Extremal Mechanisms for Local Differential Privacy

Peter Kairouz, Sewoong Oh, and Pramod Viswanath E-mails: {kairouz2, swoh, pramodv}@illinois.edu

University of Illinois at Urbana Champaign, USA

Local Differential Privacy

Local Privacy Model:

Warner's 1965 randomized response

Have you ever used illegal drugs?

tension between the need to share data and the need to protect privacy data providers do not trust data collectors (analysts)

Local Differential Privacy:

Q is a privatization mechanism that maps $X \in \mathcal{X}$ stochastically to $Y \in \mathcal{Y}$ for a non-negative ε , we say that Q is ε -locally differentially private if

$$e^{-\varepsilon} \leq rac{Q(Y = y | X = x)}{Q(Y = y | X = x')} \leq e^{\varepsilon}$$

Operational Interpretation of Differential Privacy:

Binary Data

Optimality of the Binary Randomized Response Mechanism:

When $|\mathcal{X}| = 2$, the following mechanism is optimal:

w.p. $\frac{e^{\varepsilon}}{1+e^{\varepsilon}}$ answer truthfully

Larger Alphabets

Definition of Staircase Mechanisms:

a privatization mechanism is a staircase mechanism if

 $\frac{Q(Y = y | X = x)}{Q(Y = y | X = x')} \in \{e^{-\varepsilon}, 1, e^{\varepsilon}\}$

for any $A, B \subset \mathcal{X}$ such that $A \cap B = \emptyset$, form the following hypothesis test

Operational Definition of Differential Privacy

Q is ε -locally differentially private $\iff \mathcal{R}_Q \subseteq \mathcal{R}_{\varepsilon}$ $P_{\mathrm{FA}} + e^{\varepsilon} P_{\mathrm{MD}} \geq 1$ $e^{\varepsilon}P_{\mathrm{FA}}+P_{\mathrm{MD}}\geq 1$

Information Theoretic Utility Functions

Hypothesis Testing and Classification:

examples of staircase mechanisms: binary and randomized response mechanisms

Optimality of Staircase Mechanisms

For any ε , any P_0 and P_1 , and any f-divergence, there exists an optimal mechanism Q^* maximizing the *f*-divergence over all ε -locally differentially private mechanisms, such that Q^* is a staircase mechanism. Moreover, the output alphabet size is at most equal to the input alphabet size: $|\mathcal{Y}| \leq |\mathcal{X}|$.

Definition of Binary Mechanisms:

$$Q(Y=0|X=x) = \begin{cases} \frac{e^{\varepsilon}}{1+e^{\varepsilon}} & \text{if } P_0(x) \ge P_1(x), \\ \frac{1}{1+e^{\varepsilon}} & \text{if } P_0(x) < P_1(x). \end{cases} \quad Q(Y=1|X=x) = \begin{cases} \frac{e^{\varepsilon}}{1+e^{\varepsilon}} & \text{if } P_0(x) < P_1(x), \\ \frac{1}{1+e^{\varepsilon}} & \text{if } P_0(x) \ge P_1(x). \end{cases}$$

Optimality of Binary Mechanisms in the High Privacy Regime

For any P_0 and P_1 , there exists a positive ε^* that depends on P_0 and P_1 such that for any *f*-divergences and all positive $\varepsilon \leq \varepsilon^*$, the binary mechanism maximizes $D_f(M_0||M_1)$ over all ε -local differentially private mechanisms.

• the X_i 's are sampled from a distribution P_{ν} parameterized by $\nu \in \{0, 1\}$ given the $Y'_i s$, the data analyst would like to detect whether $\nu = 0$ or $\nu = 1$ • performance is a function of distance between M_0 from M_1

$$M_{\nu}(S) = \int Q(S|x) dP_{\nu}(x)$$

Chernoff-Stein's lemma: the best type II error probability scales as $e^{-n D_{kl}(M_0||M_1)}$ **result:** when ε is sufficiently small, the effective sample size is reduced from n to $\varepsilon^2 n$ **Information Theoretic Utilities:**

for some convex function f such that f(1) = 0, Csiszár's f-divergence is defined as

$$D_f(M_0||M_1) = \int f\left(\frac{dM_0}{dM_1}\right) dM_1$$

KL divergence $D_{kl}(M_0||M_1)$ and total variation $||M_0 - M_1||_{TV}$ are special cases f-divergences capture: *minimax rates* and *error exponents*

Fundamental Limits of Privacy:

■ the **more** private you want to be, the **less** utility you get

■ there is a *fundamental trade-off* between privacy and utility

maximize $D_f(M_0|M_1)$ subject to $Q \in \mathcal{D}_{\varepsilon}$

Definition of the Randomized Response Mechanism:

$$Q(Y = y | X = x) = \begin{cases} \frac{e^{\varepsilon}}{|\mathcal{X}| - 1 + e^{\varepsilon}} & \text{if } y = x \\ \frac{1}{|\mathcal{X}| - 1 + e^{\varepsilon}} & \text{if } y \neq x \end{cases}$$

can be viewed as a multiple choice generalization to Warner's randomized response • observe that Q is independent of P_0 and P_1

Optimality of the Randomized Response Mechanism in the Low Privacy Regime

There exists a positive ε^* that depends on P_0 and P_1 such that for any P_0 and P_1 , and all $\varepsilon \geq \varepsilon^*$, the randomized response mechanism maximizes the KL-divergence between the induced marginals over all ε -locally differentially private mechanisms.

Big Picture

Local Privacy:

the local privacy model is particulary important in *data collection* applications we study a broad class of information theoretic utilities • we provide *explicit constructions* of *optimal mechanisms*

Our Methods Generalize:

similar optimality results hold for a large class of convex utility functions our techniques can be generalized to private multi-party computation settings preprint available on arXiv:

$\square D_{\varepsilon}$ is the set of all ε -locally differentially private mechanisms

this maximization problem is nonlinear, non-standard, and infinite dimensional

"Differentially Private Multi-party Computation: Optimality of Non-Interactive Randomized

Peter Kairouz, Sewoong Oh, and Pramod Viswanath, 2014"

