Metadata-Conscious Anonymous Messaging БУДЬ НА ЧЕКУ, В ТАКИЕ ЛНИ ЮДСЛУШИВАЮТ СТЕНЫ. НЕДАЛЕКО ОТ БОЛТОВНИ и сплетни ДО ИЗМЕНЫ.

Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod Viswanath

Anonymity matters

Jason Rezaian's Year of Imprisonment in Iran

Wednesday marks the one-year anniversary of the *Washington Post* reporter's detention in the Islamic Republic.

Russian Activists and Journalists Attacked at Chechen Border

Related

Saudi Man Gets 10 Years, 2,000 Lashes Over

Atheist Tweets

By THE ASSOCIATED PRESS • RIYADH, Saudi Arabia — Feb 27, 2016, 8:26 AM ET Politics | Fri Nov 23, 2007 4:54pm EST

Syria blocks Facebook in Internet crackdown

DAMASCUS | BY KHALED YACOUB OWEIS

Snapshot Adversary

adversary can figure out who got the message

Spy-based adversary

adversary can collect timing information

Information flow in social networks

information spreads at the same rate in all direction

Can you find the source?

Concentration around the center

high likelihood

low likelihood

diffusion spreading = de-anonymization

[Shah et al. 2011, Zhu et al. 2013]

Can you find the source?

[Pinto et al. 2012]

Maximum likelihood detection

high likelihood

low likelihood

diffusion spreading = de-anonymization

[Pinto et al. 2012]

Prior work: adaptive diffusion

high likelihood

Question: How does adaptive diffusion fare against a spy-based adversary?

low likelihood

provable anonymity guarantees—for a snapshot adversary

[Spy vs. Spy: Rumor Source Obfuscation, ACM SIGMETRICS 2015]

Our objective

engineer the spread to hide authorship

Adaptive diffusion over d-regular trees

Snapshot adversary Question: How does adaptive diffusion fare against a spy-based adversary?

Low likelihood

High likelihood

THEOREM: Probability of detection = 0

Spy-based adversary

Main Theorem

1. For any network and any protocol that passes the message to at least once node, we have that:

$$\min_{\text{protocol}} \max_{\hat{v}} \mathbb{P}(\hat{v} = v^*) \geq p .$$

2. On d-regular trees, the probability of detection under adaptive diffusion is given by

$$\mathbb{P}(\hat{v}_{\mathrm{ML}} = v^*) = p + o(p).$$

Results on d-regular trees

Facebook graph

Acknowledgments

Giulia Fanti

Sewoong Oh

Kannan Ramchandran

Pramod Viswanath