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Local Differential Privacy

Local Privacy Model:
Warner’s 1965 randomized response

Have you ever used illegal drugs?

say yes answer truthfully

tension between the need to share data and the need to protect privacy
data providers do not trust data collectors (analysts)

Local Differential Privacy:
Q is a privatization mechanism that maps X ∈ X stochastically to Y ∈ Y
for a non-negative ε, we say that Q is ε-locally differentially private if

e−ε ≤ Q(Y = y |X = x)
Q(Y = y |X = x ′)

≤ eε

Operational Interpretation of Differential Privacy:
for any A,B ⊂ X such that A ∩ B = ∅, form the following hypothesis test

H0 : original data X ∈ A
H1 : original data X ∈ B
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PFA = P(X̂ = B|X ∈ A)

PMD = P(X̂ = A|X ∈ B)
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Operational Definition of Differential Privacy

Q is ε-locally differentially private ⇐⇒ RQ ⊆ Rε
PFA + eεPMD ≥ 1
eεPFA + PMD ≥ 1

Information Theoretic Utility Functions

Hypothesis Testing and Classification:
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the Xi ’s are sampled from a distribution Pν parameterized by ν ∈ {0,1}
given the Y ′i s, the data analyst would like to detect whether ν = 0 or ν = 1
performance is a function of distance between M0 from M1

Mν(S) =

∫
Q(S|x)dPν(x) ,

Chernoff-Stein’s lemma: the best type II error probability scales as e−n Dkl(M0||M1)

result: when ε is sufficiently small, the effective sample size is reduced from n to ε2n
Information Theoretic Utilities:

for some convex function f such that f (1) = 0, Csiszár’s f -divergence is defined as

Df (M0||M1) =

∫
f
( dM0

dM1

)
dM1 ,

KL divergence Dkl(M0||M1) and total variation ‖M0 −M1‖TV are special cases
f -divergences capture: minimax rates and error exponents

Fundamental Limits of Privacy:
the more private you want to be, the less utility you get
there is a fundamental trade-off between privacy and utility

maximize
Q

Df (M0|M1)

subject to Q ∈ Dε

Dε is the set of all ε-locally differentially private mechanisms
this maximization problem is nonlinear, non-standard, and infinite dimensional

Binary Data

Optimality of the Binary Randomized Response Mechanism:

When |X | = 2, the following mechanism is optimal:

w.p. 1
1+eε lie w.p. eε

1+eε answer truthfully

Larger Alphabets

Definition of Staircase Mechanisms:
a privatization mechanism is a staircase mechanism if

Q(Y = y |X = x)
Q(Y = y |X = x ′)

∈
{

e−ε,1,eε
}

examples of staircase mechanisms: binary and randomized response mechanisms
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Optimality of Staircase Mechanisms

For any ε, any P0 and P1, and any f -divergence, there exists an optimal mechanism Q∗

maximizing the f -divergence over all ε-locally differentially private mechanisms, such
that Q∗ is a staircase mechanism. Moreover, the output alphabet size is at most equal
to the input alphabet size: |Y| ≤ |X |.

Definition of Binary Mechanisms:

Q(Y = 0|X = x) =

{
eε

1+eε if P0(x) ≥ P1(x) ,
1

1+eε if P0(x) < P1(x) .
Q(Y = 1|X = x) =

{
eε

1+eε if P0(x) < P1(x) ,
1

1+eε if P0(x) ≥ P1(x) .

Optimality of Binary Mechanisms in the High Privacy Regime

For any P0 and P1, there exists a positive ε∗ that depends on P0 and P1 such that for
any f -divergences and all positive ε ≤ ε∗, the binary mechanism maximizes Df (M0||M1)
over all ε-local differentially private mechanisms.

Definition of the Randomized Response Mechanism:

Q(Y = y |X = x) =


eε

|X |−1+eε if y = x ,
1

|X |−1+eε if y 6= x .

can be viewed as a multiple choice generalization to Warner’s randomized response
observe that Q is independent of P0 and P1

Optimality of the Randomized Response Mechanism in the Low Privacy Regime

There exists a positive ε∗ that depends on P0 and P1 such that for any P0 and P1, and
all ε ≥ ε∗, the randomized response mechanism maximizes the KL-divergence between
the induced marginals over all ε-locally differentially private mechanisms.

Big Picture

Local Privacy:
the local privacy model is particulary important in data collection applications
we study a broad class of information theoretic utilities
we provide explicit constructions of optimal mechanisms

Our Methods Generalize:
similar optimality results hold for a large class of convex utility functions
our techniques can be generalized to private multi-party computation settings
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