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Abstract

Preserving the utility of published datasets while simultaneously providing provable privacy
guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as
di�erential privacy, provide strong privacy guarantees, but often lead to a signi�cant reduction
in utility. On the other hand, context-aware privacy solutions, such as information theoretic
privacy, achieve an improved privacy-utility tradeo�, but assume that the data holder has
access to dataset statistics. We circumvent these limitations by introducing a novel context-
aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent
advancements in generative adversarial networks (GANs) to allow the data holder to learn
privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is
formulated as a constrained minimax game between two players: a privatizer that sanitizes the
dataset in a way that limits the risk of inference attacks on the individuals' private variables,
and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate
GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a)
the binary data model, and (b) the binary Gaussian mixture model. For both models, we
derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy
mechanisms learned from data (in a generative adversarial fashion) match the theoretically
optimal ones. This demonstrates that our framework can be easily applied in practice, even
in the absence of dataset statistics.

Keywords- Generative Adversarial Privacy; Generative Adversarial Networks; Privatizer
Network; Adversarial Network; Statistical Data Privacy; Di�erential Privacy; Information
Theoretic Privacy; Mutual Information Privacy; Error Probability Games; Machine Learning

1 Introduction

The explosion of information collection across a variety of electronic platforms is enabling the use of
inferential machine learning (ML) and arti�cial intelligence to guide consumers through a myriad
of choices and decisions in their daily lives. In this era of arti�cial intelligence, data is quickly
becoming the most valuable resource [25]. Indeed, large scale datasets provide tremendous utility
in helping researchers design state-of-the-art machine learning algorithms that can learn from and
make predictions on real life data. Scholars and researchers are increasingly demanding access to
larger datasets that allow them to learn more sophisticated models. Unfortunately, more often than
not, in addition to containing public information that can be published, large scale datasets also
contain private information about participating individuals (see Figure 1). Thus, data collection
and curation organizations are reluctant to release such datasets before carefully sanitizing them,
especially in light of recent public policies on data sharing [28, 62].

To protect the privacy of individuals, datasets are typically anonymized before their release.
This is done by stripping o� personally identi�able information (e.g., �rst and last name, social se-
curity number, IDs, etc.) [50, 69, 77]. Anonymization, however, does not provide immunity against
correlation and linkage attacks [36, 61]. Indeed, several successful attempts to re-identify individu-
als from anonymized datasets have been reported in the past ten years. For instance, [61] were able
to successfully de-anonymize watch histories in the Net�ix Prize, a public recommender system
competition. In a more recent attack, [78] showed that participants of an anonymized DNA study
were identi�ed by linking their DNA data with the publicly available Personal Genome Project
dataset. Even more recently, [30] successfully designed re-identi�cation attacks on anonymized
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Figure 1: An example privacy preserving mechanism for smart meter data

fMRI imaging datasets. Other annoymization techniques, such as generalization [11, 32, 49] and
suppression [41, 68, 86], also cannot prevent an adversary from performing the sensitive linkages
or recover private information from published datasets [31].

Addressing the shortcomings of anonymization techniques requires data randomization. In
recent years, two randomization-based approaches with provable statistical privacy guarantees have
emerged: (a) context-free approaches that assume worst-case dataset statistics and adversaries; (b)
context-aware approaches that explicitly model the dataset statistics and adversary's capabilities.

Context-free privacy. One of the most popular context-free notions of privacy is di�erential
privacy (DP) [21, 22, 23]. DP, quanti�ed by a leakage parameter ε1, restricts distinguishability
between any two �neighboring� datasets from the published data. DP provides strong, context-free
theoretical guarantees against worst-case adversaries. However, training machine learning models
on randomized data with DP guarantees often leads to a signi�cantly reduced utility and comes
with a tremendous hit in sample complexity [18, 19, 20, 29, 37, 42, 43, 47, 64, 82, 87, 93, 94] in
the desired leakage regimes. For example, learning population level histograms under local DP
su�ers from a stupendous increase in sample complexity by a factor proportional to the size of the
dictionary [20, 42, 43].

Context-aware privacy. Context-aware privacy notions have been so far studied by infor-
mation theorists under the rubric of information theoretic (IT) privacy [4, 5, 6, 8, 10, 12, 13, 14,
15, 44, 45, 46, 51, 57, 65, 67, 70, 71, 72, 84, 92]. IT privacy has predominantly been quanti�ed by
mutual information (MI) which models how well an adversary, with access to the released data,
can re�ne its belief about the private features of the data. Recently, Issa et al. introduced maxi-
mal leakage (MaxL) to quantify leakage to a strong adversary capable of guessing any function of
the dataset [40]. They also showed that their adversarial model can be generalized to encompass
local DP (wherein the mechanism ensures limited distinction for any pair of entries�a stronger
DP notion without a neighborhood constraint [20, 88]) [39]. When one restricts the adversary to
guessing speci�c private features (and not all functions of these features), the resulting adversary is
a maximum a posteriori (MAP) adversary that has been studied by Asoodeh et al. in [6, 7, 8, 9].
Context-aware data perturbation techniques have also been studied in privacy preserving cloud
computing [16, 17, 48].

Compared to context-free privacy notions, context-aware privacy notions achieve a better
privacy-utility tradeo� by incorporating the statistics of the dataset and placing reasonable re-
strictions on the capabilities of the adversary. However, using information theoretic quantities
(such as MI) as privacy metrics requires learning the parameters of the privatization mechanism
in a data-driven fashion that involves minimizing an empirical information theoretic loss function.
This task is remarkably challenging in practice [3, 33, 56, 81, 96].

Generative adversarial privacy. Given the challenges of existing privacy approaches, we
take a fundamentally new approach towards enabling private data publishing with guarantees on
both privacy and utility. Instead of adopting worst-case, context-free notions of data privacy
(such as di�erential privacy), we introduce a novel context-aware model of privacy that allows
the designer to cleverly add noise where it matters. An inherent challenge in taking a context-
aware privacy approach is that it requires having access to priors, such as joint distributions of
public and private variables. Such information is hardly ever present in practice. To overcome this
issue, we take a data-driven approach to context-aware privacy. We leverage recent advancements
in generative adversarial networks (GANs) to introduce a uni�ed framework for context-aware
privacy called generative adversarial privacy (GAP). Under GAP, the parameters of a generative

1Smaller ε ∈ [0,∞) implies smaller leakage and stronger privacy guarantees.
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Noise Sequence

Figure 2: Generative Adversarial Privacy

model, representing the privatization mechanism, are learned from the data itself.

1.1 Our Contributions

We investigate a setting where a data holder would like to publish a dataset D in a privacy
preserving fashion. Each row in D contains both private variables (represented by Y ) and public
variables (represented by X). The goal of the data holder is to generate X̂ in a way such that: (a)
X̂ is as good of a representation of X as possible, and (b) an adversary cannot use X̂ to reliably
infer Y . To this end, we present GAP, a uni�ed framework for context-aware privacy that includes
existing information-theoretic privacy notions. Our formulation is inspired by GANs [34, 55, 73]
and error probability games [58, 59, 60, 66, 74]. It includes two learning blocks: a privatizer,
whose task is to output a sanitized version of the public variables (subject to some distortion
constraints); and an adversary, whose task is to learn the private variables from the sanitized
data. The privatizer and adversary achieve their goals by competing in a constrained minimax,
zero-sum game. On the one hand, the privatizer (a conditional generative model) is designed to
minimize the adversary's performance in inferring Y reliably. On the other hand, the adversary (a
classi�er) seeks to �nd the best inference strategy that maximizes its performance. This generative
adversarial framework is represented in Figure 2.

At the core of GAP is a loss function2 that captures how well an adversary does in terms
of inferring the private variables. Di�erent loss functions lead to di�erent adversarial models.
We focus our attention on two types of loss functions: (a) a 0-1 loss that leads to a maximum
a posteriori probability (MAP) adversary, and (b) an empirical log-loss that leads to a minimum
cross-entropy adversary. Ultimately, our goal is to show that our data-driven approach can provide
privacy guarantees against a MAP adversary. However, derivatives of a 0-1 loss function are ill-
de�ned. To overcome this issue, the ML community uses the more analytically tractable log-loss
function. We do the same by choosing the log-loss function as the adversary's loss function in the
data-driven framework. We show that it leads to a performance that matches the performance of
game-theoretically optimal mechanisms under a MAP adversary. We also show that GAP recovers
mutual information privacy when a log-loss function is used (see Section 2.2).

To showcase the power of our context-aware, data-driven framework, we investigate two simple,
albeit canonical, statistical dataset models: (a) the binary data model, and (b) the binary Gaussian
mixture model. Under the binary data model, bothX and Y are binary. Under the binary Gaussian
mixture model, Y is binary whereas X is conditionally Gaussian. For both models, we derive and
compare the performance of game-theoretically optimal privatization mechanisms with those that
are directly learned from data (in a generative adversarial fashion).

For the above-mentioned statistical dataset models, we present two approaches towards design-
ing privacy mechanisms: (i) private-data dependent (PDD) mechanisms, where the privatizer uses
both the public and private variables, and (ii) private-data independent (PDI) mechanisms, where
the privatizer only uses the public variables. We show that the PDD mechanisms lead to a superior
privacy-utility tradeo�.

1.2 Related Work

In practice, a context-free notion of privacy (such as DP) is desirable because it places no restric-
tions on the dataset statistics or adversary's strength. This explains why DP has been remarkably
successful in the past ten years, and has been deployed in array of systems, including Google's
Chrome browser [27] and Apple's iOS [90]. Nevertheless, because of its strong context-free nature,

2We quantify the adversary's performance via a loss function and the quality of the released data via a distortion

function.
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DP has su�ered from a sequence of impossibility results. These results have made the deployment
of DP with a reasonable leakage parameter practically impossible. Indeed, it was recently reported
that Apple's DP implementation su�ers from several limitations �most notable of which is Apple's
use of unacceptably large leakage parameters [79].

Context-aware privacy notions can exploit the structure and statistics of the dataset to design
mechanisms matched to both the data and adversarial models. In this context, information-
theoretic metrics for privacy are naturally well suited. In fact, the adversarial model determines
the appropriate information metric: an estimating adversary that minimizes mean square error
is captured by χ2-squared measures [13], a belief re�ning adversary is captured by MI [71], an
adversary that can make a hard MAP decision for a speci�c set of private features is captured by
the Arimoto MI of order ∞ [7, 9], and an adversary that can guess any function of the private
features is captured by the maximal (over all distributions of the dataset for a �xed support) Sibson
information of order ∞ [39, 40].

Information-theoretic metrics, and in particular MI privacy, allow the use of Fano's inequality
and its variants [85] to bound the rate of learning the private variables for a variety of learning
metrics, such as error probability and minimum mean-squared error (MMSE). Despite the strength
of MI in providing statistical utility as well as capturing a fairly strong adversary that involves
re�ning beliefs, in the absence of priors on the dataset, using MI as an empirical loss function
leads to computationally intractable procedures when learning the optimal parameters of the pri-
vatization mechanism from data. Indeed, training algorithms with empirical information theoretic
loss functions is a challenging problem that has been explored in speci�c learning contexts, such
as determining randomized encoders for the information bottleneck problem [3] and designing
deep auto-encoders using a rate-distortion paradigm [33, 81, 96]. Even in these speci�c contexts,
variational approaches were taken to minimize/maximize a surrogate function instead of minimiz-
ing/maximizing an empirical mutual information loss function directly [76]. In an e�ort to bridge
theory and practice, we present a general data-driven framework to design privacy mechanisms
that can capture a range of information-theoretic privacy metrics as loss functions. We will show
how our framework leads to very practical (generative adversarial) data-driven formulations that
match their corresponding theoretical formulations.

In the context of publishing datasets with privacy and utility guarantees, a number of similar
approaches have been recently considered. We brie�y review them and clarify how our work is
di�erent. In [91], the authors consider linear privatizer and adversary models by adding noise in
directions that are orthogonal to the public features in the hope that the �spaces� of the public and
private features are orthogonal (or nearly orthogonal). This allows the privatizer to achieve full
privacy without sacri�cing utility. However, this work is restrictive in the sense that it requires the
public and private features to be nearly orthogonal. Furthermore, this work provides no rigorous
quanti�cation of privacy and only investigates a limited class of linear adversaries and privatizers.

DP-based obfuscators for data publishing have been considered in [35, 54]. The author in
[35] considers a deterministic, compressive mapping of the input data with di�erentially private
noise added either before or after the mapping. The mapping rule is determined by a data-
driven methodology to design minimax �lters that allow non-malicious entities to learn some public
features from the �ltered data, while preventing malicious entities from learning other private
features. The approach in [54] relies on using deep auto-encoders to determine the relevant feature
space to add di�erentially private noise to, eliminating the need to add noise to the original
data. After noise adding, the original signal is reconstructed. These novel approaches leverage
minimax �lters and deep auto-encoders to incorporate a notion of context-aware privacy and
achieve better privacy-utility tradeo�s while using DP to enforce privacy. However, DP will still
incur an insurmountable utility cost since it assumes worst-case dataset statistics. Our approach
captures a broader class of randomization-based mechanisms via a generative model which allows
the privatizer to tailor the noise to the statistics of the dataset.

Our work is also closely related to adversarial neural cryptography [1], learning censored rep-
resentations [26], and privacy preserving image sharing [64], in which adversarial learning is used
to learn how to protect communications by encryption or hide/remove sensitive information. Sim-
ilar to these problems, our model includes a minimax formulation and uses adversarial neural
networks to learn privatization schemes. However, in [26, 64], the authors use non-generative auto-
encoders to remove sensitive information, which do not have an obvious generative interpretation.
Instead, we use a GANs-like approach to learn privatization schemes that prevent an adversary
from inferring the private data. Moreover, these papers consider a Lagrangian formulation for the
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utility-privacy tradeo� that the obfuscator computes. We go beyond these works by studying a
game-theoretic setting with constrained optimization, which provides a speci�c privacy guarantee
for a �xed distortion. We also compare the performance of the privatization schemes learned in an
adversarial fashion with the game-theoretically optimal ones.

We use conditional generative models to represent privatization schemes. Generative models
have recently received a lot of attention in the machine learning community [34, 38, 55, 73, 75].
Ultimately, deep generative models hold the promise of discovering and e�ciently internalizing
the statistics of the target signal to be generated. State-of-the-art generative models are trained
in an adversarial fashion [34, 55]: the generated signal is fed into a discriminator which attempts
to distinguish whether the data is real (i.e., sampled from the true underlying distribution) or
synthetic (i.e., generated from a low dimensional noise sequence). Training generative models in
an adversarial fashion has proven to be successful in computer vision and enabled several exciting
applications. Analogous to how the generator is trained in GANs, we train the privatizer in an
adversarial fashion by making it compete with an attacker.

1.3 Outline

The remainder of our paper is organized as follows. We formally present our GAP model in
Section 2. We also show how, as a special case, it can recover several information theoretic notions
of privacy. We then study a simple (but canonical) binary dataset model in Section 3. In particular,
we present theoretically optimal PDD and PDI privatization schemes, and show how these schemes
can be learned from data using a generative adversarial network. In Section 4, we investigate binary
Gaussian mixture dataset models, and provide a variety of privatization schemes. We comment
on their theoretical performance and show how their parameters can be learned from data in a
generative adversarial fashion. Our proofs are deferred to sections A, B, and C of the Appendix.
We conclude our paper in Section 5 with a few remarks and interesting extensions.

2 Generative Adversarial Privacy Model

We consider a dataset D which contains both public and private variables for n individuals (see
Figure 1). We represent the public variables by a random variable X ∈ X , and the private vari-
ables (which are typically correlated with the public variables) by a random variable Y ∈ Y. Each
dataset entry contains a pair of public and private variables denoted by (X,Y ). Instances of X
and Y are denoted by x and y, respectively. We assume that each entry pair (X,Y ) is distributed
according to P (X,Y ), and is independent from other entry pairs in the dataset. Since the dataset
entries are independent of each other, we restrict our attention to memoryless mechanisms: pri-
vacy mechanisms that are applied on each data entry separately. Formally, we de�ne the privacy
mechanism as a randomized mapping given by

g(X,Y ) : X × Y → X .

We consider two di�erent types of privatization schemes: (a) private data dependent (PDD)
schemes, and (b) private data independent (PDI) schemes. A privatization mechanism is PDD
if its output is dependent on both Y and X. It is PDI if its output only depends on X. PDD
mechanisms are naturally superior to PDI mechanisms. We show, in sections 3 and 4, that there
is a sizeable gap in performance between these two approaches.

In our proposed GAP framework, the privatizer is pitted against an adversary. We model the
interactions between the privatizer and the adversary as a non-cooperative game. For a �xed g, the
goal of the adversary is to reliably infer Y from g(X,Y ) using a strategy h. For a �xed adversarial
strategy h, the goal of the privatizer is to design g in a way that minimizes the adversary's capability
of inferring the private variable from the perturbed data. The optimal privacy mechanism is
obtained as an equilibrium point at which both the privatizer and the adversary can not improve
their strategies by unilaterally deviating from the equilibrium point.

2.1 Formulation

Given the output X̂ = g(X,Y ) of a privacy mechanism g(X,Y ), we de�ne Ŷ = h(g(X,Y )) to be
the adversary's inference of the private variable Y from X̂. To quantify the e�ect of adversarial
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inference, for a given public-private pair (x, y), we model the loss of the adversary as

`(h(g(X = x, Y = y)), Y = y) : Y × Y → R.

Therefore, the expected loss of the adversary with respect to (w.r.t.) X and Y is de�ned to be

L(h, g) , E[`(h(g(X,Y )), Y )], (1)

where the expectation is taken over P (X,Y ) and the randomness in g and h.
Intuitively, the privatizer would like to minimize the adversary's ability to learn Y reliably from

the published data. This can be trivially done by releasing an X̂ independent of X. However, such
an approach provides no utility for data analysts who want to learn non-private variables from
X̂. To overcome this issue, we capture the loss incurred by privatizing the original data via a
distortion function d(x̂, x) : X × X → R, which measures how far the original data X = x is from
the privatized data X̂ = x̂. Thus, the average distortion under g(X,Y ) is E[d(g(X,Y ), X)], where
the expectation is taken over P (X,Y ) and the randomness in g.

On the one hand, the data holder would like to �nd a privacy mechanism g that is both
privacy preserving (in the sense that it is di�cult for the adversary to learn Y from X̂) and utility
preserving (in the sense that it does not distort the original data too much). On the other hand, for
a �xed choice of privacy mechanism g, the adversary would like to �nd a (potentially randomized)
function h that minimizes its expected loss, which is equivalent to maximizing the negative of
the expected loss. To achieve these two opposing goals, we model the problem as a constrained
minimax game between the privatizer and the adversary:

min
g(·)

max
h(·)

− L(h, g) (2)

s.t. E[d(g(X,Y ), X)] ≤ D,

where the constantD ≥ 0 determines the allowable distortion for the privatizer and the expectation
is taken over P (X,Y ) and the randomness in g and h.

2.2 GAP under Various Loss Functions

The above formulation places no restrictions on the adversary. Indeed, di�erent loss functions and
decision rules lead to di�erent adversarial models. In what follows, we will discuss a variety of
loss functions under hard and soft decision rules, and show how our GAP framework can recover
several popular information theoretic privacy notions.

Hard Decision Rules. When the adversary adopts a hard decision rule, h(g(X,Y )) is
an estimate of Y . Under this setting, we can choose `(h(g(X,Y )), Y ) in a variety of ways. For
instance, if Y is continuous, the adversary can attempt to minimize the di�erence between the
estimated and true private variable values. This can be achieved by considering a squared loss
function

`(h(g(X,Y )), Y ) = (h(g(X,Y ))− Y )2, (3)

which is known as the `2 loss. In this case, one can verify that the adversary's optimal decision
rule is h∗ = E[Y |g(X,Y )], which is the conditional mean of Y given g(X,Y ). Furthermore, under
the adversary's optimal decision rule, the minimax problem in (2) simpli�es to

min
g(·)
−mmse(Y |g(X,Y )) = −max

g(·)
mmse(Y |g(X,Y )),

subject to the distortion constraint. Here mmse(Y |g(X,Y )) is the resulting minimum mean square
error (MMSE) under h∗ = E[Y |g(X,Y )]. Thus, under the `2 loss, GAP provides privacy guarantees
against an MMSE adversary. On the other hand, when Y is discrete (e.g., age, gender, political
a�liation, etc), the adversary can attempt to maximize its classi�cation accuracy. This is achieved
by considering a 0-1 loss function [63] given by

`(h(g(X,Y )), Y ) =

{
0 if h(g(X,Y )) = Y
1 otherwise

. (4)
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In this case, one can verify that the adversary's optimal decision rule is the maximum a posteriori
probability (MAP) decision rule: h∗ = argmaxy∈Y P (y|g(X,Y )), with ties broken uniformly at
random. Moreover, under the MAP decision rule, the minimax problem in (2) reduces to

min
g(·)
−(1−max

y∈Y
P (y, g(X,Y ))) = min

g(·)
max
y∈Y

P (y, g(X,Y ))− 1, (5)

subject to the distortion constraint. Thus, under a 0-1 loss function, the GAP formulation provides
privacy guarantees against a MAP adversary.

Soft Decision Rules. Instead of a hard decision rule, we can also consider a broader class
of soft decision rules where h(g(X,Y )) is a distribution over Y; i.e., h(g(X,Y )) = Ph(y|g(X,Y ))
for y ∈ Y. In this context, we can analyze the performance under a log-loss

`(h(g(X,Y )), y) = log
1

Ph(y|g(X,Y ))
. (6)

In this case, the objective of the adversary simpli�es to

max
h(·)
−E[log 1

Ph(y|g(X,Y ))
] = −H(Y |g(X,Y )),

and that the maximization is attained at P ∗h (y|g(X,Y )) = P (y|g(X,Y )). Therefore, the optimal
adversarial decision rule is determined by the true conditional distribution P (y|g(X,Y )), which
we assume is known to the data holder in the game-theoretic setting. Thus, under the log-loss
function, the minimax optimization problem in (2) reduces to

min
g(·)
−H(Y |g(X,Y )) = min

g(·)
I(g(X,Y );Y )−H(Y ),

subject to the distortion constraint. Thus, under the log-loss in (6), GAP is equivalent to using
MI as the privacy metric [12].

The 0-1 loss captures a strong guessing adversary; in contrast, log-loss or information-loss
models a belief re�ning adversary. Next, we consider a more general α-loss function [52] that
allows continuous interpolation between these extremes via

`(h(g(X,Y )), y) =
α

α− 1

(
1− Ph(y|g(X,Y ))1−

1
α

)
, (7)

for any α > 1. As shown in [52], for very large α (α → ∞), this loss approaches that of the 0-1
(MAP) adversary. As α decreases, the convexity of the loss function encourages the estimator Ŷ
to be probabilistic, as it increasingly rewards correct inferences of lesser and lesser likely outcomes
(in contrast to a hard decision rule by a MAP adversary of the most likely outcome) conditioned
on the revealed data. As α→ 1, (7) yields the logarithmic loss, and the optimal belief PŶ is simply
the posterior belief. Denoting Ha

α(Y |g(Y,X)) as the Arimoto conditional entropy of order α, one
can verify that [52]

max
h(·)
−E
[

α

α− 1

(
1− Ph(y|g(X,Y ))1−

1
α

)]
= −Ha

α(Y |g(X,Y )),

which is achieved by a `α-tilted' conditional distribution [52]

P ∗h (y|g(X,Y )) =
P (y|g(X,Y ))α∑

y∈Y
P (y|g(X,Y ))α

.

Under this choice of a decision rule, the objective of the minimax optimization in (2) reduces to

min
g(·)
−Ha

α(Y |g(X,Y )) = min
g(·)

Iaα(g(X,Y );Y )−Hα(Y ), (8)

where Iaα is the Arimoto mutual information and Hα is the Rényi entropy. Note that as α → 1,
we recover the classical MI privacy setting and when α→∞, we recover the 0-1 loss.
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2.3 Data-driven GAP

So far, we have focused on a setting where the data holder has access to P (X,Y ). When P (X,Y )
is known, the data holder can simply solve the constrained minimax optimization problem in (2)
(theoretical version of GAP) to obtain a privatization mechanism that would perform best against a
chosen type of adversary. In the absence of P (X,Y ), we propose a data-driven version of GAP that
allows the data holder to learn privatization mechanisms directly from a dataset of the form D =
{(x(i), y(i))}ni=1. Under the data-driven version of GAP, we represent the privacy mechanism via a
conditional generative model g(X,Y ; θp) parameterized by θp. This generative model takes (X,Y )

as inputs and outputs X̂. In the training phase, the data holder learns the optimal parameters
θp by competing against a computational adversary : a classi�er modeled by a neural network
h(g(X,Y ; θp); θa) parameterized by θa. After convergence, we evaluate the performance of the
learned g(X,Y ; θ∗p) by computing the maximal probability of inferring Y under the MAP adversary
studied in the theoretical version of GAP.

We note that in theory, the functions h and g can (in general) be arbitrary; i.e., they can
capture all possible learning algorithms. However, in practice, we need to restrict them to a
rich hypothesis class. Figure 3 shows an example of the GAP model in which the privatizer and
adversary are modeled as multi-layer �randomized� neural networks. For a �xed h and g, we
quantify the adversary's empirical loss using a continuous and di�erentiable function

LEMP(θp, θa) =
1

n

n∑
i=1

`(h(g(x(i), y(i); θp); θa), y(i)), (9)

where (x(i), y(i)) is the ith row of D and `(h(g(x(i), y(i); θp); θa), y(i)) is the adversary loss in the
data-driven context. The optimal parameters for the privatizer and adversary are the solution to

min
θp

max
θa

− LEMP(θp, θa) (10)

s.t. ED[d(g(X,Y ; θp), X)] ≤ D,

where the expectation is taken over the dataset D and the randomness in g.
In keeping with the now common practice in machine learning, in the data-driven approach for

GAP, one can use the empirical log-loss function [80, 95] given by (9) with

`(h(g(x(i), y(i); θp); θa), y(i)) = −y(i) log h(g(x(i), y(i); θp); θa)−(1−y(i)) log(1−h(g(x(i), y(i); θp); θa)),

which leads to a minimum cross-entropy adversary. As a result, the empirical loss of the adversary
is quanti�ed by the cross-entropy

LXE(θp, θa) = −
1

n

n∑
i=1

y(i) log h(g(x(i), y(i); θp); θa) + (1− y(i)) log(1− h(g(x(i), y(i); θp); θa)). (11)

An alternative loss that can be readily used in this setting is the α-loss introduced in Section
2.2. In the data-driven context, the α-loss can be written as

`(h(g(x(i), y(i); θp); θa), y(i)) =
α

α− 1

(
y(i)(1− h(g(x(i), y(i); θp); θa)1−

1
α )

+(1− y(i))(1− (1− h(g(x(i), y(i); θp); θa))1−
1
α )
)
, (12)

for any constant α > 1. As discussed in Section 2.2, the α-loss captures a variety of adversarial
models and recovers both the log-loss (when α → 1) and 0-1 loss (when α → ∞). Futhermore,
(12) suggests that α-leakage can be used as a surrogate (and smoother) loss function for the 0-1
loss (when α is relatively large).

The minimax optimization problem in (10) is a two-player non-cooperative game between the
privatizer and the adversary. The strategies of the privatizer and adversary are given by θp and
θa, respectively. Each player chooses the strategy that optimizes its objective function w.r.t. what
its opponent does. In particular, the privatizer must expect that if it chooses θp, the adversary
will choose a θa that maximizes the negative of its own loss function based on the choice of the
privatizer. The optimal privacy mechanism is given by the equilibrium of the privatizer-adversary
game.

8



Privatizer Adversary

𝑋
𝑌

𝜃𝑝 𝜃𝑎

Input

Input layer Hidden layer Output layer Input layer Hidden layer Output layer

𝑌

𝑋

Sampling

Noise

Figure 3: A multi-layer neural network model for the privatizer and adversary

In practice, we can learn the equilibrium of the game using an iterative algorithm presented
in Algorithm 1. We �rst maximize the negative of the adversary's loss function in the inner loop
to compute the parameters of h for a �xed g. Then, we minimize the privatizer's loss function,
which is modeled as the negative of the adversary's loss function, to compute the parameters of
g for a �xed h. To avoid over-�tting and ensure convergence, we alternate between training the
adversary for k epochs and training the privatizer for one epoch. This results in the adversary
moving towards its optimal solution for small perturbations of the privatizer [34].

To incorporate the distortion constraint into the learning algorithm, we use the penalty method
[53] and augmented Lagrangian method [24] to replace the constrained optimization problem by
a series of unconstrained problems whose solutions asymptotically converge to the solution of
the constrained problem. Under the penalty method, the unconstrained optimization problem is
formed by adding a penalty to the objective function. The added penalty consists of a penalty
parameter ρt multiplied by a measure of violation of the constraint. The measure of violation is
non-zero when the constraint is violated and is zero if the constraint is not violated. Therefore,
in Algorithm 1, the constrained optimization problem of the privatizer can be approximated by a
series of unconstrained optimization problems with the loss function

`(θp, θ
t+1
a ) =− 1

M

M∑
i=1

`(h(g(x(i), y(i); θp); θ
t+1
a ), y(i)) (13)

+ ρtmax{0, 1

M

M∑
i=1

d(g(x(i), y(i); θp), x(i))−D},

where ρt is a penalty coe�cient which increases with the number of iterations t. For convex
optimization problems, the solution to the series of unconstrained problems will eventually converge
to the solution of the original constrained problem [53].

The augmented Lagrangian method is another approach to enforce equality constraints by
penalizing the objective function whenever the constraints are not satis�ed. Di�erent from the
penalty method, the augmented Lagrangian method combines the use of a Lagrange multiplier and
a quadratic penalty term. Note that this method is designed for equality constraints. Therefore,
we introduce a slack variable δ to convert the inequality distortion constraint into an equality
constraint. Using the augmented Lagrangian method, the constrained optimization problem of the
privatizer can be replaced by a series of unconstrained problems with the loss function given by

`(θp, θ
t+1
a , δ) =− 1

M

M∑
i=1

`(h(g(x(i), y(i); θp); θ
t+1
a ), y(i)) (14)

+
ρt
2
(
1

M

M∑
i=1

d(g(x(i), y(i); θp), x(i)) + δ −D)2

− λt(
1

M

M∑
i=1

d(g(x(i), y(i); θp), x(i)) + δ −D),

where ρt is a penalty coe�cient which increases with the number of iterations t and λt is updated

according to the rule λt+1 = λt − ρt( 1
M

M∑
i=1

d(g(x(i), y(i); θp), x(i)) + δ −D). For convex optimiza-

tion problems, the solution to the series of unconstrained problems formulated by the augmented
Lagrangian method also converges to the solution of the original constrained problem [24].
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Algorithm 1 Alternating minimax privacy preserving algorithm

Input: dataset D, distortion parameter D, iteration number T

Output: Optimal privatizer parameter θp

procedure Alernate Minimax(D, D, T )

Initialize θ1p and θ
1
a

for t = 1, ..., T do

Random minibatch of M datapoints {x(1), ..., x(M)} drawn from full dataset

Generate {x̂(1), ..., x̂(M)} via x̂(i) = g(x(i), y(i); θ
t
p)

Update the adversary parameter θt+1
a by stochastic gradient ascend for k epochs

θt+1
a = θta + αt∇θa

1

M

M∑
i=1

−`(h(x̂(i); θa), y(i)), αt > 0

Compute the descent direction ∇θp l(θp, θt+1
a ), where

`(θp, θ
t+1
a ) = − 1

M

M∑
i=1

`(h(g(x(i), y(i); θp); θ
t+1
a ), y(i))

subject to 1
M

∑M
i=1[d(g(x(i), y(i); θp), x(i))] ≤ D

Perform line search along ∇θp l(θp, θt+1
a ) and update

θt+1
p = θtp − αt∇θp`(θp, θt+1

a )

Exit if solution converged

return θt+1
p

2.4 Our Focus

Our GAP framework is very general and can be used to capture many notions of privacy via various
decision rules and loss funcitons. In the rest of this paper, we investigate GAP under 0-1 loss for
two simple dataset models: (a) the binary data model (Section 3), and (b) the binary Gaussian
mixture model (Section 4). Under the binary data model, both X and Y are binary. Under
the binary Gaussian mixture model, Y is binary whereas X is conditionally Gaussian. We use
these results to validate that the data-driven version of GAP can discover �theoretically optimal�
privatization schemes.

In the data-driven approach of GAP, since P (X,Y ) is typically unknown in practice and our
objective is to learn privatization schemes directly from data, we have to consider the empirical
(data-driven) version of (5). Such an approach immediately hits a roadblock because taking
derivatives of a 0-1 loss function w.r.t. the parameters of h and g is ill-de�ned. To circumvent
this issue, similar to the common practice in the ML literature, we use the empirical log-loss
(see Equation (11)) as the loss function for the adversary. We derive game-theoretically optimal
mechanisms for the 0-1 loss function, and use them as a benchmark against which we compare the
performance of the data-driven GAP mechanisms.
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3 Binary Data Model

In this section, we study a setting where both the public and private variables are binary valued
random variables. Let pi,j denote the joint probability of (X,Y ) = (i, j), where i, j ∈ {0, 1}. To
prevent an adversary from correctly inferring the private variable Y from the public variable X,
the privatizer applies a randomized mechanism on X to generate the privatized data X̂. Since
both the original and privatized public variables are binary, the distortion between x and x̂ can be
quanti�ed by the Hamming distortion; i.e. d(x̂, x) = 1 if x̂ 6= x and d(x̂, x) = 0 if x̂ = x. Thus, the
expected distortion is given by E[d(X̂,X)] = P (X̂ 6= X).

3.1 Theoretical Approach for Binary Data Model

The adversary's objective is to correctly guess Y from X̂. We consider a MAP adversary who
has access to the joint distribution of (X,Y ) and the privacy mechanism. The privatizer's goal is
to privatize X in a way that minimizes the adversary's probability of correctly inferring Y from
X̂ subject to the distortion constraint. We �rst focus on private-data dependent (PDD) privacy
mechanisms that depend on both Y and X. We later consider private-data independent (PDI)
privacy mechanisms that only depend on X.

3.1.1 PDD Privacy Mechanism

Let g(X,Y ) denote a PDD mechanism. Since X, Y , and X̂ are binary random variables, the
mechanism g(X,Y ) can be represented by the conditional distribution P (X̂|X,Y ) that maps the
public and private variable pair (X,Y ) to an output X̂ given by

P (X̂ = 0|X = 0, Y = 0) = s0,0, P (X̂ = 0|X = 0, Y = 1) = s0,1,

P (X̂ = 1|X = 1, Y = 0) = s1,0, P (X̂ = 1|X = 1, Y = 1) = s1,1.

Thus, the marginal distribution of X̂ is given by

P (X̂ = 0) =
∑
X,Y

P (X̂ = 0|X,Y )P (X,Y ) = s0,0p0,0 + s0,1p0,1 + (1− s1,0)p1,0 + (1− s1,1)p1,1,

P (X̂ = 1) =
∑
X,Y

P (X̂ = 1|X,Y )P (X,Y ) = (1− s0,0)p0,0 + (1− s0,1)p0,1 + s1,0p1,0 + s1,1p1,1.

If X̂ = 0, the adversary's inference accuracy for guessing Ŷ = 1 is

P (Y = 1, X̂ = 0) =
∑
X

P (X,Y = 1)P (X̂ = 0|X,Y = 1) = p1,1(1− s1,1) + p0,1s0,1, (15)

and the inference accuracy for guessing Ŷ = 0 is

P (Y = 0, X̂ = 0) =
∑
X

P (X,Y = 0)P (X̂ = 0|X,Y = 0) = p1,0(1− s1,0) + p0,0s0,0. (16)

Let s = {s0,0, s0,1, s1,0, s1,1}. For X̂ = 0, the MAP adversary's inference accuracy is given by

P
(B)
d (s, X̂ = 0) = max{P (Y = 1, X̂ = 0), P (Y = 0, X̂ = 0)}. (17)

Similarly, if X̂ = 1, the MAP adversary's inference accuracy is given by

P
(B)
d (s, X̂ = 1) = max{P (Y = 1, X̂ = 1), P (Y = 0, X̂ = 1)}, (18)

where

P (Y = 1, X̂ = 1) =
∑
X

P (X,Y = 1)P (X̂ = 1|X,Y = 1) = p1,1s1,1 + p0,1(1− s0,1), (19)

P (Y = 0, X̂ = 1) =
∑
X

P (X,Y = 0)P (X̂ = 1|X,Y = 0) = p1,0s1,0 + p0,0(1− s0,0).
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As a result, for a �xed privacy mechanism s, the MAP adversary's inference accuracy can be
written as

P
(B)
d = max

h(·)
P (h(g(X,Y )) = Y ) = P

(B)
d (s, X̂ = 0) + P

(B)
d (s, X̂ = 1).

Thus, the optimal PDD privacy mechanism is determined by solving

min
s

P
(B)
d (s, X̂ = 0) + P

(B)
d (s, X̂ = 1) (20)

s.t. P (X̂ = 0, X = 1) + P (X̂ = 1, X = 0) ≤ D
s ∈ [0, 1]4.

Notice that the above constrained optimization problem is a four dimensional optimization
problem parameterized by p = {p0,0, p0,1, p1,0, p1,1} and D. Interestingly, we can formulate (20)
as a linear program (LP) given by

min
s1,1,s0,1,s1,0,s0,0,t0,t1

t0 + t1 (21)

s.t. 0 ≤ s1,1, s0,1, s1,0, s0,0 ≤ 1

p1,1(1− s1,1) + p0,1s0,1 ≤ t0
p1,0(1− s1,0) + p0,0s0,0 ≤ t0
p1,1s1,1 + p0,1(1− s0,1) ≤ t1
p1,0s1,0 + p0,0(1− s0,0) ≤ t1
p1,1(1− s1,1) + p0,1(1− s0,1) + p1,0(1− s1,0) + p0,0(1− s0,0) ≤ D,

where t0 and t1 are two slack variables representing the maxima in (17) and (18), respectively. The
optimal mechanism can be obtained by numerically solving (21) using any o�-the-shelf LP solver.

3.1.2 PDI Privacy Mechanism

In the previous section, we considered PDD privacy mechanisms. Although we were able to for-
mulate the problem as a linear program with four variables, determining a closed form solution
for such a highly parameterized problem is not analytically tractable. Thus, we now consider the
simple (yet meaningful) class of PDI privacy mechanisms. Under PDI privacy mechanisms, the
Markov chain Y → X → X̂ holds. As a result, P (Y, X̂ = x̂) can be written as

P (Y, X̂ = x̂) =
∑
X

P (Y, X̂ = x̂|X)P (X) (22)

=
∑
X

P (Y |X)P (X̂ = x̂|X)P (X) (23)

=
∑
X

P (Y,X)P (X̂ = x̂|X), (24)

where the second equality is due to the conditional independence property of the Markov chain
Y → X → X̂.

For the PDI mechanisms, the privacy mechanism g(X,Y ) can be represented by the conditional
distribution P (X̂|X). To make the problem more tractable, we focus on a slightly simpler setting
in which Y = X ⊕ N , where N ∈ {0, 1} is a random variable independent of X and follows a
Bernoulli distribution with parameter q. In this setting, the joint distribution of (X,Y ) can be
computed as

P (X = 1, Y = 1) = P (Y = 1|X = 1)P (X = 1) = p(1− q), (25)

P (X = 0, Y = 1) = P (Y = 1|X = 0)P (X = 0) = (1− p)q, (26)

P (X = 1, Y = 0) = P (Y = 0|X = 1)P (X = 1) = pq, (27)

P (X = 0, Y = 0) = P (Y = 0|X = 0)P (X = 0) = (1− p)(1− q). (28)

Let s = {s0, s1} in which s0 = P (X̂ = 0|X = 0) and s1 = P (X̂ = 1|X = 1). The joint
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distribution of (Y, X̂) is given by

P (Y = 1, X̂ = 0) = p(1− q)(1− s1) + (1− p)qs0,
P (Y = 0, X̂ = 0) = pq(1− s1) + (1− p)(1− q)s0,
P (Y = 1, X̂ = 1) = p(1− q)s1 + (1− p)q(1− s0),
P (Y = 0, X̂ = 1) = pqs1 + (1− p)(1− q)(1− s0).

Using the above joint probabilities, for a �xed s, we can write the MAP adversary's inference
accuracy as

P
(B)
d = max

h(·)
P (h(g(X,Y )) = Y ) = max{P (Y = 1, X̂ = 0), P (Y = 0, X̂ = 0)} (29)

+max{P (Y = 1, X̂ = 1), P (Y = 0, X̂ = 1)}.

Therefore, the optimal PDI privacy mechanism is given by the solution to

min
s

P
(B)
d (30)

s.t. P (X̂ = 0, X = 1) + P (X̂ = 1, X = 0) ≤ D
s ∈ [0, 1]2,

where the distortion in (30) is given by (1− s0)(1−p)+(1− s1)p. By (29), P (B)
d can be considered

as a sum of two functions, where each function is a maximum of two linear functions. Therefore,
it is convex in s0 and s1 for di�erent values of p, q and D.

Theorem 1. For �xed p, q and D, there exists in�nitely many PDI privacy mechanisms that
achieve the optimal privacy-utility tradeo�. If q = 1

2 , any privacy mechanism that satis�es
{s0, s1|ps1 + (1 − p)s0 ≥ 1 − D, s0, s1 ∈ [0, 1]} is optimal. If q 6= 1

2 , the optimal PDI privacy
mechanism is given as follows:

• If 1−D > max{p, 1−p}, the optimal privacy mechanism is given by {s0, s1|ps1+(1−p)s0 =
1−D, s0, s1 ∈ [0, 1]}. The adversary's accuracy of correctly guessing the private variable is{

(1− 2q)(1−D) + q if q < 1
2

(2q − 1)(1−D) + 1− q if q > 1
2

. (31)

• Otherwise, the optimal privacy mechanism is given by {s0, s1|max{min{p, 1 − p}, 1 −D} ≤
ps1 + (1 − p)s0 ≤ max{p, 1 − p}, s0, s1 ∈ [0, 1]} and the adversary's accuracy of correctly
guessing the private variable is{

p(1− q) + (1− p)q if p ≥ 1
2 , q <

1
2 or p ≤ 1

2 , q >
1
2

pq + (1− p)(1− q) if p ≥ 1
2 , q >

1
2 or p ≤ 1

2 , q <
1
2

. (32)

Proof sketch: The proof of Theorem 1 is provided in Appendix A. We brie�y sketch the proof
details here. For the special case q = 1

2 , the solution is trivial since the private variable Y is
independent of the public variable X. Thus, the optimal solution is given by any s0, s1 that
satis�es the distortion constraint {s0, s1|ps1 + (1 − p)s0 ≥ 1 − D, s0, s1 ∈ [0, 1]}. For q 6= 1

2 ,
we separate the optimization problem in (30) into four subproblems based on the decision of the
adversary. We then compute the optimal privacy mechanism of the privatizer in each subproblem.
Summarizing the optimal solutions to the subproblems for di�erent values of p, q and D yields
Theorem 1.

Remark: Note that if 1 − D > max{p, 1 − p}, i.e., D < min{p, 1 − p}, the privacy guarantee
achieved by the optimal PDI mechanism (the MAP adversary's accuracy of correctly guessing the
private variable) decreases linearly with D. For D ≥ min{p, 1 − p}, the optimal PDI mechanism
achieves a constant privacy guarantee regardless of D. However, in this case, the privatizer can
just use the optimal privacy mechanism with D = min{p, 1 − p} to optimize privacy guarantee
without further sacri�cing utility.
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Figure 4: Neural network structure of the privatizer and adversary for binary data model

3.2 Data-driven Approach for Binary Data Model

In practice, the joint distribution of (X,Y ) is often unknown to the data holder. Instead, the
data holder has access to a dataset D, which is used to learn a good privatization mechanism in
a generative adversarial fashion. In the training phase, the data holder learns the parameters of
the conditional generative model (representing the privatization scheme) by competing against a
computational adversary represented by a neural network. The details of both neural networks
are provided later in this section. When convergence is reached, we evaluate the performance of
the learned privatization scheme by computing the accuracy of inferring Y under a strong MAP
adversary that: (a) has access to the joint distribution of (X,Y ), (b) has knowledge of the learned
privacy mechanism, and (c) can compute the MAP rule. Ultimately, the data holder's hope is to
learn a privatization scheme that matches the one obtained under the game-theoretic framework,
where both the adversary and privatizer are assumed to have access to P (X,Y ). To evaluate our
data-driven approach, we compare the mechanisms learned in an adversarial fashion on D with the
game-theoretically optimal ones.

Since the private variable Y is binary, we use the empirical log-loss function for the adver-
sary (see Equation (11)). For a �xed θp, the adversary learns the optimal θ∗a by maximizing
−LXE(h(g(X,Y ; θp); θa), Y ) given in Equation (11). For a �xed θa, the privatizer learns the opti-
mal θ∗p by minimizing −LXE(h(g(X,Y ; θp); θa), Y ) subject to the distortion constraint (see Equa-
tion (10)). Since both X and Y are binary variables, we can use the privatizer parameter θp to
represent the privacy mechanism s directly. For the adversary, we de�ne θa = (θa,0, θa,1), where
θa,0 = P (Y = 0|X̂ = 0) and θa,1 = P (Y = 1|X̂ = 1). Thus, given a privatized public variable
input g(x(i), y(i); θp) ∈ {0, 1}, the output belief of the adversary guessing y(i) = 1 can be written
as (1− θa,0)(1− g(x(i), y(i); θp)) + θa,1g(x(i), y(i); θp).

For PDD privacy mechanisms, we have θp = s = {s0,0, s0,1, s1,0, s1,1}. Given the fact that
both x(i) and y(i) are binary, we use two simple neural networks to model the privatizer and
the adversary. As shown in Figure 4, the privatizer is modeled as a two-layer neural network
parameterized by s, while the adversary is modeled as a two-layer neural network classi�er. From
the perspective of the privatizer, the belief of an adversary guessing y(i) = 1 conditioned on the
input (x(i), y(i)) is given by

h(g(x(i), y(i); s); θa) = θa,1P (x̂(i) = 1) + (1− θa,0)P (x̂(i) = 0), (33)

where

P (x̂(i) = 1) =x(i)y(i)s1,1 + (1− x(i))y(i)(1− s0,1)
+ x(i)(1− y(i))s1,0 + (1− x(i))(1− y(i))(1− s0,0),

P (x̂(i) = 0) =x(i)y(i)(1− s1,1) + (1− x(i))y(i)s0,1
+ x(i)(1− y(i))(1− s1,0) + (1− x(i))(1− y(i))s0,0.

Furthermore, the expected distortion is given by

ED[d(g(X,Y ; s), X)] =
1

n

n∑
i=1

[x(i)y(i)(1− s1,1) + x(i)(1− y(i))(1− s1,0) (34)

+ (1− x(i))y(i)(1− s0,1) + (1− x(i))(1− y(i))(1− s0,0)].

Similar to the PDD case, we can also compute the belief of guessing y(i) = 1 conditional on the
input (x(i), y(i)) for the PDI schemes. Observe that in the PDI case, θp = s = {s0, s1}. Therefore,
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we have

h(g(x(i), y(i); s); θa) = θa,1[x(i)s1 + (1− x(i))(1− s0)] + (1− θa,0)[(1− x(i))s0 + x(i)(1− s1)].
(35)

Under PDI schemes, the expected distortion is given by

ED[d(g(X,Y ; s), X)] =
1

n

n∑
i=1

[x(i)(1− s1) + (1− x(i))(1− s0)]. (36)

Thus, we can use Algorithm 1 proposed in Section 2.3 to learn the optimal PDD and PDI privacy
mechanisms from the dataset.

3.3 Illustration of Results

We now evaluate our proposed GAP framework using synthetic datasets. We focus on the setting
in which Y = X ⊕ N , where N ∈ {0, 1} is a random variable independent of X and follows a
Bernoulli distribution with parameter q. We generate two synthetic datasets with (p, q) equal to
(0.75, 0.25) and (0.5, 0.25), respectively. Each synthetic dataset used in this experiment contains
10, 000 training samples and 2, 000 test samples. We use Tensor�ow [2] to train both the privatizer
and the adversary using Adam optimizer with a learning rate of 0.01 and a minibatch size of 200.
The distortion constraint is enforced by the penalty method provided in (13).

0 0.1 0.2 0.3 0.4 0.5 0.6

Distortion

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

Optimal probability of detection w.r.t. different value of D for p=0.5, q=0.25

(a) Performance of privacy mechanisms against
MAP adversary for p = 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Distortion

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

Optimal probability of detection w.r.t. different value of D for p=0.75, q=0.25

(b) Performance of privacy mechanisms against
MAP adversary for p = 0.75

0 0.1 0.2 0.3 0.4 0.5 0.6

Distortion

0

0.05

0.1

0.15

0.2

0.25

0.3

pr
iv

ac
y 

lo
ss

 (
bi

ts
)

Optimal mutual information privacy w.r.t distortion for p=0.5, q=0.25

(c) Performance of privacy mechanisms under
MI privacy metric for p = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6

Distortion

0

0.05

0.1

0.15

0.2

0.25

0.3

pr
iv

ac
y 

lo
ss

 (
bi

ts
)

Optimal mutual information privacy w.r.t distortion for p=0.75, q=0.25

(d) Performance of privacy mechanisms under
MI privacy metric for p = 0.75

Figure 5: Privacy-distortion tradeo� for binary data model

Figure 5a illustrates the performance of both optimal PDD and PDI privacy mechanisms against
a strong theoretical MAP adversary when (p, q) = (0.5, 0.25). It can be seen that the inference
accuracy of the MAP adversary reduces as the distortion increases for both optimal PDD and
PDI privacy mechanisms. As one would expect, the PDD privacy mechanism achieves a lower
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inference accuracy for the adversary, i.e., better privacy, than the PDI mechanism. Furthermore,
when the distortion is higher than some threshold, the inference accuracy of the MAP adversary
saturates regardless of the distortion. This is due to the fact that the correlation between the
private variable and the privatized public variable cannot be further reduced once the distortion
is larger than the saturation threshold. Therefore, increasing distortion will not further reduce
the accuracy of the MAP adversary. We also observe that the privacy mechanism obtained via
the data-driven approach performs very well when pitted against the MAP adversary (maximum
accuracy di�erence around 3% compared to the theoretical approach). In other words, for the
binary data model, the data-driven version of GAP can yield privacy mechanisms that perform as
well as the mechanisms computed under the theoretical version of GAP, which assumes that the
privatizer has access to the underlying distribution of the dataset.

Figure 5b shows the performance of both optimal PDD and PDI privacy mechanisms against the
MAP adversary for (p, q) = (0.75, 0.25). Similar to the equal prior case, we observe that both PDD
and PDI privacy mechanisms reduce the accuracy of the MAP adversary as the distortion increases
and saturate when the distortion goes above a certain threshold. It can be seen that the saturation
thresholds for both PDD and PDI privacy mechanisms in Figure 5b are lower than the �equal prior�
case plotted in Figure 5a. The reason is that when (p, q) = (0.75, 0.25), the correlation between
Y and X is weaker than the �equal prior� case. Therefore, it requires less distortion to achieve
the same privacy. We also observe that the performance of the GAP mechanism obtained via the
data-driven approach is comparable to the mechanism computed via the theoretical approach.

The performance of the GAP mechanism obtained using the log-loss function (i.e., MI privacy)
is plotted in Figure 5c and 5d. Similar to the MAP adversary case, as the distortion increases, the
mutual information between the private variable and the privatized public variable achieved by the
optimal PDD and PDI mechanisms decreases as long as the distortion is below some threshold.
When the distortion goes above the threshold, the optimal privacy mechanism is able to make
the private variable and the privatized public variable independent regardless of the distortion.
Furthermore, the values of the saturation thresholds are very close to what we observe in Figure
5a and 5b.

4 Binary Gaussian Mixture Model

Thus far, we have studied a simple binary dataset model. In many real datasets, the sample space
of variables often takes more than just two possible values. It is well known that the Gaussian
distribution is a �exible approximate for many distributions [89]. Therefore, in this section, we
study a setting where Y ∈ {0, 1} and X is a Gaussian random variable whose mean and variance
are dependent on Y . Without loss of generality, let E[X|Y = 1] = −E[X|Y = 0] = µ and
P (Y = 1) = p̃. Thus, X|Y = 0 ∼ N (−µ, σ2

0) and X|Y = 1 ∼ N (µ, σ2
1).

Similar to the binary data model, we study two privatization schemes: (a) private-data inde-
pendent (PDI) schemes (where X̂ = g(X)), and (b) private-data dependent (PDD) schemes (where
X̂ = g(X,Y )). In order to have a tractable model for the privatizer, we assume g(X,Y ) is realized
by adding an a�ne function of an independently generated random noise to the public variable
X. The a�ne function enables controlling both the mean and variance of the privatized data. In
particular, we consider g(X,Y ) = X+(1−Y )β0−Y β1+(1−Y )γ0N +Y γ1N , in which N is a one
dimensional random variable and β0, β1, γ0, γ1 are constant parameters. The goal of the privatizer
is to sanitze the public data X subject to the distortion constraint EX̂,X ||X̂ −X||22 ≤ D.

4.1 Theoretical Approach for Binary Gaussian Mixture Model

We now investigate the theoretical approach under which both the privatizer and the adversary have
access to P (X,Y ). To make the problem more tractable, let us consider a slightly simpler setting in
which σ0 = σ1 = σ. We will relax this assumption later when we take a data-driven approach. We
further assume that N is a standard Gaussian random variable. One might, rightfully, question our
choice of focusing on adding (potentially Y -dependent) Gaussian noise. Though other distributions
can be considered, our approach is motivated by the following two reasons:

• (a) Even though it is known that adding Gaussian noise is not the worst case noise adding
mechanism for non-Gaussian X [74], identifying the optimal noise distribution is mathemat-
ically intractable. Thus, for tractability and ease of analysis, we choose Gaussian noise.
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• (b) Adding Gaussian noise to each data entry preserves the conditional Gaussianity of the
released dataset.

In what follows, we will analyze a variety of PDI and PDD mechanisms.

4.1.1 PDI Gaussian Noise Adding Privacy Mechanism

We consider a PDI noise adding privatization scheme which adds an a�ne function of the standard
Gaussian noise to the public variable. Since the privacy mechanism is PDI, we have g(X,Y ) =
X+β+γN , where β and γ are constant parameters and N ∼ N (0, 1). Using the classical Gaussian
hypothesis testing analysis [83], it is straightforward to verify that the optimal inference accuracy
(i.e., probability of detection) of the MAP adversary is given by

P
(G)
d = p̃Q

(
−α
2
+

1

α
ln

(
1− p̃
p̃

))
+ (1− p̃)Q

(
−α
2
− 1

α
ln

(
1− p̃
p̃

))
, (37)

where α = 2µ√
γ2+σ2

and Q(x) = 1√
2π

∫∞
x

exp(−u
2

2 )du. Moreover, since EX̂,X [d(X̂,X)] = β2 + γ2,

the distortion constraint is equivalent to β2 + γ2 ≤ D.

Theorem 2. For a PDI Gaussian noise adding privatization scheme given by g(X,Y ) = X + β+
γN , with β ∈ R and γ ≥ 0, the optimal parameters are given by

β∗ = 0, γ∗ =
√
D. (38)

Let α∗ = 2µ√
D+σ2

. For this optimal scheme, the accuracy of the MAP adversary is

P
(G)*
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(
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∗
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+

1

α∗
ln

(
1− p̃
p̃

))
+ (1− p̃)Q

(
−α
∗

2
− 1

α∗
ln

(
1− p̃
p̃

))
. (39)

The proof of Theorem 2 is provided in Appendix B. We observe that the PDI Gaussian noise
adding privatization scheme which minimizes the inference accuracy of the MAP adversary with
distortion upper-bounded by D is to add a zero-mean Gaussian noise with variance D.

4.1.2 PDD Gaussian Noise Adding Privacy Mechanism

For PDD privatization schemes, we �rst consider a simple case in which γ0 = γ1 = 0. Without loss
of generality, we assume that both β0 and β1 are non-negative. The privatized data is given by
X̂ = X+(1−Y )β0−Y β1. This is a PDD mechanism since X̂ depends on bothX and Y . Intuitively,
this mechanism privatizes the data by shifting the two Gaussian distributions (under Y = 0 and
Y = 1) closer to each other. Under this mechanism, it is easy to show that the adversary's MAP
probability of inferring the private variable Y from X̂ is given by P (G)

d in (37) with α = 2µ−(β1+β0)
σ .

Observe that since d(X̂,X) = ((1 − Y )β0 − Y β1)2, we have EX̂,X [d(X̂,X)] = (1 − p̃)β2
0 + p̃β2

1 .
Thus, the distortion constraint implies (1− p̃)β2

0 + p̃β2
1 ≤ D.

Theorem 3. For a PDD privatization scheme given by g(X,Y ) = X+(1−Y )β0−Y β1, β0, β1 ≥ 0,
the optimal parameters are given by

β∗0 =

√
p̃D

1− p̃
, β∗1 =

√
(1− p̃)D

p̃
. (40)

For this optimal PDD privatization scheme, the accuracy of the MAP adversary is given by (37)

with α =
2µ−(

√
(1−p̃)D

p̃ +
√

p̃D
1−p̃ )

σ .

The proof of Theorem 3 is provided in Appendix C. When P (Y = 1) = P (Y = 0) = 1
2 , we have

β0 = β1 =
√
D, which implies that the optimal privacy mechanism for this particular case is to

shift the two Gaussian distributions closer to each other equally by
√
D regardless of the variance

σ2. When P (Y = 1) = p̃ > 1
2 , the Gaussian distribution with a lower prior probability, in this

case, X|Y = 0, gets shifted p̃
1−p̃ times more than X|Y = 1.

Next, we consider a slightly more complicated case in which γ0 = γ1 = γ ≥ 0. Thus, the privacy
mechanism is given by g(X,Y ) = X + (1 − Y )β0 − Y β1 + γN , where N ∼ N (0, 1). Intuitively,
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this mechanism privatizes the data by shifting the two Gaussian distributions (under Y = 0 and
Y = 1) closer to each other and adding another Gaussian noise N ∈ N (0, 1) scaled by a constant γ.
In this case, the MAP probability of inferring the private variable Y from X̂ is given by (37) with
α = 2µ−(β1+β0)√

γ2+σ2
. Furthermore, the distortion constraint is equivalent to (1− p̃)β2

0 + p̃β2
1 + γ2 ≤ D.

Theorem 4. For a PDD privatization scheme given by g(X,Y ) = X + (1 − Y )β0 − Y β1 + γN
with β0, β1, γ ≥ 0, the optimal parameters β∗0 , β

∗
1 , γ
∗ are given by the solution to

min
β0,β1,γ

2µ− β0 − β1√
γ2 + σ2

(41)

s.t. (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D
β0, β1, γ ≥ 0.

Using this optimal scheme, the accuracy of the MAP adversary is given by (37) with α =
2µ−β∗

0−β
∗
1√

(γ∗)2+σ2
.

Proof. Similar to the proofs of Theorem 2 and 3, we can compute the derivative of P (G)
d w.r.t. α. It

is easy to verify that P (G)
d is monotonically increasing with α. Therefore, the optimal mechanism

is given by the solution to (41). Substituting the optimal parameters into (37) yields the MAP
probability of inferring the private variable Y from X̂.

Remark: Note that the objective function in (41) only depends on β0 + β1 and γ. We de�ne
β = β0 + β1. Thus, the above objective function can be written as

min
β,γ

2µ− β√
γ2 + σ2

. (42)

It is straightforward to verify that the determinant of the Hessian of (42) is always non-positive.
Therefore, the above optimization problem is non-convex in β and γ.

Finally, we consider the PDD Gaussian noise adding privatization scheme given by g(X,Y ) =
X+(1−Y )β0−Y β1+(1−Y )γ0N+Y γ1N , where N ∼ N (0, 1). This PDD mechanism is the most
general one in the Gaussian noise adding setting and includes the two previous mechanisms. The
objective of the privatizer is to minimize the adversary's probability of correctly inferring Y from
g(X,Y ) subject to the distortion constraint given by p̃((β1)2+(γ1)

2)+ (1− p̃)((β0)2+(γ0)
2) ≤ D.

As we have discussed in the remark after Theorem 4, the problem becomes non-convex even for
the simpler case in which γ0 = γ1 = γ. In order to obtain the optimal parameters for this case, we
�rst show that the optimal privacy mechanism lies on the boundary of the distortion constraint.

Proposition 1. For the privacy mechanism given by g(X,Y ) = X+(1−Y )β0−Y β1+(1−Y )γ0N+
Y γ1N , the optimal parameters β∗0 , β

∗
1 , γ
∗
0 , γ
∗
1 satisfy p̃((β∗1)

2 + (γ∗1 )
2) + (1− p̃)((β∗0)2 + (γ∗0)

2) = D.

Proof. We prove the above statement by contradiction. Assume that the optimal parameters
satisfy p̃((β∗1)

2 + (γ∗1)
2) + (1 − p̃)((β∗0)2 + (γ∗0)

2) < D. Let β̃1 = β∗1 + c, where c > 0 is chosen so
that p̃((β̃1)2 + (γ∗1 )

2) + (1− p̃)((β∗0)2 + (γ∗0 )
2) = D. Since the inference accuracy is monotonically

decreasing with β1, the resultant inference accuracy can only be lower for replacing β∗1 with β̃1.
This contradicts with the assumption that p̃((β∗1)

2 + (γ∗1 )
2) + (1 − p̃)((β∗0)2 + (γ∗0 )

2) < D. Using
the same type of analysis, we can show that any parameter that deviates from p̃((β∗1)

2 + (γ∗1 )
2) +

(1− p̃)((β∗0)2 + (γ∗0)
2) = D is suboptimal.

Let e20 = (β∗0)
2 + (γ∗0 )

2 and e21 = (β∗1)
2 + (γ∗1 )

2. Since the optimal parameters of the privatizer
lie on the boundary of the distortion constraint, we have p̃e21+(1− p̃)e20 = D. This implies (e0, e1)

lies on the boundary of an ellipse parametrized by p̃ and D. Thus, we have e1 =
√

D
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1+ε2 , where ε ∈ [0, 1]. Therefore, the optimal parameters satisfy
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Figure 6: Neural network structure of the privatizer and adversary for binary Gaussian mixture
model

This implies (β∗i , γ
∗
i ), i ∈ {0, 1} lie on the boundary of two circles parametrized by D, p̃ and ε.

Thus, we can write β∗0 , β
∗
1 , γ
∗
0 , γ
∗
1 as

β∗0 = 2
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1− p̃
ε
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1− w2

0

1 + w2
0
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√
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1
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1

, (44)

γ∗0 = 4

√
D

1− p̃
ε

1 + ε2
w0

1 + w2
0

, γ∗1 = 2

√
D

p̃

1− ε2

1 + ε2
w1

1 + w2
1

,

where ε, w0, w1 ∈ [0, 1]. The optimal parameters β∗0 , β
∗
1 , γ
∗
0 , γ
∗
1 can be computed by a grid search

in the cube parametrized by ε, w0, w1 ∈ [0, 1] that minimizes the accuracy of the MAP adversary.
In the following section, we will use this general PDD Gaussian noise adding privatization scheme
in our data-driven simulations and compare the performance of the privacy mechanisms obtained
by both theoretical and data-driven approaches.

4.2 Data-driven Approach for Binary Gaussian Mixture Model

To illustrate our data-driven GAP approach, we assume the privatizer only has access to the
dataset D but does not know the joint distribution of (X,Y ). Finding the optimal privacy mech-
anism becomes a learning problem. In the training phase, we use the empirical log-loss function
LXE(h(g(X,Y ; θp); θa), Y ) provided in (11) for the adversary. Thus, for a �xed privatizer parame-
ter θp, the adversary learns the optimal parameter θ∗a that maximizes −LXE(h(g(X,Y ; θp); θa), Y ).
On the other hand, the optimal parameter for the privacy mechanism is obtained by solving (10).
After convergence, we use the learned data-driven GAP mechanism to compute the accuracy of in-
ferring the private variable under a strong MAP adversary. We evaluate our data-driven approach
by comparing the mechanisms learned in an adversarial fashion on D with the game-theoretically
optimal ones in which both the adversary and privatizer are assumed to have access to P (X,Y ).

We consider the PDD Gaussian noise adding privacy mechanism given by g(X,Y ) = X + (1−
Y )β0 − Y β1 + (1 − Y )γ0N + Y γ1N . Similar to the binary setting, we use two neural networks
to model the privatizer and the adversary. As shown in Figure 6, the privatizer is modeled by a
two-layer neural network with parameters β0, β1, γ0, γ1 ∈ R. The adversary, whose goal is to infer
Y from privatized data X̂, is modeled by a three-layer neural network classi�er with leaky ReLU
activations. The random noise is drawn from a standard Gaussian distribution N ∼ N (0, 1).

In order to enforce the distortion constraint, we use the augmented Lagrangian method to pe-
nalize the learning objective when the constraint is not satis�ed. In the binary Gaussian mixture
model setting, the augmented Lagrangian method uses two parameters, namely λt and ρt to ap-
proximate the constrained optimization problem by a series of unconstrained problems. Intuitively,
a large value of ρt enforces the distortion constraint to be binding, whereas λt is an estimate of the
Lagrangian multiplier. To obtain the optimal solution of the constrained optimization problem,
we solve a series of unconstrained problems given by (14).

19



Table 1: Synthetic datasets

Dataset P (Y = 1) X|Y = 0 X|Y = 1

1 0.5 N (−3, 1) N (3, 1)
2 0.5 N (−3, 4) N (3, 1)
3 0.75 N (−3, 1) N (3, 1)
4 0.75 N (−3, 4) N (3, 1)

4.3 Illustration of Results

We use synthetic datasets to evaluate our proposed GAP framework. We consider four synthetic
datasets shown in Table 1. Each synthetic dataset used in this experiment contains 20, 000 training
samples and 2, 000 test samples. We use Tensor�ow to train both the privatizer and the adversary
using Adam optimizer with a learning rate of 0.01 and a minibatch size of 200.

1 2 3 4 5 6 7 8 9

Distortion

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Optimal probability of detection w.r.t. different value of D for p=0.5

(a) Performance of PDD mechanisms against
MAP adversary for p̃ = 0.5

1 2 3 4 5 6 7 8 9

Distortion

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Optimal probability of detection w.r.t. different value of D for p=0.75

(b) Performance of PDD mechanisms against
MAP adversary for p̃ = 0.75

Figure 7: Privacy-distortion tradeo� for binary Gaussian mixture model

Figure 7a and 7b illustrate the performance of the optimal PDD Gaussian noise adding mech-
anisms against the strong theoretical MAP adversary when P (Y = 1) = 0.5 and P (Y = 1) = 0.75,
respectively. It can be seen that the optimal mechanisms obtained by both theoretical and data-
driven approaches reduce the inference accuracy of the MAP adversary as the distortion increases.
Similar to the binary data model, we observe that the accuracy of the adversary saturates when the
distortion crosses some threshold. Moreover, it is worth pointing out that for the binary Gaussian
mixture setting, we also observe that the privacy mechanism obtained through the data-driven ap-
proach performs very well when pitted against the MAP adversary (maximum accuracy di�erence
around 6% compared with theoretical approach). In other words, for the binary Gaussian mixture
model, the data-driven approach for GAP can generate privacy mechanisms that are comparable,
in terms of performance, to the theoretical approach, which assumes the privatizer has access to
the underlying distribution of the data.

Figures 8 to 13 show the privatization schemes for di�erent datasets. The intuition of this
Gaussian noise adding mechanism is to shift distributions of X|Y = 0 and X|Y = 1 closer and
scale the variances to preserve privacy. When P (Y = 0) = P (Y = 1) and σ0 = σ1, the privatizer
shifts and scales the two distributions almost equally. Furthermore, the resultant X̂|Y = 0 and
X̂|Y = 1 have very similar distributions. We also observe that if P (Y = 0) 6= P (Y = 1), the public
variable whose corresponding private variable has a lower prior probability gets shifted more. It
is also worth mentioning that when σ0 6= σ1, the public variable with a lower variance gets scaled
more.

The optimal privacy mechanisms obtained via the data-driven approach under di�erent datasets
are presented in Tables 2 to 5. In each table, D is the maximum allowable distortion. β0, β1, γ0,
and γ1 are the parameters of the privatizer neural network. These learned parameters dictate the
statistical model of the privatizer, which is used to sanitize the dataset. We use acc to denote the
inference accuracy of the adversary using a test dataset and xent to denote the converged cross-
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entropy of the adversary. The column titled distance represents the average distortion ED‖X−X̂‖2
that results from sanitizing the test dataset via the learned privatization scheme. Pdetect is the
MAP adversary's inference accuracy under the learned privatization scheme, assuming that the
adversary: (a) has access to the joint distribution of (X,Y ), (b) has knowledge of the learned
privatization scheme, and (c) can compute the MAP rule. Pdetect-theory is the �lowest� inference
accuracy we get if the privatizer had access to the joint distribution of (X,Y ), and used this
information to compute the parameters of the privatization scheme based on the approach provided
at the end of Section 4.1.2.

Figure 8: Raw test samples, equal variance

(a) D = 1 (b) D = 3 (c) D = 8

Figure 9: Prior P (Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1)

(a) D = 1 (b) D = 3 (c) D = 8

Figure 10: Prior P (Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1)

21



Figure 11: Raw test samples, unequal variance

(a) D = 1 (b) D = 3 (c) D = 8

Figure 12: Prior P (Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4)

(a) D = 1 (b) D = 3 (c) D = 8

Figure 13: Prior P (Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4)

Table 2: Prior P (Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1)

D β0 β1 γ0 γ1 acc xent distance Pdetect Pdetect−theory

1 0.5214 0.5214 0.7797 0.7797 0.9742 0.0715 0.9776 0.9747 0.9693
2 0.9861 0.9861 1.0028 1.0029 0.9169 0.1974 1.9909 0.9225 0.9213
3 1.3819 1.3819 1.0405 1.0403 0.8633 0.3130 3.0013 0.8689 0.8682
4 1.5713 1.5713 1.2249 1.2249 0.8123 0.4066 4.0136 0.8169 0.8144
5 1.8199 1.8199 1.3026 1.3024 0.7545 0.4970 4.9894 0.7638 0.7602
6 1.9743 1.9745 1.436 1.4359 0.7122 0.5564 5.9698 0.7211 0.7035
7 2.5332 2.5332 0.7499 0.7500 0.6391 0.6326 7.0149 0.6456 0.6384
8 2.8284 2.8284 0.0044 0.0028 0.5727 0.6787 7.9857 0.5681 0.5681
9 2.9999 3.0000 0.0003 0.0004 0.4960 0.6938 8.9983 0.5000 0.5000
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Table 3: Prior P (Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 1)

D β0 β1 γ0 γ1 acc xent distance Pdetect Pdetect−theory

1 0.8094 0.2698 0.844 0.8963 0.9784 0.0591 0.9533 0.9731 0.9630
2 1.4998 0.5000 0.9676 1.1612 0.9314 0.1635 1.9098 0.9271 0.9176
3 0.9808 0.3269 1.3630 1.5762 0.911 0.2054 2.9833 0.9205 0.8647
4 2.2611 0.7536 1.1327 1.6225 0.8359 0.3519 4.0559 0.8355 0.8023
5 2.5102 0.8368 1.0724 1.8666 0.792 0.401 5.0445 0.7963 0.7503
6 2.8238 0.9412 1.2894 1.9752 0.7627 0.4559 6.0843 0.7643 0.7500
7 3.2148 1.0718 0.6938 2.1403 0.7500 0.4468 7.0131 0.7500 0.7500
8 3.3955 1.1320 1.0256 2.2789 0.7500 0.4799 8.0484 0.7500 0.7500
9 4.1639 1.3878 0.0367 2.0714 0.7500 0.4745 8.9343 0.7500 0.7500

Table 4: Prior P (Y = 1) = 0.5, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4)

D β0 β1 γ0 γ1 acc xent distance Pdetect Pdetect−theory

1 0.8660 0.8660 0.0079 0.7074 0.9122 0.2103 1.0078 0.9107 0.9105
2 1.2781 1.2781 0.0171 0.8560 0.8595 0.3239 2.0181 0.8550 0.8539
3 1.5146 1.5146 0.0278 1.1352 0.8084 0.4211 3.0264 0.8042 0.8011
4 1.7587 1.7587 0.0330 1.2857 0.7557 0.4970 4.0274 0.7554 0.7513
5 2.0923 2.0923 0.0142 1.0028 0.7057 0.5589 5.0082 0.7113 0.7043
6 2.3079 2.2572 0.0211 1.1185 0.6650 0.5999 6.0377 0.6676 0.6600
7 2.5351 2.5351 0.0567 1.0715 0.6100 0.6509 7.0125 0.6225 0.6185
8 2.7056 2.7056 0.0358 1.1665 0.5770 0.6738 8.0088 0.5868 0.5803
9 2.8682 2.8682 0.0564 1.2435 0.5445 0.6844 9.0427 0.5601 0.5457

Table 5: Prior P (Y = 1) = 0.75, X|Y = 1 ∼ N(3, 1), X|Y = 0 ∼ N(−3, 4)

D β0 β1 γ0 γ1 acc xent distance Pdetect Pdetect−theory

1 0.8214 0.2739 0.0401 1.0167 0.9514 0.1357 0.9909 0.9448 0.9328
2 1.4164 0.4722 0.0583 1.2959 0.9026 0.2402 2.0257 0.9033 0.8891
3 2.2354 0.7450 0.0246 1.3335 0.8665 0.3354 2.9617 0.8514 0.8481
4 2.6076 0.8693 0.0346 1.5199 0.8269 0.4034 3.9522 0.8148 0.8120
5 2.9919 0.9977 0.0143 1.6399 0.7885 0.4625 5.0034 0.7833 0.7824
6 3.3079 1.1027 0.0094 1.7707 0.7616 0.5013 6.0022 0.7606 0.7500
7 3.1458 1.0488 0.0565 2.1606 0.7496 0.4974 7.0091 0.7500 0.7500
8 3.9707 1.3237 0.0142 1.9129 0.7500 0.5470 7.9049 0.7500 0.7500
9 4.0835 1.3613 0.0625 2.1364 0.7500 0.5489 8.8932 0.7500 0.7500

5 Concluding Remarks

We have presented a uni�ed framework for context-aware privacy called generative adversarial
privacy (GAP). GAP allows the data holder to learn the privatization mechanism directly from
the dataset (to be published) without requiring access to the dataset statistics. Under GAP, �nding
the optimal privacy mechanism is formulated as a game between two players: a privatizer and an
adversary. An iterative minimax algorithm is proposed to obtain the optimal mechanism under
the GAP framework.

To evaluate the performance of the proposed GAP model, we have focused on two types of
datasets: (i) binary data model; and (ii) binary Gaussian mixture model. For both cases, the
optimal GAP mechanisms are learned using an empirical log-loss function. For each type of dataset,
both private-data dependent and private-data independent mechanisms are studied. These results
are cross-validated against the privacy guarantees obtained by computing the game-theoretically
optimal mechanism under a strong MAP adversary. In the MAP adversary setting, we have
shown that for the binary data model, the optimal GAP mechanism is obtained by solving a
linear program. For the binary Gaussian mixture model, the optimal additive Gaussian noise

23



privatization scheme is determined. Simulations with synthetic datasets for both types (i) and
(ii) show that the privacy mechanisms learned via the GAP framework perform as well as the
mechanisms obtained from theoretical computation.

Binary and Gaussian models are canonical models with a wide range of applications. However,
moving next, we would like to consider more sophisticated dataset models that can capture real
life signals (such as time series data and images). The generative models we have considered in this
paper were tailored to the statistics of the datasets. In the future, we would like to experiment with
the idea of using a deep generative model to automatically generate the sanitized data. Another
straightforward extension to our work is to use the GAP framework to obtain data-driven mutual
information privacy mechanisms. Finally, it would be interesting to investigate adversarial loss
functions that allow us to move from weak to strong adversaries.

A Proof of Theorem 1

Proof. If q = 1
2 , X is independent of Y . The optimal solution is given by any (s0, s1) that

satis�es the distortion constraint ({s0, s1|ps1 + (1 − p)s0 ≥ 1 − D, s0, s1 ∈ [0, 1]}) since X and
Y are already independent. If q 6= 1

2 , since each maximum in (30) can only be one of the two
values (i.e., the inference accuracy of guessing Ŷ = 0 or Ŷ = 1), the objective function of the
privatizer is determined by the relationship between P (Y = 1, X̂ = i) and P (Y = 0, X̂ = i), i ∈
{0, 1}. Therefore, the optimization problem in (30) can be decomposed into the following four
subproblems:

Subproblem 1 : P (Y = 1, X̂ = 0) ≥ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≤ P (Y = 0, X̂ = 1),
which implies p(1−2q)(1−s1)− (1−p)(1−2q)s0 ≥ 0 and (1−p)(1−2q)(1−s0)−p(1−2q)s1 ≥ 0.
As a result, the objective of the privatizer is given by P (Y = 1, X̂ = 0) + P (Y = 0, X̂ = 1). Thus,
the optimization problem in (30) can be written as

min
s0,s1

(2q − 1)[ps1 + (1− p)s0] + 1− q
s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D − 1.

(45)

• If 1 − 2q > 0, i.e., q < 1
2 , we have ps1 + (1 − p)s0 ≤ p and ps1 + (1 − p)s0 ≤ 1 − p.

The privatizer must maximize ps1+(1−p)s0 to reduce the adversary's probability of correctly
inferring the private variable. Thus, if 1−D ≤ min{p, 1− p}, the optimal value is given by
(2q − 1)min{p, 1 − p} + 1 − q; the corresponding optimal solution is given by {s0, s1|ps1 +
(1− p)s0 = min{p, 1− p}, 0 ≤ s0, s1 ≤ 1}. Otherwise, the problem is infeasible.

• If 1−2q < 0, i.e., q > 1
2 , we have ps1+(1−p)s0 ≥ p and ps1+(1−p)s0 ≥ 1−p. In this case, the

privatizer has to minimize ps1+(1−p)s0. Thus, if 1−D ≥ max{p, 1−p}, the optimal value is
given by (2q−1)(1−D)+1−q; the corresponding optimal solution is {s0, s1|ps1+(1−p)s0 =
1 − D, 0 ≤ s0, s1 ≤ 1}. Otherwise, the optimal value is (2q − 1)max{p, 1 − p} + 1 − q and
the corresponding optimal solution is given by {s0, s1|ps1 + (1 − p)s0 = max{p, 1 − p}, 0 ≤
s0, s1 ≤ 1}.

Subproblem 2 : P (Y = 1, X̂ = 0) ≤ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≥ P (Y = 0, X̂ = 1),
which implies p(1−2q)(1−s1)− (1−p)(1−2q)s0 ≤ 0 and (1−p)(1−2q)(1−s0)−p(1−2q)s1 ≤ 0.
Thus, the objective of the privatizer is given by P (Y = 0, X̂ = 0) + P (Y = 1, X̂ = 1). Therefore,
the optimization problem in (30) can be written as

min
s0,s1

(1− 2q)[ps1 + (1− p)s0] + q

s.t. 0 ≤ s0 ≤ 1
0 ≤ s1 ≤ 1
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D − 1.

(46)
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• If 1 − 2q > 0, i.e., q < 1
2 , we have ps1 + (1 − p)s0 ≥ p and ps1 + (1 − p)s0 ≥ 1 − p. The

privatizer needs to minimize ps1+(1−p)s0 to reduce the adversary's probability of correctly
inferring the private variable. Thus, if 1−D ≥ max{p, 1− p}, the optimal value is given by
(1−2q)(1−D)+ q; the corresponding optimal solution is {s0, s1|ps1+(1−p)s0 = 1−D, 0 ≤
s0, s1 ≤ 1}. Otherwise, the optimal value is (1− 2q)max{p, 1− p}+ q and the corresponding
optimal solution is given by {s0, s1|ps1 + (1− p)s0 = max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1 − 2q < 0, i.e., q > 1
2 , we have ps1 + (1 − p)s0 ≤ p and ps1 + (1 − p)s0 ≤ 1 − p. In this

case, the privatizer needs to maximize ps1 + (1 − p)s0. Thus, if 1 −D ≤ min{p, 1 − p}, the
optimal value is given by (1 − 2q)min{p, 1 − p} + q; the corresponding optimal solution is
given by {s0, s1|ps1 + (1 − p)s0 = min{p, 1 − p}, 0 ≤ s0, s1 ≤ 1}. Otherwise, the problem is
infeasible.

Subproblem 3 : P (Y = 1, X̂ = 0) ≥ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≥ P (Y = 0, X̂ = 1),
we have p(1 − 2q)(1 − s1) − (1 − p)(1 − 2q)s0 ≥ 0 and (1 − p)(1 − 2q)(1 − s0) − p(1 − 2q)s1 ≤ 0.
Under this scenario, the objective function in (30) is given by P (Y = 1, X̂ = 0)+P (Y = 1, X̂ = 1).
Thus, the privatizer solves

min
s0,s1

p(1− q) + (1− p)q
s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D − 1.

(47)

• If 1 − 2q > 0, i.e., q < 1
2 , the problem becomes infeasible for p < 1

2 . For p ≥
1
2 , if 1 −D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by p(1 − q) + (1 − p)q and the corresponding optimal solution is
{s0, s1|1−D ≤ ps1+(1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value
is p(1−q)+(1−p)q and the corresponding optimal solution is given by {s0, s1|min{p, 1−p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1 − 2q < 0, i.e., q > 1
2 , the problem is infeasible for p > 1

2 . For p ≤ 1
2 , if 1 − D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by p(1 − q) + (1 − p)q and the corresponding optimal solution is
{s0, s1|1−D ≤ ps1+(1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value
is p(1−q)+(1−p)q and the corresponding optimal solution is given by {s0, s1|min{p, 1−p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Subproblem 4 : P (Y = 1, X̂ = 0) ≤ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≤ P (Y = 0, X̂ = 1),
which implies p(1−2q)(1−s1)− (1−p)(1−2q)s0 ≤ 0 and (1−p)(1−2q)(1−s0)−p(1−2q)s1 ≥ 0.
Thus, the optimization problem in (30) is given by

min
s0,s1

pq + (1− p)(1− q)
s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1
−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)
p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)
−ps1 − (1− p)s0 ≤ D − 1.

(48)

• If 1 − 2q > 0, i.e., q < 1
2 , the problem becomes infeasible for p > 1

2 . For p ≤
1
2 , if 1 −D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
the optimal value is given by pq + (1 − p)(1 − q) and the corresponding optimal solution is
{s0, s1|1−D ≤ ps1+(1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value
is pq+(1−p)(1−q) and the corresponding optimal solution is given by {s0, s1|min{p, 1−p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1 − 2q < 0, i.e., q > 1
2 , the problem becomes infeasible for p < 1

2 . For p ≥
1
2 , if 1 −D >

max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤ 1 − D ≤ max{p, 1 − p},
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the optimal value is given by pq + (1 − p)(1 − q) and the corresponding optimal solution is
{s0, s1|1−D ≤ ps1+(1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value
is pq+(1−p)(1−q) and the corresponding optimal solution is given by {s0, s1|min{p, 1−p} ≤
ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Summarizing the analysis above yields Theorem 1.

B Proof of Theorem 2

Proof. Let us consider X̂ = X + β + γN , where β ∈ R and γ ≥ 0. Given the MAP adversary's
optimal inference accuracy in (37), the objective of the privatizer is to

min
β,γ

P
(G)
d (49)

s.t. β2 + γ2 ≤ D
γ ≥ 0.

De�ne 1−p̃
p̃ = η. The gradient of P (G)

d w.r.t. α is given by

∂P
(G)
d

∂α
=p̃

(
− 1√

2π
e−

(−α
2

+ 1
α

ln η)
2

2

)(
−1

2
− 1

α2
ln η

)
(50)

+ (1− p̃)

(
− 1√

2π
e−

(−α
2

− 1
α

ln η)
2

2

)(
−1

2
+

1

α2
ln η

)

=
1

2
√
2π

(
p̃e−

(−α
2

+ 1
α

ln η)
2

2 + (1− p̃)e−
(−α

2
− 1
α

ln η)
2

2

)
(51)

+
ln η

α2
√
2π

(
p̃e−

(−α
2

+ 1
α

ln η)
2

2 − (1− p̃)e−
(−α

2
− 1
α

ln η)
2

2

)
.

Note that

p̃e−
(−α

2
+ 1
α

ln η)
2

2

(1− p̃)e−
(−α

2
− 1
α

ln η)
2

2

=
p̃

1− p̃
e
(−α

2
− 1
α

ln η)
2
−(−α

2
+ 1
α

ln η)
2

2 =
p̃

1− p̃
e

2 ln η
2 =

p̃

1− p̃
eln η = 1. (52)

Therefore, the second term in (51) is 0. Furthermore, the �rst term in (51) is always positive.
Thus, P (G)

d is monotonically increasing in α. As a result, the optimization problem in (49) is
equivalent to

max
β,γ

√
γ2 + σ2 (53)

s.t. β2 + γ2 ≤ D
γ ≥ 0.

Therefore, the optimal solution is given by β∗ = 0 and γ∗ =
√
D. Substituting the optimal solution

back into (37) yields the MAP probability of correctly inferring the private variable Y from X̂.

C Proof of Theorem 3

Proof. Let us consider X̂ = X + (1− Y )β0 − Y β1, where β0 and β1 are both non-negative. Given
the MAP adversary's optimal inference accuracy P (G)

d , the objective of the privatizer is to

min
β0,β1

P
(G)
d (54)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D
β0, β1 ≥ 0.
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Recall that P (G)
d is monotonically increasing in α = 2µ−(β1+β0)

σ . As a result, the optimization
problem in (54) is equivalent to

max
β0,β1

β1 + β0 (55)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D
β0, β1 ≥ 0.

Note that the above optimization problem is convex. Therefore, using the KKT conditions, we
obtain the optimal solution

β∗0 =

√
p̃D

1− p̃
, β∗1 =

√
(1− p̃)D

p̃
. (56)

Substituting the above optimal solution into P (G)
d yields the MAP probability of correctly inferring

the private variable Y from X̂.
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