
Discrete Distribution Estimation under Local Privacy
Peter Kairouz, Keith Bonawitz, and Daniel Ramage
e-mails: kairouz2@illinois.edu, bonawitz@google.com, and dramage@google.com

Distribution estimation

What privacy mechanisms achieve the fundamental privacy-utility tradeoff for various 

privacy levels and alphabet sizes?  

We need to understand patterns across large groups but do not need to look at any individual.
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What’s wrong with current approaches
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attacks targeting log entries during 

logging:

● ineffective crypto

● rogue code

attacks targeting the log database 
● accidental / Incidental
● authorized user goes rogue
●break in

● government compulsion
● change of ownership

Private distribution estimation
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Local differential privacy

Less noise: less privacy but easier to denoise 
More noise: more privacy but more data required to denoise

● If true answer is x, say y with probability:

● Q is locally differentially private if:

● Why worst case over all diributions? 

● otherwise Q can be a trivial function of P

● Why is this problem a hard one? 

● Because minimax estimation without privacy is already hard

● What do we already know about this problem? 

Fundamental privacy-utility tradeoff

lie w.p.answer truthfully w.p.

Binary alphabets: Warner’s randomized response

Have you ever used illegal drugs? 

For all loss functions and all privacy levels, Warner’s randomized response achieves 

the best privacy-utility tradeoff.

k-ary alphabets

● How do we generalize Warner’s randomized response:

1. modify the encoding: k-RR 

2. modify the mechanism: k-RAPPOR 

lie w.p.answer truthfully w.p.

k-ary Randomized Response (k-RR)

k-ary Randomized Aggregatable Privacy Preserving Ordinal Response (k-RAPPOR)
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• For l1 and l2 loss functions, k-RR is order-optimal in the low privacy regime and 

strictly suboptimal in the high privacy regime

• For l1 and l2 loss functions, k-RAPPOR is order-optimal in the high privacy regime 

and strictly suboptimal in the low privacy regime 

No Privatization

k-RR

k-RAPPOR

GeneralSmall ε 

(High Privacy)

ε ≈ ln(k) 

(Low Privacy)

Open alphabets

● Sample complexity under both schemes

● What if we don’t know the set of input symbols ahead of time?
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Empirical Comparison

L1 loss = 0.20;

S = Size of alphabet =256; 

Geometric with mean= S/5

2 ≤ k ≤ 4096

1 ≤ c ≤ 1024

1 ≤ h ≤ 16

● Simulation results:

Open Alphabets RAPPOR (O-RAPPOR)

Closed alphabets: revisited

Empirical Comparison

L1 loss = 0.20;

S = Size of alphabet =256; 

Geometric with mean=S/5

2 ≤ k ≤ 4096

1 ≤ c ≤ 1024

1 ≤ h ≤ 16

● A Minimal Perfect Hash Function maps m keys to m consecutive integers.

● For Closed Sets: Modify O-RR and O-RAPPOR to use Minimal Perfect Hash Functions.

● Note that with C=1 and h=1, we recover k-RR and k-RAPPOR
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