + q

s.t. 0 ≤ s0 ≤ 1
0 ≤ s1 ≤ 1
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D− 1.

(A2)

• If 1− 2q > 0, i.e., q < 1
2 , we have ps1 + (1− p)s0 ≥ p and ps1 + (1− p)s0 ≥ 1− p. The privatizer

needs to minimize ps1 + (1− p)s0 to reduce the adversary’s probability of correctly inferring the
private variable. Thus, if 1−D ≥ max{p, 1− p}, the optimal value is given by (1− 2q)(1−D)+ q;
the corresponding optimal solution is {s0, s1|ps1 + (1− p)s0 = 1− D, 0 ≤ s0, s1 ≤ 1}. Otherwise,
the optimal value is (1− 2q)max{p, 1− p}+ q and the corresponding optimal solution is given
by {s0, s1|ps1 + (1− p)s0 = max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1− 2q < 0, i.e., q > 1
2 , we have ps1 + (1− p)s0 ≤ p and ps1 + (1− p)s0 ≤ 1− p. In this case,

the privatizer needs to maximize ps1 + (1− p)s0. Thus, if 1− D ≤ min{p, 1− p}, the optimal
value is given by (1− 2q)min{p, 1− p} + q; the corresponding optimal solution is given by
{s0, s1|ps1 + (1− p)s0 = min{p, 1− p}, 0 ≤ s0, s1 ≤ 1}. Otherwise, the problem is infeasible.

Subproblem 3: P(Y = 1, X̂ = 0) ≥ P(Y = 0, X̂ = 0) and P(Y = 1, X̂ = 1) ≥ P(Y = 0, X̂ = 1),
we have p(1− 2q)(1− s1) − (1− p)(1− 2q)s0 ≥ 0 and (1− p)(1− 2q)(1− s0) − p(1− 2q)s1 ≤ 0.
Under this scenario, the objective function in (30) is given by P(Y = 1, X̂ = 0) + P(Y = 1, X̂ = 1).
Thus, the privatizer solves

min
s0,s1

p(1− q) + (1− p)q

s.t. 0 ≤ s0 ≤ 1
0 ≤ s1 ≤ 1
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D− 1.

(A3)

• If 1− 2q > 0, i.e., q < 1
2 , the problem becomes infeasible for p < 1

2 . For p ≥ 1
2 , if 1− D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by p(1− q) + (1− p)q and the corresponding optimal solution is
{s0, s1|1− D ≤ ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is
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p(1− q) + (1− p)q and the corresponding optimal solution is given by {s0, s1|min{p, 1− p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1− 2q < 0, i.e., q > 1
2 , the problem is infeasible for p > 1

2 . For p ≤ 1
2 , if 1− D > max{p, 1− p},

the problem is also infeasible; if min{p, 1− p} ≤ 1− D ≤ max{p, 1− p}, the optimal value is
given by p(1− q) + (1− p)q and the corresponding optimal solution is {s0, s1|1− D ≤ ps1 +

(1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is p(1− q) + (1− p)q
and the corresponding optimal solution is given by {s0, s1|min{p, 1− p} ≤ ps1 + (1− p)s0 ≤
max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Subproblem 4: P(Y = 1, X̂ = 0) ≤ P(Y = 0, X̂ = 0) and P(Y = 1, X̂ = 1) ≤ P(Y = 0, X̂ = 1), which
implies p(1− 2q)(1− s1)− (1− p)(1− 2q)s0 ≤ 0 and (1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≥ 0. Thus,
the optimization problem in (30) is given by

min
s0,s1

pq + (1− p)(1− q)

s.t. 0 ≤ s0 ≤ 1
0 ≤ s1 ≤ 1
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D− 1.

(A4)

• If 1− 2q > 0, i.e., q < 1
2 , the problem becomes infeasible for p > 1

2 . For p ≤ 1
2 , if 1− D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by pq + (1− p)(1− q) and the corresponding optimal solution is
{s0, s1|1− D ≤ ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is
pq + (1− p)(1− q) and the corresponding optimal solution is given by {s0, s1|min{p, 1− p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1− 2q < 0, i.e., q > 1
2 , the problem becomes infeasible for p < 1

2 . For p ≥ 1
2 , if 1− D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by pq + (1− p)(1− q) and the corresponding optimal solution is
{s0, s1|1− D ≤ ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is
pq + (1− p)(1− q) and the corresponding optimal solution is given by {s0, s1|min{p, 1− p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Summarizing the analysis above yields Theorem 1.

Appendix B. Proof of Theorem 2

Proof. Let us consider X̂ = X + β + γN, where β ∈ R and γ ≥ 0. Given the MAP adversary’s optimal
inference accuracy in (37), the objective of the privatizer is to

min
β,γ

P(G)
d (A5)

s.t. β2 + γ2 ≤ D

γ ≥ 0.
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Define 1−p̃
p̃ = η. The gradient of P(G)

d w.r.t. α is given by

∂P(G)
d

∂α
=p̃

(
− 1√

2π
e−

(− α
2 + 1

α ln η)
2

2

)(
−1

2
− 1

α2 ln η

)
(A6)

+ (1− p̃)

(
− 1√

2π
e−

(− α
2−

1
α ln η)

2

2

)(
−1

2
+

1
α2 ln η

)

=
1

2
√

2π

(
p̃e−

(− α
2 + 1

α ln η)
2

2 + (1− p̃)e−
(− α

2−
1
α ln η)

2

2

)
(A7)

+
ln η

α2
√

2π

(
p̃e−

(− α
2 + 1

α ln η)
2

2 − (1− p̃)e−
(− α

2−
1
α ln η)

2

2

)
.

Note that

p̃e−
(− α

2 + 1
α ln η)

2

2

(1− p̃)e−
(− α

2−
1
α ln η)

2

2

=
p̃

1− p̃
e
(− α

2−
1
α ln η)

2
−(− α

2 + 1
α ln η)

2

2 =
p̃

1− p̃
e

2 ln η
2 =

p̃
1− p̃

eln η = 1. (A8)

Therefore, the second term in (A7) is 0. Furthermore, the first term in (A7) is always positive.
Thus, P(G)

d is monotonically increasing in α. As a result, the optimization problem in (A5) is equivalent to

max
β,γ

√
γ2 + σ2 (A9)

s.t. β2 + γ2 ≤ D

γ ≥ 0.

Therefore, the optimal solution is given by β∗ = 0 and γ∗ =
√

D. Substituting the optimal solution
back into (37) yields the MAP probability of correctly inferring the private variable Y from X̂.

Appendix C. Proof of Theorem 3

Proof. Let us consider X̂ = X + (1−Y)β0 −Yβ1, where β0 and β1 are both non-negative. Given the
MAP adversary’s optimal inference accuracy P(G)

d , the objective of the privatizer is to

min
β0,β1

P(G)
d (A10)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D

β0, β1 ≥ 0.

Recall that P(G)
d is monotonically increasing in α = 2µ−(β1+β0)

σ . As a result, the optimization
problem in (A10) is equivalent to

max
β0,β1

β1 + β0 (A11)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D

β0, β1 ≥ 0.
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Note that the above optimization problem is convex. Therefore, using the KKT conditions, we
obtain the optimal solution

β∗0 =

√
p̃D

1− p̃
, β∗1 =

√
(1− p̃)D

p̃
. (A12)

Substituting the above optimal solution into P(G)
d yields the MAP probability of correctly inferring

the private variable Y from X̂.
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