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ABSTRACT

The Internet is shaping our daily lives. On the one hand, social networks

like Facebook and Twitter allow people to share their precious moments and

opinions with virtually anyone around the world. On the other, services like

Google, Netflix, and Amazon allow people to look up information, watch

movies, and shop online anytime, anywhere. However, with this unprece-

dented level of connectivity comes the danger of being monitored. There is

an increasing tension between the need to share data and the need to pre-

serve the privacy of Internet users. The need for privacy appears in three

main contexts: (1) the global privacy context, as in when private compa-

nies and public institutions release personal information about individuals

to the public; (2) the local privacy context, as in when individuals disclose

their personal information with potentially malicious service providers; (3)

the multi-party privacy context, as in when different parties cooperate to

interactively compute a function that is defined over all the parties’ data.

Differential privacy has recently surfaced as a strong measure of privacy

in all three contexts. Under differential privacy, privacy is achieved by ran-

domizing the data before releasing it. This leads to a fundamental tradeoff

between privacy and utility. In this thesis, we take a concrete step towards

understanding the fundamental structure of privacy mechanisms that achieve

the best privacy-utility tradeoff. This tradeoff is formulated as a constrained

optimization problem: maximize utility subject to differential privacy con-

straints. We show, perhaps surprisingly, that in all three privacy contexts, the

optimal privacy mechanisms have the same combinatorial staircase structure.

This deep result is a direct consequence of the geometry of the constraints

imposed by differential privacy on the privatization mechanisms.
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“All I am or ever hope to be, I owe to my lovely mother.”− Abraham

Lincoln

To my mother, for her love and support.
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CHAPTER 1

INTRODUCTION

Privacy is a fundamental individual right. Traditionally, individual informa-

tion access was limited and corresponding privacy violations were essentially

local, both temporally and geographically. In the era of big data, massive

amounts of data about individuals are collected both voluntarily and invol-

untarily. With the ready ability to search for information and correlate it

across distinct sources, privacy violation takes on an ominous note in this

information age.

Classical approaches to providing privacy guarantees involve anonymizing

user information. While this seems to be a reasonable approach to protect

the privacy of individuals, it is not invulnerable to correlation attacks: by

correlating the anonymized database with another (perhaps publicly avail-

able) deanonymized database, a user’s privacy could still be divulged. Early

work in 1997 by Sweeney [1] demonstrated such an attack by correlating

anonymized health records released by the state of Massachusetts with voter

registration records. Similar deanonymization attacks have been routinely

conducted in the ensuing years, despite the adoption of more sophisticated

anonymization strategies [2]: AOL search logs (reported by NYTimes in

2006), Netflix collaborative filtering contest [3], Kaggle recommender system

contest of Flickr data [4], and surname inference from genome datasets [5] are

instances that have received widespread attention. While correlation attacks

using currently available databases are already devastating for anonymiza-

tion techniques, an even larger issue is that anonymization is susceptible to

future data releases.

A way out of the limitations of anonymization is to release randomized

data. We refer to this privatization method as statistical data privacy. Under

statistical data privacy, the introduced randomness guarantees that upon

observing the released data, no one should be able to learn any sensitive

information about an individual. Indeed, statistical data privacy is robust
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to adversarial side information: any adversary cannot learn much beyond

whatever side information she has access to. This thesis explores a relatively

recent notion of statistical data privacy called differential privacy [6, 7, 8,

9]. At a high level, differential privacy imposes mathematical constraints

on the shape and amount of noise that is added to the raw data. The

differential privacy framework is very general and provides strong plausible

deniability guarantees - worst case over present auxiliary information and

future discoveries. With the plausible deniability guarantees of differential

privacy, data could be made more widely available leading to faster and more

accurate data analytics.

1.1 The Fundamental Limits of Differential Privacy

One of the main limitations of differential privacy in practice is that cur-

rent approaches make the released database “too random”, thus making the

data released essentially useless. Despite a decade of research efforts, many

fundamental questions in differential privacy are still left open. The lack of

theoretical understanding of the fundamental tradeoffs in differential privacy

has led to a widespread practice of using coarse methods that are strictly

sub-optimal. For instance, the Laplacian noise adding mechanism, featured

in the vast majority of the literature on differential privacy, is often used

without any clear justification.

It is of fundamental interest to characterize privacy mechanisms that ran-

domize “just enough” to keep the released data as true as possible, providing

maximal utility. In this thesis, we address the following important question:

for a given application and a fixed privacy level, what is the best privacy

preserving mechanism that maximizes the utility of the application while

achieving the desired privacy level? In specific, we study the fundamental

limits of differential privacy in three main contexts.

The global context

In the global context, trusted service providers or institutions want to re-

lease sensitive information about individuals. For instance, the National

Institutes of Health (NIH) might be interested in releasing medical records
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so that researchers can find the causes and cures of certain diseases. This

information is clearly sensitive and should be privatized carefully prior to its

release. In this context, differential privacy provides a formal guarantee on

the anonymity level of an individual user with respect to a data release.

The local context

In the local context, data providers want to share their personal data with

a potentially malicious service provider. For instance, Android users might

want to share their Android keyboard activities (clicks, swipes, chats, etc.)

with Google so that they can benefit from improved services (e.g., auto-

completion, next word prediction, etc.). However, the users are worried that

Google can learn a lot of personal information about them by analyzing

the data that it collects. In this context, differential privacy ensures that

the service provider (Google) can only learn aggregate information about

individuals.

The multi-party context

In the multi-party context, individuals interact to compute a joint function

on their private data. For instance, the individuals might be interested in

computing their average salary, height, or weight. In this context, differ-

ential privacy allows the users to interactively compute the function while

preventing them from learning the each other’s information.

1.2 Outline and Contributions

An outline of the thesis is as follows.

Chapter 2: Global Differential Privacy

Chapter 2 studies global differential privacy. We start by providing an op-

erational interpretation of global differential privacy. Specifically, we show

that differential privacy guarantees that the probabilities of false alarm and
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missed detection of any binary hypothesis testing problem involving the pres-

ence/absence of a user’s data in a released database query cannot be simul-

taneously small. We then derive the optimal privacy mechanism for one

and two dimensional real-valued database queries under a universal utility-

maximization framework. Precisely, we show that a simple noise adding

mechanism with a staircase distribution achieves the best utility-privacy

tradeoff. We conclude Chapter 2 by studying the impact of sequential query-

ing of differentially private mechanisms. In particular, we characterize how

the overall privacy level degrades under the composition of differentially pri-

vate mechanisms. Our solution is fundamental: we prove an upper bound

on the overall privacy level and construct a sequence of privatization mech-

anisms that achieves this bound.

Chapter 3: Local Differential Privacy

Chapter 3 investigates local differential privacy. Similar to Chapter 2, we

start by providing an operational definition of local differential privacy. We

then uncover the combinatorial structure of the family of optimal privatiza-

tion mechanisms for a broad class of information theoretic utility functions

such as mutual information and f -divergences. Surprisingly, we show that,

similar to the global privacy context, the optimal privacy mechanisms in the

local privacy context have the same staircase shape. We also prove that for

a given utility function and a fixed privacy level, solving the privacy-utility

maximization problem is equivalent to solving a finite-dimensional linear pro-

gram, the outcome of which is the optimal privatization mechanism. How-

ever, solving this linear program can be computationally expensive since it

has a number of variables that is exponential in the size of the alphabet the

data lives in. To account for this, we show that two simple privatization

mechanisms are universally optimal in the high and low privacy regimes. We

conclude Chapter 3 by proving the universal optimality of a simple privatiza-

tion mechanism under approximate differential privacy, a popular relaxation

to differential privacy.
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Chapter 4: Multi-Party Differential Privacy

Chapter 4 studies multi-party differential privacy. We start by studying the

problem of interactive function computation by multiple parties, each pos-

sessing a bit, in a differential privacy setting. Each party wants to compute

a function, which could differ from party to party, and there could be a cen-

tral observer interested in computing a separate function. Performance at

each party is measured via the accuracy of the function to be computed. We

allow for an arbitrary cost metric to measure the distortion between the true

and the computed function values. Our main result is the optimality of a

simple non-interactive protocol: each party randomizes its bit (sufficiently)

and shares the privatized version with the other parties. This optimality re-

sult is very general: it holds for all types of functions, heterogeneous privacy

conditions on the parties, all types of cost metrics, and both average and

worst-case (over the inputs) measures of accuracy. We conclude Chapter 4

by showing that interaction can be helpful in settings where parties possess

more than just one bit.

Chapter 5: Conclusion and Summary

Chapter 5 concludes this thesis and discusses a few interesting and non-trivial

directions for future research.
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CHAPTER 2

GLOBAL DIFFERENTIAL PRIVACY

2.1 Introduction

Differential privacy is a formal framework to quantify to what extent indi-

vidual privacy in a statistical database is preserved while releasing useful

aggregate information about the database. It provides strong privacy guar-

antees by requiring the indistinguishability of whether or not an individual

is in a database based on the released information, regardless of the side

information on the other aspects of the database the adversary may possess.

Denoting the database when the individual is present as D1 and as D0 when

the individual is not, a differentially private mechanism provides indistin-

guishability guarantees with respect to the pair (D0, D1). The databases D0

and D1 are referred to as “neighboring” databases.

Definition 2.1.1 (Differential Privacy [7, 9]) A randomized mechanism

M over a set of databases is (ε, δ)-differentially private if for all pairs of

neighboring databases D0 and D1, and for all sets S in the output space of

the mechanism X ,

P(M(D0) ∈ S) ≤ eε P(M(D1) ∈ S) + δ .

2.2 Operational Interpretation of Differential Privacy

Given a random output Y of a database access mechanism M , consider the

following hypothesis testing experiment. We choose a null hypothesis as

6



database D0 and alternative hypothesis as D1:

H0 : Y came from a database D0 ,

H1 : Y came from a database D1 .

For a choice of a rejection region S, the probability of false alarm (type I

error), when the null hypothesis is true but rejected, is defined as

PFA(D0, D1,M, S) ≡ P
(
M(D0) ∈ S

)
,

and the probability of missed detection (type II error), when the null hy-

pothesis is false but retained, is defined as

PMD(D0, D1,M, S) ≡ P
(
M(D1) ∈ S̄

)
,

where S̄ is the complement of S. It turns out that imposing differential

privacy conditions on a mechanism M is equivalent to restricting the proba-

bilities of false alarm and missed detection from being simultaneously small.

Wasserman and Zhu proved that (ε, 0)-differential privacy implies the con-

ditions in Equation (2.1) for the special case when δ = 0 [10, Theorem 2.4].

The same proof technique can be used to prove a similar result for a gen-

eral δ ∈ [0, 1], and to prove that the conditions in Equation (2.1) imply

(ε, δ)-differential privacy as well. We refer the reader to Section A.1.1 for a

proof.

Theorem 2.2.1 For any ε ≥ 0 and δ ∈ [0, 1], a database mechanism M is

(ε, δ)-differentially private if and only if the following conditions are satisfied

for all pairs of neighboring databases D0 and D1, and all rejection region

S ⊆ X :

PFA(D0, D1,M, S) + eεPMD(D0, D1,M, S) ≥ 1− δ , and (2.1)

eεPFA(D0, D1,M, S) + PMD(D0, D1,M, S) ≥ 1− δ .

This operational perspective relates the privacy parameters ε and δ to a set

of conditions on probability of false alarm and missed detection. This shows

that under differential privacy, it is impossible for both PMD and PFA to be

simultaneously small. This operational interpretation of differential privacy
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Figure 2.1: Privacy region for (ε, δ)-differential privacy. Dotted line
represents the solution of a maximization problem (A.1). For simplicity, we
only show the privacy region below the line PFA + PMD ≤ 1, since the whole
region is symmetric w.r.t. the line PFA + PMD = 1.

suggests a graphical representation of differential privacy as illustrated in

Figure 2.1. We define the privacy region for (ε, δ)-differential privacy as

R(ε, δ) ≡
{

(PMD, PFA)
∣∣PFA + eεPMD ≥ 1− δ ,

and eεPFA + PMD ≥ 1− δ
}
. (2.2)

Similarly, we define the privacy region of a database access mechanism M

with respect to two neighboring databases D0 and D1 as

R(M,D0, D1) ≡ conv

({
(PMD(D0, D1,M, S), PFA(D0, D1,M, S))

∣∣for all S ⊆ X
})

, (2.3)

where conv(·) is the convex hull of a set and X is the alphabet of the pri-

vatized output. Operationally, by taking the convex hull, the region in-

cludes the pairs of false alarm and missed detection probabilities achieved

by soft decisions that might use internal randomness in the hypothesis test-

ing rule. Precisely, let γ : X → {H0, H1} be any randomized decision.

For example, we can accept the null hypothesis with a certain probabil-

ity p1 if the output is in a set S1 and probability p2 if it is in another
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set S2. In full generality, a decision rule γ can be fully described by a

partition {Si} of the output space X , and a corresponding accept proba-

bilities {pi}. The probabilities of false alarm and missed detection for a

decision rule γ are defined as PFA(D0, D1,M, γ) ≡ P(γ(M(D0)) = H1) and

PMD(D0, D1,M, γ) ≡ P(γ(M(D1)) = H0).

Remark 1 For all neighboring databases D0 and D1, and a database ac-

cess mechanism M , the pair of false alarm and missed detection probabilities

achieved by any decision rule γ is included in the privacy region:

(PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)) ∈ R(M,D0, D1) ,

for all decision rules γ.

The proof of Remark 1 is provided in Appendix A.1.2. Let D0 ∼ D1 de-

note that the two databases are neighbors. The union over all neighboring

databases defines the privacy region of the mechanism.

R(M) ≡
⋃

D0∼D1

R(M,D0, D1) .

The following corollary, which follows immediately from Theorem 2.2.1, gives

a necessary and sufficient condition on the privacy region for (ε, δ)-differential

privacy.

Corollary 2.2.2 A mechanism M is (ε, δ)-differentially private if and only

if R(M) ⊆ R(ε, δ).

To illustrate the strengths of the graphical representation of differential pri-

vacy, we provide simpler proofs for some well-known results in differential

privacy in Appendix A.1.3.

Consider two database access mechanisms M(·) and M ′(·). Let X and

Y denote the random outputs of mechanisms M and M ′ respectively. We

say that M dominates M ′ if M ′(D) is conditionally independent of D given

the outcome of M(D). In other words, the database D, X = M(D) and

Y = M ′(D) form the following Markov chain: D–X–Y .

Theorem 2.2.3 (Data processing inequality for differential privacy)

If a mechanism M dominates a mechanism M ′, then for all pairs of neigh-
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boring databases D0 and D1,

R(M ′, D0, D1) ⊆ R(M,D0, D1) .

We refer the reader to Appendix A.1.4 for a proof. Wasserman and Zhu

[10, Lemma 2.6] have proved a similar result for the special case when M

is (ε, 0)-differentially private, M ′ is also (ε, 0)-differentially private, which is

a corollary to the above theorem. Perhaps surprisingly, the converse is also

true.

Theorem 2.2.4 ([11, Corollary of Theorem 10]) Fix a pair of neigh-

boring databases D0 and D1, and let X and Y denote the random outputs of

mechanisms M and M ′, respectively. If M and M ′ satisfy

R(M ′, D0, D1) ⊆ R(M,D0, D1) ,

then there exists a coupling of the random outputs X and Y such that they

form a Markov chain D–X–Y where D ∈ {D0, D1}.

In other words, when the privacy region of M ′ is included in M , there ex-

ists a stochastic transformation T that operates on X and produces a ran-

dom output that has the same marginal distribution as Y conditioned on the

database D. We can consider this mechanism T as a privatization mechanism

that takes a (privatized) output X and provides even further privatization.

The above theorem was proved in [11, Corollary of Theorem 10] in the con-

text of comparing two experiments, where a statistical experiment denotes a

mechanism in the context of differential privacy.

2.3 Optimal Mechanisms for Differential Privacy

In this section, we formulate the utility-maximization (cost-minimization)

framework under ε-differential privacy as a functional optimization prob-

lem and prove that the multi-dimensional (correlated) staircase mechanism

achieves the best privacy-utility tradeoff. Our formulation and proof tech-

niques follow those developed by Geng et al. in [12, 13, 14].
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2.3.1 Problem formulation

Consider a multidimensional real-valued query function

q : Dn → Rd,

where Dn is the domain of the databases, and d is the dimension of the query

output. Given D ∈ Dn, the query output can be written as

q(D) = (q1(D), q2(D), . . . , qd(D)),

where qi(D) ∈ R, ∀1 ≤ i ≤ d. The global sensitivity of the query function q

is defined as

∆ , max
D0,D1⊆Dn:|D0−D1|≤1

‖q(D0)− q(D1)‖1 =
d∑
i=1

|qi(D0)− qi(D1)|, (2.4)

where the maximum is taken over all possible pairs of neighboring database

entries D0 and D1 which differ in at most one element, i.e., one is a proper

subset of the other and the larger database contains just one additional ele-

ment [15]. For instance, the global sensitivity of a histogram query function

is one, since each element in the dataset can affect only one component of

the query output by one.

The standard approach to preserving the differential privacy is to add noise

to the output of the query function. Letting q(D) be the value of the query

function evaluated at D ⊆ Dn, the noise-adding mechanism M will output

M(D) = q(D) + X = (q1(D) +X1, . . . , qd(D) +Xd),

where X = (X1, . . . , Xd) ∈ Rd is the noise added by the mechanism to

the output of the query function. Due to the optimality of query-output

independent perturbation mechanisms (under a technical condition) in [13],

we restrict ourselves to query-output independent noise-adding mechanisms,

i.e., we assume that the noise X is independent of the query output.

Using the definition of differential privacy in Equation (2.1), observe that

differential privacy imposes the following constraints on the probability dis-
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tribution of X:

Pr[M(D0) ∈ S] ≤ eε Pr[M(D1) ∈ S]

⇔ Pr[q(D0) + X ∈ S] ≤ eε Pr[q(D1) + X ∈ S]

⇔ Pr[X ∈ S − q(D0)] ≤ eε Pr[X ∈ S − q(D1)]

⇔ Pr[X ∈ S ′] ≤ eε Pr[X ∈ S ′ + q(D0)− q(D1)], (2.5)

where S ′ , S − q(D0) = {s− q(D0)|s ∈ S}. Moreover, since the differential

privacy conditions in (2.1) must hold for all measurable sets S ⊆ Rd and

‖q(D0)− q(D1)‖1 ≤ ∆, from (2.5) we have

Pr[X ∈ S ′] ≤ eε Pr[X ∈ S ′ + t], (2.6)

for all measurable sets S ′ ⊆ R and for all t ∈ Rd such that ‖t‖1 ≤ ∆.

Consider a cost function L(·) : Rd → R which is a function of the added

noise X. Our goal is to minimize the expectation of the cost subject to the

ε-differential privacy constraint (2.6).

More precisely, let P denote the probability distribution of X and use P(S)

to denote the probability Pr[X ∈ S]. The optimization problem we study is

given by

minimize
P

∫ ∫
. . .

∫
Rd
L(x1, x2, . . . , xd)P(dx1dx2 . . . dxd)

subject to P(S) ≤ eεP(S + t),∀ measurable set S ⊆ Rd, ∀‖t‖1 ≤ ∆. (2.7)

We solve the above functional optimization problem and derive the optimal

noise probability distribution for L(x1, . . . , xd) =
∑d

i=1 |xi| with d = 2.

2.3.2 Main result

In this section, we state our main result: The correlated multi-dimensional

staircase mechanism is the optimal solution to the functional optimization

problem in (2.7) (see Theorem 2.3.1). The detailed proof is given in Appendix

A.2.
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In this work we consider the `1 cost function:

L(x1, x2, . . . , xd) =
d∑
i=1

|xi|,∀(x1, x2, . . . , xd) ∈ Rd.

Consider a class of multidimensional probability distributions with sym-

metric and staircase-shaped probability density function defined as follows.

Given γ ∈ [0, 1], define Pγ as the probability distribution with probability

density function fγ(·) defined as

fγ(x) =

e−kεa(γ) ‖x‖1 ∈ [k∆, (k + γ)∆) for k ∈ N

e−(k+1)εa(γ) ‖x‖1 ∈ [(k + γ)∆, (k + 1)∆) for k ∈ N,
(2.8)

where a(γ) is the normalization factor to make∫ ∫
. . .

∫
Rd
fγ(x)dx1dx2 . . . dxd = 1.

Define b , e−ε, and define

ck ,
+∞∑
i=0

ikbi, ∀k ∈ N,

where by convention 00 is defined as 1. Then the closed-form expression for

a(γ) is

a(γ) ,
d!

2d∆d
∑d

k=1

(
d
k

)
cd−k(b+ (1− b)γk)

.

It is straightforward to verify that fγ(·) is a valid probability density func-

tion and Pγ satisfies the differential privacy constraint (2.7). Indeed, the

probability density function fγ(x) satisfies

fγ(x) ≤ eεfγ(x + t),∀x ∈ Rd,∀t ∈ Rd s.t. ‖t‖1 ≤ ∆,

which implies (2.7).

We plot the probability density function fγ(x) in Figure 2.2 for d = 2. It

is easy to see that fγ(x) is multi-dimensional staircase-shaped.

Let SP be the set of all probability distributions which satisfy the differ-
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Figure 2.2: Multi-dimensional staircase-shaped probability density function

ential privacy constraint (2.7). Our main result is Theorem 2.3.1.

Theorem 2.3.1 For d = 2 and the cost function L(x) = ‖x‖1,∀x ∈ R2,

then

inf
P∈SP

∫ ∫
R2

L(x)P(dx1dx2) = inf
γ∈[0,1]

∫ ∫
R2

L(x)fγ(x)dx1dx2.

We briefly discuss the main proof idea and technique. For the complete

proof, see Appendix A.2. First, by using a combinatorial argument, we show

that given any noise probability distribution satisfying the ε-differential pri-

vacy constraint, we can discretize the probability distribution by averaging

it over each `1 layer without increasing the cost. Therefore, we only need to

consider those probability distributions with the probability density function

being a piecewise constant function of the `1-norm of the noise. Second, we

show that to minimize the cost, the probability density function as a function

of the `1-norm of the noise should be monotonically and geometrically de-

caying. Lastly, we show that the optimal probability density function should

be staircase-shaped.

Therefore, the optimal noise probability distribution to preserve ε-differential

privacy for multidimensional real-valued query function has a staircase-shaped

probability density function, which is specified by three parameters ε, ∆ and

γ∗ = arg min
γ∈[0,1]

∫ ∫
R2 L(x1, x2)fγ(x)dx1dx2.

We conjecture that Theorem 2.3.1 holds for arbitrary dimension d. To

14



prove this conjecture, one can reuse the whole proof in Appendix A.2 and

only needs to prove that Lemma A.2.1 and Lemma A.2.6 hold for arbitrary

d, which we believe are true. Lemma A.2.1 shows that when d = 2, we

can discretize the probability distribution by averaging it over each `1 layer

without increasing the cost, and the new probability distribution also satis-

fies the differential privacy constraint. We give a constructive combinatorial

argument to prove Lemma A.2.1 for d = 2, and believe it holds for arbitrary

d ≥ 2. We prove Lemma A.2.6 for d = 2 by studying the monotonicity of

the ratio between the cost and volume over each `1 layer. Indeed, to prove

Lemma A.2.6, one only needs to show that hk, which is defined in (A.12),

first decreases and then increases as a function of k, and h0 ≤ hi−1. For fixed

d, one can derive the explicit formula for d and verify whether hk satisfies

this property (we show it is true for d = 2 in our proof).

We also conjecture that Theorem 2.3.1 holds for other cost functions, which

may not be a function only depending on the `1-norm of the noise. Numeric

simulations suggest that for d = 2, the correlated multidimensional staircase

mechanism is optimal for L(x) = ‖x‖2
2. To prove this conjecture, one has to

use a different proof technique, as Lemma A.2.1 in our proof does not work

for the cost functions that do not depend on the `1-norm of the noise only.

2.3.3 Asymptotic analysis

In this subsection, we study the asymptotic properties and performances of

the correlated staircase mechanism for the `1 cost function.

Note that the closed-form expressions for c0, c1 and c2 are

c0 =
1

1− b
,

c1 =
b

(1− b)2
,

c2 =
b2 + b

(1− b)3
.

15



For d = 2, we have

a(γ) =
1

2∆2 (2c1(b+ (1− b)γ) + c0(b+ (1− b)γ2))

=
1

2∆2
(
γ2 + 2b

1−bγ + b+b2

(1−b)2

) .
Given the two-dimensional staircase-shaped probability density function

fγ(x), the cost is

V (Pγ) ,
∫ ∫

R2

(|x1|+ |x2|)fγ(x1, x2)P(dx1dx2)

= 4

(
+∞∑
i=0

∫ (i+γ)∆

i∆

tta(γ)e−iεdt+
+∞∑
i=0

∫ (i+1)∆

(i+γ)∆

tta(γ)e−(i+1)εdt

)

=
4a(γ)∆3

3

(
+∞∑
i=0

bi(3i2γ + 3iγ2 + γ3)

+b
+∞∑
i=0

bi(3i2 + 3i+ 1− 3i2γ − 3iγ2 − γ3)

)

=
4a(γ)∆3

3

(
3c2γ + 3c1γ

2 + c0γ
3 + b

(
3(1− γ)c2 + 3(1− γ2)c1

+(1− γ3)c0

))
=

2∆

3

3c2γ + 3c1γ
2 + c0γ

3 + b(3(1− γ)c2 + 3(1− γ2)c1 + (1− γ3)c0)

γ2 + 2b
1−bγ + b+b2

(1−b)2

=
2∆

3

c0(1− b)γ3 + 3c1(1− b)γ2 + 3c2(1− b)γ + b(c0 + 3c1 + 3c2)

γ2 + 2b
1−bγ + b+b2

(1−b)2
.

=
2∆

3

γ3 + 3b
1−bγ

2 + 3(b2+b)
(1−b)2 γ + b1+4b+b2

(1−b)3

γ2 + 2b
1−bγ + b+b2

(1−b)2
. (2.9)

Therefore, in the two-dimensional setting, the optimal γ∗ is

γ∗ = arg min
γ∈[0,1]

γ3 + 3b
1−bγ

2 + 3(b2+b)
(1−b)2 γ + b1+4b+b2

(1−b)3

γ2 + 2b
1−bγ + b+b2

(1−b)2
.

By setting the derivative of (2.9) to be zero, we use Mathematica to get a

closed-form expression for γ∗, which is too complicated to show here. We

plot γ∗ as a function of b in Figure 2.3. The optimal cost V ∗ = V (Pγ∗). We

use Mathematica to analyze the asymptotic behavior of V ∗ as ε → 0 and
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Figure 2.3: The optimal γ∗ as a function of b

ε→ +∞.

Corollary 2.3.2 In the high privacy regime,

V ∗ =
2∆

ε
− ∆ε2

36
√

3
+O(ε3), ε→ 0,

and in the low privacy regime,

V ∗ =
3
√

2∆e−
ε
3 +

∆e−
2ε
3

3
√

2
+ o(e−

2ε
3 ), ε→ +∞.

The Laplacian mechanism adds independent Laplacian noise to each compo-

nent of the query output, and the cost is 2∆
ε

. Therefore, in the high privacy

regime, the gap between optimal cost and the cost achieved by the Lapla-

cian mechanism goes to zero, as ε→ 0, and we conclude that the Laplacian

mechanism is approximately optimal in the high privacy regime. However,

in the low privacy regime (as ε → +∞), the optimal cost is proportional to

e−
ε
3 , while the cost of the Laplacian mechanism is proportional to 1

ε
. We

conclude that the gap is significant in the low privacy regime.

It is natural to compare the performance of the optimal multi-dimensional

staircase mechanism and the composite single-dimensional staircase mecha-

nism which adds independent staircase noise to each component of the query

output. If independent staircase noise is added to each component of query

output, to satisfy the ε-differential privacy constraint, the parameter of the

staircase noise is ε
2

instead of ε, and thus the total cost will be proportional

to e−
ε
4 , which is worse than the optimal cost Θ(e−

ε
3 ).
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2.4 The Composition Theorem in Differential Privacy

In this section, we address how differential privacy guarantees compose when

accessing databases multiple times via differentially private mechanisms, each

of which has its own privacy guarantees. Precisely, we address the following

fundamental question: How much privacy can be guaranteed after multiple

database accesses? To formally define composition, we consider the following

scenario known as the ‘composition experiment’, proposed in [16].

A composition experiment takes as input a parameter b ∈ {0, 1}, and an

adversary A. From the hypothesis testing perspective proposed in the pre-

vious section, b can be interpreted as the hypothesis: null hypothesis for

b = 0 and alternative hypothesis for b = 1. At each time i, a database Di,b is

accessed depending on b. For example, one includes a particular individual

and another does not. For example, D1,0 could be medical records including

a particular individual and D1,1 does not include the person, and D2,0 could

be voter registration database with the same person present and D2,1 with

the person absent. An adversary A is trying to figure out whether or not a

particular individual is in the database by testing the hypotheses on the out-

put of k sequential database accesses via differentially private mechanisms.

In full generality, we allow the adversary to have full control over which pair

of databases to access, which query to ask, and which mechanism to be used

at each repeated access. Further, the adversary is free to make these choices

adaptively based on the previous outcomes. The only restrictions are: (a)

the differentially private mechanisms belong to a family M (e.g., the family

of all (ε, δ)-differentially private mechanisms), (b) the internal randomness

of the mechanisms are independent at each repeated access, and (c) that the

hypothesis b is not known to the adversary.

Compose(A,M, k, b)

Input: A, M, k, b

Output: V b

for i = 1 to k do

A requests (Di,0, Di,1, qi,Mi) for some Mi ∈M;

A receives yi = Mi(D
i,b, qi);

end for

Output the view of the adversary V b = (Rb, Y b
1 , . . . , Y

b
k ).
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The outcome of this k-fold composition experiment is the view of the adver-

sary A: V b ≡ (R, Y b
1 , . . . , Y

b
k ), which is the sequence of random outcomes

Y b
1 , . . . , Y

b
k , and the outcome R of any internal randomness of A.

2.4.1 Optimal privacy region under composition

We would like to characterize how much privacy degrades after a k-fold com-

position experiment. It is known that the privacy degrades under compo-

sition by at most the ‘sum’ of the differential privacy parameters of each

access.

Theorem 2.4.1 ([7, 9, 8, 16]) For any ε > 0 and δ ∈ [0, 1], the class of

(ε, δ)-differentially private mechanisms satisfies (kε, kδ)-differential privacy

under k-fold adaptive composition.

In general, one can show that if Mi is (εi, δi)-differentially private, then the

composition satisfies (
∑

i∈[k] εi,
∑

i∈[k] δi)-differential privacy. If we do not

allow for any slack in the δ, this bound cannot be tightened. Precisely,

there are examples of mechanisms which under k-fold composition violate

(ε,
∑

i∈[k] δi)-differential privacy for any ε <
∑

i∈[k] εi. We can prove this

by providing a set S such that the privacy condition is met with equality:

P(V 0 ∈ S) = e
∑
i∈[k] εiP(V 1 ∈ S) +

∑
i∈[k] δi. However, if we allow for a

slightly larger value of δ, then Dwork et al. showed in [16] that one can gain

a significantly higher privacy guarantee in terms of ε.

Theorem 2.4.2 ([16, Theorem III.3]) For any ε > 0, δ ∈ [0, 1], and δ̃ ∈
(0, 1], the class of (ε, δ)-differentially private mechanisms satisfies (ε̃δ̃, kδ+δ̃)-

differential privacy under k-fold adaptive composition, for

ε̃δ̃ = kε(eε − 1) + ε

√
2k log(1/δ̃). (2.10)

By allowing a slack of δ̃ > 0, one can get a higher privacy of ε̃δ̃ = O(kε2 +√
kε2), which is significantly smaller than kε. This is the best known guar-

antee so far, and has been used whenever one requires a privacy guarantee

under composition (e.g. [16, 17, 18]). However, the important question of

optimality has remained open. Namely, is there a composition of mechanisms

where the above privacy guarantee is tight? In other words, is it possible to

get a tighter bound on differential privacy under composition?
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We give a complete answer to this fundamental question in the following

theorems. We prove a tighter bound on the privacy guarantee under com-

position. Further, we also prove the achievability of the privacy guarantee:

we provide a set of mechanisms such that the privacy region under k-fold

composition is exactly the region defined by the conditions in (2.11). Hence,

this bound on the privacy region is tight and cannot be improved upon.

Theorem 2.4.3 For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially

private mechanisms satisfies

(
(k − 2i)ε , 1− (1− δ)k(1− δi)

)
-differential privacy (2.11)

under k-fold adaptive composition, for all i = {0, 1, . . . , bk/2c}, where

δi =

∑i−1
`=0

(
k
`

)(
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

.

Hence, the privacy region of k-fold composition is an intersection of k regions,

each of which is ((k−2i)ε, 1− (1−δ)k(1−δi))-differentially private: R({(k−
2i)ε, 1− (1− δ)k(1− δi)}i∈[k/2]) ≡

⋂b k
2
c

i=0R((k− 2i)ε, 1− (1− δ)k(1− δi)). We

prove this result in Section A.3.1 by constructing an explicit mechanism that

achieves this region under composition. Hence, this bound on the privacy

region is tight, and gives the exact description of how privacy degrades under

k-fold adaptive composition. This settles the question that was left open

in [7, 9, 8, 16] by providing, for the first time, the fundamental limit of

composition and proving a matching mechanism with the worst-case privacy

degradation.

To prove the optimality of our main result in Theorem 2.4.3, namely that

it is impossible to have a privacy worse than (2.11), we rely on the opera-

tional interpretation of the privacy as hypothesis testing. To this end, we

use the new analysis tools (Theorem 2.2.3 and Theorem 2.2.4) provided in

the previous section. Figure 2.4 illustrates how much the privacy region of

Theorem 2.4.3 degrades as we increase the number of composition k. Figure

2.5 provides a comparison of the three privacy guarantees in Theorems 2.4.1,

2.4.2 and 2.4.3 for 30-fold composition of (0.1, 0.001)-differentially private

mechanisms. Smaller region gives a tighter bound, since it guarantees the

higher privacy.
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Figure 2.4: Privacy region R({(k − 2i)ε, δi}) for the class of
(ε, 0)-differentially private mechanisms (left) and (ε, δ)-differentially private
mechanisms (right) under k-fold adaptive composition.
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Figure 2.5: Theorem 2.4.3 provides the tightest bound (left). Given a
mechanism M , the privacy region can be completely described by its
boundary, which is represented by a set of tangent lines of the form
PFA = −eε̃PMD + 1− dε̃(P0, P1) (right).

2.4.2 Simplified privacy region under composition

In many applications of the composition theorems, a closed form expres-

sion of the composition privacy guarantee is required. The privacy guar-

antee in (2.11) is tight, but can be difficult to evaluate. The next the-

orem provides a simpler expression which is an outer bound on the ex-

act region described in (2.11). Compared to (2.10), the privacy guaran-

tee is significantly improved from ε̃δ̃ = O
(
kε2 +

√
kε2 log(1/δ̃)

)
to ε̃δ̃ =

O
(
kε2+min

{√
kε2 log(1/δ̃), ε log(ε/δ̃)

})
, especially when composing a large

number k of interactive queries. Further, the δ-approximate differential pri-

vacy degradation of (1 − (1 − δ)k(1 − δ̃)) is also strictly smaller than the

previous (kδ + δ̃). We discuss the significance of this improvement in the

next section using examples from the existing differential privacy literature.
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Theorem 2.4.4 For any ε > 0, δ ∈ [0, 1], and δ̃ ∈ [0, 1], the class of (ε, δ)-

differentially private mechanisms satisfies
(
ε̃δ̃, 1− (1−δ)k(1− δ̃)

)
-differential

privacy under k-fold adaptive composition, for

ε̃δ̃ = min

 kε ,
(eε − 1)εk

eε + 1
+ ε

√
2k log

(
e+

√
kε2

δ̃

)
,

(eε − 1)εk

eε + 1
+ ε

√
2k log

(1

δ̃

)}
. (2.12)

In the high privacy regime, where ε ≤ 0.9, this bound can be further simpli-

fied as

ε̃δ̃ ≤ min
{
kε, kε2 + ε

√
2k log

(
e+ (

√
kε2/δ̃ )

)
, kε2 + ε

√
2k log(1/δ̃)

}
.

A proof is provided in Section A.3.2. This privacy guarantee improves over

the existing result of Theorem 2.4.2 when δ̃ = Θ(
√
kε2). Typical regime

of interest is the high-privacy regime for composition privacy guarantee, i.e.

when
√
kε2 � 1. The above theorem suggests that we only need the extra

slack of approximate privacy δ̃ of order
√
kε2.

2.4.3 Composition theorem for heterogeneous mechanisms

So far, we considered homogeneous mechanisms, where all mechanisms are

(ε, δ)-differentially private. Our analysis readily extends to heterogeneous

mechanisms, where the `-th query satisfies (ε`, δ`)-differential privacy (we

refer to such mechanisms as (ε`, δ`)-differentially private mechanisms).

Theorem 2.4.5 For any ε` > 0, δ` ∈ [0, 1] for ` ∈ {1, . . . . , k}, and δ̃ ∈
[0, 1], the class of (ε`, δ`)-differentially private mechanisms satisfies

(
ε̃δ̃, 1 −

(1− δ̃)
∏k

`=1(1− δ`)
)
-differential privacy under k-fold adaptive composition,
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for ε̃δ̃ =

min


k∑
`=1

ε` ,
k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√√ k∑
`=1

2 ε2
` log

(
e+

√∑k
`=1 ε

2
`

δ̃

)
,

k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√ k∑
`=1

2 ε2
` log

(1

δ̃

) . (2.13)

This tells us that the ε`’s sum up under composition: whenever we have kε

or kε2 in (2.12) we can replace it by the summation to get the general result

for heterogeneous case. We refer the reader to Appendix A.3.3 for the proof

of Theorem 2.4.5.

2.5 Conclusion and Summary

In this chapter, we have studied the fundamental limits of global differential

privacy. In particular, we showed the following key results:

1. Global differential privacy guarantees that the probabilities of false

alarm and missed detection of a binary hypothesis testing problem

involving a specific user presence/absence cannot be simultaneously

small.

2. The correlated multi-dimensional staircase mechanism achieves the op-

timal privacy-utility tradeoff under `1 losses and one/two-dimensional

query functions. We also conjectured that the same mechanism is op-

timal for higher dimensional queries and more general loss function.

3. The composition of k queries, each of which is (ε, δ)-differentially pri-

vate, is at least (ε̃δ̃, kδ + δ̃)-differential private. Here ε̃δ̃ = O
(
kε2 +

ε
√
k log(e+ (ε

√
k/δ̃) )

)
and δ̃ is any nonnegative number.
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CHAPTER 3

LOCAL DIFFERENTIAL PRIVACY

3.1 Introduction

In statistical analyses involving data from individuals, there is an increasing

tension between the need to share the data and the need to protect sensitive

information about the individuals. For example, users of social networking

sites are increasingly cautious about their privacy, but still inevitably agree to

share their personal information in order to benefit from customized services

such as recommendations and personalized search [19, 20]. There is a certain

utility in sharing data for both data providers and data analysts, but at the

same time, individuals want plausible deniability when it comes to sensitive

information.

For such applications, there is a natural core optimization problem to be

solved. Assuming both the data providers and analysts want to maximize the

utility of the released data, how can they do so while preserving the privacy

of participating individuals? The formulation and study of a framework

addressing this fundamental tradeoff is the focus of this chapter.

3.1.1 Local differential privacy

The need for data privacy appears in two different contexts: the local pri-

vacy context, as in when individuals disclose their personal information (e.g.,

voluntarily on social network sites), and the global privacy context, as in

when institutions release databases of information of several people or an-

swer queries on such databases (e.g., US Government releases census data,

companies like Netflix release proprietary data for others to test state of the

art data analytics). In both contexts, privacy is achieved by randomizing the

data before releasing it. We study the setting of local privacy, in which data
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providers do not trust the data collector (analyst). Local privacy dates back

to [21], who proposed the randomized response method to provide plausible

deniability for individuals responding to sensitive surveys.

A natural notion of privacy protection is making inference of information

beyond what is released hard. Differential privacy has been proposed in the

global privacy context to formally capture this notion of privacy [6, 7, 8].

In a nutshell, differential privacy ensures that an adversary should not be

able to reliably infer whether or not a particular individual is participating

in the database query, even with unbounded computational power and ac-

cess to every entry in the database except for that particular individual’s

data. Recently, [22] extended the notion of differential privacy to the lo-

cal privacy context. Formally, consider a setting where there are n data

providers each owning a data Xi defined on an input alphabet X . The Xi’s

are independently sampled from some distribution Pν parameterized by ν. A

statistical privatization mechanism Q is a conditional distribution that maps

Xi ∈ X stochastically to Yi ∈ Y , where Y is an output alphabet possibly

larger than X . The Yi’s are referred to as the privatized (sanitized) views of

Xi’s. In a non-interactive setting where all Xi’s are independently sampled

from the same distribution, the same privatization mechanism Q is used by

all individuals. This setting is shown in Figure 3.1 for a special case with

n = 2. For some non-negative ε, we follow the definition of [22] and say that

a mechanism Q is ε-locally differentially private if

sup
S⊂Y,x,x′∈X

Q(S|x)

Q(S|x′)
≤ eε , (3.1)

where Q(S|x) = P(Yi ∈ S|Xi = x) represents the privatization mechanism.

This ensures that for small values of ε, given a privatized data Yi, it is

(almost) equally likely to have come from any data, i.e. x or x′. A small

value of ε means that we require a high level of privacy and a large value

corresponds to a low level of privacy. At one extreme, for ε = 0, the privatized

output must be independent of the private data, and on the other extreme,

for ε =∞, the privatized output can be made equal to the private data.

25



X1 ∼ Pν

X2 ∼ Pν

Clients

Privatization
Q

Privatization
Q

Y
1 ∼

M
ν

Y2
∼M

ν

Data Analyst

Figure 3.1: Client server model

3.1.2 Information theoretic utilities for statistical analysis

In analyses of statistical databases, the analyst is interested in the statistics

of the data as opposed to individual records. Naturally, the utility should

also be measured in terms of the distribution rather than sample quantities.

Concretely, consider a client-server setting, where each client with data Xi

sends a privatized version of the data Yi, via a non-interactive ε-locally dif-

ferentially private privatization mechanism Q. Assume all the clients use the

same privatization mechanism denoted by Q, and each client’s data is an

i.i.d. sample from a distribution Pν for some parameter ν. Given the priva-

tized views {Yi}ni=1, the data analyst wants to make inferences based on the

induced marginal distribution

Mν(S) ≡
∑
x∈X

Q(S|x)Pν(x) , (3.2)

for S ⊆ Y . We consider a broad class of convex utility functions, and iden-

tify the class of optimal mechanisms, which we call staircase mechanisms, in

Section 3.3. We apply this framework to two specific applications: (a) hy-

pothesis testing where the utility is measured in Kullback-Leibler divergence

(Section 3.4) and (b) information preservation where the utility is measured

in mutual information (Section 3.5).

In the binary hypothesis testing setting, ν ∈ {0, 1}; therefore, X can be

generated by one of two possible distributions P0 and P1. The power to

discriminate data generated from P0 to data generated from P1 depends on

the ‘distance’ between the marginals M0 and M1. To measure the ability

of such statistical discrimination, our choice of utility of a particular priva-
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tization mechanism Q is an information theoretic quantity called Csiszár’s

f -divergence defined as

Df (M0||M1) =
∑
x∈X

f
(M0(x)

M1(x)

)
M1(x) , (3.3)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL)

divergence Dkl(M0||M1) is a special case with f(x) = x log x, and so is the

total variation ‖M0 −M1‖TV with f(x) = (1/2)|x − 1|. Such f -divergences

capture the quality of statistical inference, such as minimax rates of statistical

estimation or error exponents in hypothesis testing [23]. As a motivating

example, suppose a data analyst wants to test whether the data is generated

from P0 or P1 based on privatized views Y1, . . . , Yn. According to Chernoff-

Stein’s lemma, for a bounded type I error probability, the best type II error

probability scales as e−nDkl(M0||M1). Naturally, we are interested in finding a

privatization mechanism Q that minimizes the probability of error by solving

the following constraint maximization problem

maximize
Q

Dkl(M0||M1)

subject to Q ∈ Dε
, (3.4)

where Dε is the set of all ε-locally differentially private mechanisms satisfying

(3.1).

In the information preservation setting, X is generated from an underlying

distribution P . We are interested in quantifying how much information can

be preserved when releasing a private view of the data. In other words, the

data provider would like to release an ε-locally differentially private view Y

of X that preserves the amount of information in X as much as possible.

The utility in this case is measured by the mutual information between X

and Y

I (X;Y ) =
∑
X

∑
Y

P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
. (3.5)

Mutual information, as the name suggests, measures the mutual dependence

between two random variables. It has been used as a criterion for feature

selection and for determining the similarity between two different clusterings
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of a dataset, in addition to many other applications in signal processing and

machine learning. To characterize the fundamental tradeoff between privacy

and information preservation, we solve the following constrained maximiza-

tion problem

maximize
Q

I(X;Y )

subject to Q ∈ Dε
, (3.6)

where Dε is the set of all ε-locally differentially private mechanisms satisfying

(3.1).

Motivated by such applications in statistical analysis, our goal is to pro-

vide a general framework for finding optimal privatization mechanisms that

maximize information theoretic utilities under local differential privacy. We

demonstrate the power of our techniques in a very general setting that in-

cludes both hypothesis testing and information preservation.

3.1.3 Our contributions

We study the fundamental tradeoff between local differential privacy and a

rich class of convex utility functions. This class of utilities includes several in-

formation theoretic quantities such as mutual information and f -divergences.

The privacy-utility tradeoff is posed as a constrained maximization problem:

maximize utility subject to local differential privacy constraints. This max-

imization problem is (a) nonlinear: the utility functions we consider are

convex in Q; (b) non-standard: we are maximizing instead of minimizing

a convex function; and (c) infinite dimensional: the space of all differen-

tially private mechanisms is uncountable. We show, in Theorem 3.3.2, that

for all utility functions considered and any privacy level ε, a finite family

of extremal mechanisms (a subset of the corner points of the space of pri-

vatization mechanisms), which we call staircase mechanisms, contains the

optimal privatization mechanism. We further prove, in Theorem 3.3.4, that

solving the original problem is equivalent to solving a linear program, the

outcome of which is the optimal staircase mechanism. However, solving this

linear program can be computationally expensive since it has 2|X | variables.

To account for this, we show that two simple staircase mechanisms (the bi-

nary and randomized response mechanisms) are optimal in the high and low
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privacy regimes, respectively, and well approximate the intermediate regime.

This contributes an important advance in the differential privacy area, where

the privatization mechanisms have been few and almost no exact optimal-

ity results are known. As an application, we show that the effective sample

size reduces from n to ε2n under local differential privacy in the context of

hypothesis testing.

We also study the fundamental tradeoff between utility and approximate

differential privacy, a generalized notion of privacy that was first introduced

in [9]. The techniques we develop for differential privacy do not generalize to

approximate differential privacy. To account for this, we use the operational

interpretation of approximate differential privacy (developed in [24]) to prove

that a simple mechanism maximizes utility for all levels of privacy when the

data is binary.

3.1.4 Related work

Our work is closely related to the recent work of [22] where an upper bound

on Dkl(M0||M1) was derived under the same local differential privacy setting.

Precisely, Duchi et al. proved that the KL-divergence maximization problem

in (3.4) is at most 4(eε − 1)2‖P1 − P2‖2
TV . This bound was further used to

provide a minimax bound on statistical estimation using information theo-

retic converse techniques such as Fano’s and Le Cam’s inequalities. Such

tradeoffs also provide tools for comparing various notions of privacy [25].

In a similar spirit, we are also interested in maximizing information theo-

retic quantities of the marginals under local differential privacy. We gener-

alize the results of [22], and provide stronger results in the sense that we (a)

consider a broader class of information theoretic utilities; (b) provide explicit

constructions of the optimal mechanisms; and (c) recover the existing result

of [22, Theorem 1] (with a stronger condition on ε).

Our work provides a formal connection to the information-theoretical no-

tion of privacy, where privacy loss is defined as information leakage. Informa-

tion leakage has been widely studied as a practical notion of privacy [26, 27].

Such a connection to differential privacy has been studied only indirectly

through comparisons to how much distortion is incurred under the two no-

tions of privacy [28]. Given a privatization mechanism, mutual information

29



privacy is measured by the mutual information between the data and the re-

leased output, i.e. I(X;Y ). We show that under ε-locally differentially, mu-

tual information is bounded by I(X;Y ) = 0.5ε2 maxA⊆X P (A)P (Ac)+O(ε3).

Moreover, we provide an explicit privatization mechanism that achieves this

bound.

While there is a vast literature on differential privacy, exact optimality

results are only known for a few cases. The typical recipe is to propose a

differentially private mechanism inspired by the work of [6, 7, 29] and [30],

and then establish its near-optimality by comparing the achievable utility to a

converse, for example in principal component analysis [31, 17, 32, 33], linear

queries [34, 35], logistic regression [36] and histogram release [37]. In this

work, we take a different route and solve the utility maximization problem

exactly.

Optimal differentially private mechanisms are known only in a few cases.

[38] showed that the geometric noise adding mechanism is optimal (under a

Bayesian setting) for monotone utility functions under count queries (sen-

sitivity one). This was generalized by Geng et al. (for a worst-case in-

put setting) who proposed a family of mechanisms and proved its optimal-

ity for monotone utility functions under queries with arbitrary sensitivity

[12, 13, 14]. The family of optimal mechanisms was called staircase mecha-

nisms because for any y and any neighboring x and x′, the ratio of Q(y|x)

to Q(y|x′) takes one of three possible values eε, e−ε, or 1. Since the optimal

mechanisms we develop also have an identical property, we retain the same

nomenclature.

3.1.5 Organization

The remainder of this chapter is organized as follows. In Section 3.3, we in-

troduce the family of staircase mechanisms, prove its optimality for a broad

class of convex utility functions, and study its combinatorial structure. In

Section 3.4, we study the problem of private hypothesis testing and prove

that two staircase mechanisms, the binary and randomized response mech-

anisms, are optimal for KL-divergence in the high and low privacy regimes,

respectively, and (nearly) optimal the intermediate regime. We show, in Sec-

tion 3.5, similar results for mutual information. In Section 3.6, we study
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approximate local differential privacy, a more general notion of local pri-

vacy. Finally, we conclude this chapter with a few interesting and nontrivial

extensions in Section 3.7.

3.2 Operational Interpretation of Local Differential

Privacy

Given an observation Y = y, consider a binary hypothesis test on whether

X ∈ A or X ∈ B for some A,B ⊂ X such that A ∩ B = ∅. Any binary

hypothesis test is completely described by a, possibly randomized, decision

rule X̂ : Y → {A,B}. The two types of error associated with X̂ are false

alarm: X̂ = A when X ∈ B, and missed detection: X̂ = B when X ∈ A.

The probability of false alarm is given by PFA = P(X̂ = A|X ∈ B) while the

probability of miss detection is given by PMD = P(X̂ = B|X ∈ A). Notice

that PFA and PMD are a function of Q, X̂, A and B, and not the distribution

of X. The next theorem provides an equivalent operational definition for

local differential privacy.

Theorem 3.2.1 (Operational Definition of Local Differential Privacy)

A conditional distribution Q is ε-locally differentially private if and only if

for all A,B ⊂ X such that A∩B = ∅ and all decision rules X̂ : Y → {A,B},
we have that

PFA + eεPMD ≥ 1

eεPFA + PMD ≥ 1. (3.7)

The proof of the above theorem is found in Appendix B.1. As a corollary

to the above theorem, if you set B = Ac, then local differential privacy

guarantees that upon the observation of Y , the adversary cannot figure out

whether or not X ∈ A reliably for any A ⊂ X .
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3.3 Optimal Mechanisms for Local Differential Privacy

In this section, we provide a formal definition for staircase mechanisms and

show that they are the optimal solutions to optimization problems of the

form (3.9). Using the structure of staircase mechanisms, we propose a com-

binatorial representation of staircase mechanisms. This allows us to reduce

the infinite dimensional nonlinear program of (3.9) to a linear program with

2|X | variables. Potentially, for any instance of the problem, one can solve this

linear program to obtain the optimal privatization mechanism, albeit with

significant computational challenges since the number of variables scales ex-

ponentially in the alphabet size. To address this issue, we prove, in Sections

3.4 and 3.5, that two simple staircase mechanisms, which we call the binary

mechanism and the randomized response mechanism, are optimal in the high

and low privacy regimes, respectively, and well approximate the intermediate

regime.

3.3.1 Optimality of staircase mechanisms

For an input alphabet X with |X | = k, we represent the set of ε-locally

differentially private mechanisms that lead to output alphabets Y with |Y| =
` by

Dε,` = Qk×` ∩
{
Q : ∀ x, x′ ∈ X , S ⊆ Y ,

∣∣∣ ln
Q (S|x)

Q (S|x′)

∣∣∣ ≤ ε

}
,

where Qk×` denotes the set of all k× ` dimensional conditional distributions.

The set of all ε-locally differentially private mechanisms is given by

Dε = ∪`∈NDε,`. (3.8)

The set of all conditional distributions acting on X is given by Q = ∪`∈NQk,`.
We consider two types of utility functions, one for the hypothesis testing

setup and another for the mutual information setup. In the hypothesis testing

setup, the utility is a function of the privatization mechanism and two priors

defined on the input alphabet. Namely, U (P0, P1, Q) : Sk × Sk × Q → R+,

where P0 and P1 are positive priors defined on X and Sk is the (k − 1)-

dimensional probability simplex. Pν is said to be positive if Pν (x) > 0 for
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all x ∈ X . In the information preservation setup, the utility is a function

of the privatization mechanism and a prior defined on the input alphabet.

Namely, U (P,Q) : Sk ×Q → R+, where P is a positive prior defined on X .

For notational convenience, we will use U (Q) to refer to both U (P,Q) and

U (P0, P1, Q).

Definition 3.3.1 (Sublinear Functions) A function µ (z) : Rk → R is

said to be sublinear if the following two conditions are met:

1. µ (γz) = γµ (z) for all γ ∈ R+.

2. µ (z1 + z2) ≤ µ (z1) + µ (z2) for all z1, z2 ∈ R.

Let Qy be the column of Q corresponding to Q(y|·) and µ be any sub-

linear function. We are interested in utilities that can be decomposed as a

summation of sublinear functions. We study the fundamental tradeoff be-

tween privacy and utility by solving the following constrained maximization

problem:

maximize
Q

U (Q) =
∑
y∈Y

µ(Qy)

subject to Q ∈ Dε
. (3.9)

This includes maximization over information theoretic quantities of interest

in statistical estimation and hypothesis testing such as mutual information,

total variation, KL-divergence, and χ2-divergence [23]. Since sub-linearity

implies convexity, this is in general a complicated nonlinear program: We

are maximizing (instead of minimizing) a convex function in Q. Further, the

dimension of Q might be unbounded: the optimal privatization mechanism

Q∗ might produce an infinite output alphabet Y . The following theorem

proves that one never needs an output alphabet larger than the input alpha-

bet in order to achieve the maximum utility, and provides a combinatorial

representation of the optimal solution.

Theorem 3.3.2 For any sublinear function µ and any ε ≥ 0, there exists

an optimal mechanism Q∗ maximizing the utility in (3.9) over all ε-locally

differentially private mechanisms, such that

(a) the output alphabet size is at most the input alphabet size, i.e. |Y| ≤
|X |; and
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(b) for all y ∈ Y, and x, x′ ∈ X∣∣∣ ln Q∗(y|x)

Q∗(y|x′)

∣∣∣ ∈ {0, ε} . (3.10)

The first claim of bounded alphabet size is more generally true for any general

utility U (Q) that is convex in Q (not necessarily decomposing into a sum of

sublinear functions as in (3.9)). The second claim establishes that there is

an optimal mechanism with an extremal structure; the absolute value of the

log-likelihood ratios can only take one of the two extremal values: zero or eε

(see Figure 3.2 for example). We refer to such a mechanism as a staircase

mechanism, and define the family of staircase mechanisms formally as

Sε ≡ {Q | satisfying (3.10)} .

For all choices of U (Q) =
∑
Y µ(Qy) and any ε ≥ 0, Theorem 3.3.2 implies

that the family of staircase mechanisms includes the optimal solutions to

maximization problems of the form (3.9). Notice that staircase mechanisms

are ε-locally differentially private, since any Q satisfying (3.10) implies that

Q(y|x)/Q(y|x′) ≤ eε.

y = 1

2

x = 1 2 3 4 5

eε

1+eε

1
1+eε

QT = 1
1+eε

[
eε eε 1 eε 1
1 1 eε 1 eε

]

y = 1

2

3

4

x = 1 2 3 4

eε

3+eε

1
3+eε

QT = 1
3+eε


eε 1 1 1
1 eε 1 1
1 1 eε 1
1 1 1 eε



Figure 3.2: Examples of staircase mechanisms: the binary (left) and the
randomized response (right) mechanisms.

For global differential privacy, we can generalize the definition of staircase

mechanisms to hold for all neighboring database queries x, x′ (or equiva-
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lently within some sensitivity), and recover all known existing optimal mech-

anisms. Precisely, the geometric mechanism shown to be optimal in [38],

and the mechanisms shown to be optimal in [12, 13] (also called staircase

mechanisms) are special cases of the staircase mechanisms defined above.

We believe that the characterization of these extremal mechanisms and the

analysis techniques developed in this chapter can be of independent interest

to researchers interested in optimal mechanisms for global privacy and more

general utilities.

3.3.2 Combinatorial representation of staircase mechanisms

Now that we know staircase mechanisms are optimal, we can try to com-

binatorially search for the best staircase mechanism for an instance of the

function µ and a fixed ε. To this end, we give a simple representation of

all staircase mechanisms, exploiting the fact that they are scaled copies of a

finite number of patterns.

Let Q ∈ R|X |×|Y| be a staircase mechanism, and k = |X | denote the

input alphabet size. Then, from the definition of staircase mechanisms,

Q(y|x)/Q(y|x′) ∈ {e−ε, 1, eε} and each column Q(y|·) must be proportional

to one of the canonical staircase patterns we define next.

Definition 3.3.3 (Staircase Pattern Matrix) Let bj be the k-dimensional

binary vector corresponding to the binary representation of j for j ≤ 2k − 1.

A matrix S(k) ∈ {1, eε}k×2k is called a staircase pattern matrix if the j-th

column of S(k) is S
(k)
j = (eε − 1) bj−1 + 1, for j ∈ {1, . . . , 2k}. Each column

of S(k) is a staircase pattern.

When k = 3, there are 2k = 8 staircase patterns and the staircase pattern

matrix is given by

S(3) =

1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε

 .

For all values of k, there are exactly 2k such patterns, and any column Q(y|·)
of Q, a staircase mechanism, is a scaled version of one of the columns of S(k).
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Using this pattern matrix, we will show that we can represent (an equivalence

class of) any staircase mechanism Q as

Q = S(k)Θ , (3.11)

where Θ = diag(θ) is a 2k × 2k diagonal matrix and θ is a 2k-dimensional

vector representing the scaling of the columns of S(k). We can now formulate

the problem of maximizing the utility as a linear program and prove their

equivalence.

Theorem 3.3.4 For any sublinear function µ and any ε ≥ 0, the nonlinear

program of (3.9) and the following linear program have the same optimal

value:

maximize
θ∈R2k

2k∑
j=1

µ(S
(k)
j )θj = µT θ (3.12)

subject to S(k)θ = 1

θ ≥ 0 ,

and the optimal solutions are related by (3.11).

The infinite dimensional nonlinear program of (3.9) is now reduced to a finite

dimensional linear program. The constraints in (3.12) ensure that we get a

valid probability matrix Q = S(k)Θ with rows that sum to one. One could

potentially solve this LP with 2k variables but its computational complexity

scales exponentially in the alphabet size k = |X |. For practical values of k

this might not always be possible. However, in the following sections, we

prove that in the high privacy regime (ε ≤ ε∗ for some positive ε∗), there

is a single optimal mechanism, which we call the binary mechanism, which

dominates over all other mechanisms in a very strong sense for all utility

functions of practical interest.

In order to understand the above theorem, observe that both the objective

function and differential privacy constraints are invariant under permutation

(or relabelling) of the columns of a privatization mechanism Q. Similarly,

both the objective function and differential privacy constraints are invariant

under merging/splitting of outputs with the same pattern. To be specific,

consider a privatization mechanism Q and suppose there exist two outputs y
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and y′ that have the same pattern, i.e. Q(y|·) = C Q(y′|·) for some positive

constant C. Then, we can consider a new mechanism Q′ by merging the two

columns corresponding to y and y′. Let y′′ denote this new output. It follows

that Q′ satisfies the differential privacy constraints and the resulting utility

is also preserved. Precisely, using the fact that Q(y|·) = C Q(y′|·), it follows

that

µ(Qy) + µ(Qy′) = µ((1 + C)Qy) = µ(Q′y′′) ,

by the homogeneity of µ. We can naturally define equivalence classes for

staircase mechanisms that are equivalent up to a permutation of columns

and merging/splitting of columns with the same pattern:

[Q] = {Q′ ∈ Sε | ∃a sequence

of permutations and merge/split of columns from Q′ to Q} .

To represent an equivalence class, we use a mechanism in [Q] that is or-

dered and merged to match the patterns of the pattern matrix S(k). For any

staircase mechanism Q, there exists a possibly different staircase mechanism

Q′ ∈ [Q] such that Q′ = S(k)Θ for some diagonal matrix Θ with nonnegative

entries. Therefore, to solve optimization problems of the form (3.9), we can

restrict our attention to such representatives of equivalent classes. Further,

for privatization mechanisms of the form Q = S(k)Θ, the objective function

takes the form
∑

j µ(S
(k)
j )θj, a simple linear function of Θ.

3.4 Private Hypothesis Testing

In this section, we study the fundamental tradeoff between local privacy and

hypothesis testing. In this setting, there are n individuals each with data

Xi from a distribution Pν for a fixed ν ∈ {0, 1}. Let Q be a non-interactive

privatization mechanism guaranteeing ε-local differential privacy. The out-

put of the privatization mechanism Yi is distributed according to the induced

marginal Mν defined in (3.2). With a slight abuse of notation, we will use

Mν and Pν to represent both probability distributions and probability mass

functions. The power to discriminate data from P0 to the data from P1

37



depends on the ‘distance’ between the marginals M0 and M1. To measure

the ability of such statistical discrimination, our choice of utility of a priva-

tization mechanism Q is an information theoretic quantity called Csiszár’s

f -divergence defined as

Df (M0||M1) =
∑
Y

M1(y)f
(M0(y)

M1(y)

)
= U (P0, P1, Q) = U (Q) , (3.13)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL)

divergence Dkl(M0||M1) is a special case of f -divergence with f(x) = x log x,

and total variation ‖M0 −M1‖TV is a special case with f(x) = (1/2)|x− 1|.
Note that the f -divergence is not a distance since it might not be symmet-

ric or satisfy triangular inequality. We are interested in characterizing the

optimal solution to

maximize
Q∈Dε

Df (M0||M1) , (3.14)

where Dε is the set of all ε-locally differentially private mechanisms defined

in (4.7).

A motivating example for this choice of utility is the Neyman-Pearson

hypothesis testing framework [39]. Given the privatized views {Yi}ni=1, the

data analyst wants to test whether they are generated from M0 or M1. Let

the null hypothesis be H0 : Yi’s are generated from M0, and the alternative

hypothesis H1 : Yi’s are generated from M1. For a choice of rejection region

R ⊆ Yn, the probability of false alarm (type I error) is α = Mn
0 (R) and

the probability of missed detection (type II error) is β = Mn
1 (Yn \ R). Let

βδ = minR⊆Yn,α<α∗ β denote the minimum type II error achievable while

keeping type I error rate at most α∗. According to Chernoff-Stein lemma

[39], we know that

lim
n→∞

1

n
log βα

∗
= −Dkl(M0||M1) .

Suppose the analyst knows P0, P1, and Q. Then in order to achieve optimal

asymptotic error rate, one would want to maximize the KL divergence of

the induced marginals, over all ε-locally differentially private mechanisms

Q. The results we present in this section (Theorems 3.4.1 and 3.4.4 to be

precise) provide an explicit construction of optimal mechanisms in high and
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low privacy regimes. Using those optimality results, we prove a fundamental

limit on the achievable error rates under differential privacy. Precisely, with

data collected from an ε-locally differentially privatization mechanism, one

cannot achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −(1 + δ)(eε − 1)2

(eε + 1)
‖P0 − P1‖2

TV

≥ −(1 + δ)(eε − 1)2

2(eε + 1)
Dkl(P0||P1) ,

whenever ε ≤ ε∗, where ε∗ is dictated by Theorem 3.4.1 and δ > 0 is some

positive constant. In the equation above, the second inequality follows from

Pinsker’s inequality. Since (eε− 1)2 = O(ε2) for small ε, the effective sample

size is now reduced from n to ε2n. This is the price of privacy. In the low

privacy regime where ε ≥ ε∗, for ε∗ dictated by Theorem 3.4.4, one cannot

achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −Dkl(P0||P1) + (1− δ)G(P0, P1)e−ε .

3.4.1 Optimal staircase mechanisms

From the definition of Df (M0||M1), we have that

Df (M0||M1) =
∑
Y

(P T
1 Qy)f(P T

0 Qy/P
T
1 Qy) =

∑
Y

µ (Qy) ,

where P T
ν Qy =

∑
X Pν (x)Q (y|x) and µ (Qy) = (P T

1 Qy)f(P T
0 Qy/P

T
1 Qy). For

any γ > 0,

µ (γQy) =
(
P T

1 (γQy)
)
f
(
P T

0 (γQy) /P
T
1 (γQy)

)
= γ

(
P T

1 Qy

)
f
(
P T

0 Qy/P
T
1 Qy

)
= γµ (Qy) .

Moreover, since the function φ(z, t) = tf
(
z
t

)
is convex in (z, t) for 0 ≤

z, t ≤ 1, then µ is convex in Qy. Convexity and homogeneity together imply

sublinearity. Therefore, Theorems 3.3.2 and 3.3.4 apply to Df (M0||M1) and

we have that staircases are optimal.

For a given P0 and P1, the binary mechanism is defined as a staircase
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mechanism with only two outputs y ∈ {0, 1} satisfying (see Figure 3.2)

Q(0|x) =


eε

1 + eε
if P0(x) ≥ P1(x) ,

1

1 + eε
if P0(x) < P1(x) .

Q(1|x) =


eε

1 + eε
if P0(x) < P1(x) ,

1

1 + eε
if P0(x) ≥ P1(x) . (3.15)

Although this mechanism is extremely simple, perhaps surprisingly, we will

establish that this is the optimal mechanism when a high level of privacy is

required. Intuitively, the output is very noisy in the high privacy regime, and

we are better off sending just one bit of information that tells you whether

your data is more likely to have come from P0 or P1.

Theorem 3.4.1 For any pair of distributions P0 and P1, there exists a pos-

itive ε∗ that depends on P0 and P1 such that for any f -divergences and any

positive ε ≤ ε∗, the binary mechanism maximizes the f -divergence between

the induced marginals over all ε-locally differentially private mechanisms.

This implies that in the high privacy regime, which is a typical setting studied

in much of differential privacy literature, the binary mechanism is a univer-

sally optimal solution for all f -divergences in (3.14). In particular this thresh-

old ε∗ is universal, in that it does not depend on the particular choice of which

f -divergence we are maximizing. This is established by proving a very strong

statistical dominance using Blackwell’s celebrated result on comparisons of

statistical experiments [11]. In a nutshell, we prove that any ε-differentially

private mechanism for sufficiently small ε can be simulated from the output

of the binary mechanism. Hence, the binary mechanism dominates over all

other mechanisms and at the same time achieves the maximum divergence.

A similar idea has been used previously in [24] to exactly characterize how

much privacy degrades under composition.

The optimality of binary mechanisms is not just for high privacy regimes.

The next theorem shows that it is the optimal solution of (3.14) for all ε, when

the objective function is the total variation Df (M0||M1) = ‖M0 −M1‖TV.
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Theorem 3.4.2 For any pair of distributions P0 and P1, and any ε ≥ 0, the

binary mechanism maximizes total variation of the induced marginals M0 and

M1 among all ε-locally differentially private mechanisms.

When maximizing the KL divergence between the induced marginals, we

show that the binary mechanism still achieves good performance for ε ≤ C

where C now does not depend on P0 and P1. For a special case of KL

divergence, let OPT denote the maximum value of (3.14) and BIN denote

the KL divergence when the binary mechanism is used. The next theorem

shows that

BIN ≥ 1

2(eε + 1)2
OPT .

Theorem 3.4.3 For any ε and for any pair of distributions P0 and P1, the

binary mechanism is an 1/(2(eε + 1)2) approximation of the maximum KL

divergence of the induced marginals M0 and M1 among all ε-locally differen-

tially private mechanisms.

Note that 2(eε + 1)2 ≤ 32 for ε ≤ 1, and for any ε ≤ 1 which is the typical

regime of interest in differential privacy, we can always use the simple binary

mechanism and the resulting divergence is at most a constant factor away

from the optimal.

The randomized response mechanism is defined as a staircase mechanism

with the same set of outputs as the input, Y = X , satisfying (see Figure 3.2)

Q(y|x) =


eε

|X | − 1 + eε
if y = x ,

1

|X | − 1 + eε
if y 6= x .

(3.16)

It is a randomization over the same alphabet, and we are more likely to

give an honest response. We view it as a multiple choice generalization of

the randomized response method proposed by [21], assuming equal level of

sensitivity for all choices. We establish that this is the optimal mechanism

when a low level of privacy is required. Intuitively, the noise is small in the

low privacy regime, and we want to send as much information about our

current data as allowed, but no more. For a special case of maximizing KL

divergence, we show that the randomized response mechanism is the optimal

solution of (3.14) in the low privacy regime (ε ≥ ε∗).
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Theorem 3.4.4 There exists a positive ε∗ that depends on P0 and P1 such

that for any P0 and P1, and all ε ≥ ε∗, the randomized response mechanism

maximizes the KL divergence between the induced marginals over all ε-locally

differentially private mechanisms.

3.4.2 Numerical experiments

A typical approach for achieving ε-local differential privacy is to add geo-

metric noise with appropriately chosen variance. For an input with alphabet

size |X | = k, this amounts to relabelling the input as integers {1, . . . , k} and

adding geometric noise, i.e., Q(y|x) = ((1−ε1/(k−1))/(1+ε1/(k−1)))ε|y−x|/(k−1).

The output is then truncated at 1 and k to preserve the support.

For 100 instances of randomly chosen P0 and P1 over input alphabet of

size |X | = 6, we compare the average performance of the binary, randomized

response, and the geometric mechanisms to the optimal staircase mechanism.

The optimal staircase mechanism is computed by solving the linear program

in Equation (3.12) for each fixed pair (P0, P1) and ε. We plot (in Figure

3.3, left) the average performance measured by the normalized divergence

Dkl(M0||M1)/Dkl(P0||P1) for all 4 mechanisms. The average is taken over

the 100 instances of P0 and P1. In the low privacy (large ε) regime, the

randomized response achieves optimal performance as predicted, which con-

verges to one. In the high privacy regime (small ε), the binary mechanism

achieves optimal performance as predicted. In all regimes, both mechanisms

significantly improve over the geometric mechanism.

To illustrate how much worse the binary and the randomized response

mechanisms can be (relative to the optimal extremal mechanism), we plot

(in Figure 3.3, right) the divergence under each mechanism normalized by the

divergence under the optimal mechanism. This is done for all 100 instances

of P0 and P1. In all instances, the binary mechanism is optimal for small

ε and the randomized response mechanism is optimal for large ε. However,

Dkl(M0||M1) under the randomized response mechanism can be as bad as

10% of the optimal one (for small ε). Similarly, Dkl(M0||M1)) under the

binary mechanism can be as bad as 25% of the optimal one (for large ε). To

overcome this issue, we propose the following simple strategy: use the better

among these two mechanisms. The performance of this strategy is illustrated
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Figure 3.3: The binary and randomized response mechanisms are optimal
in the high-privacy (small ε) and low-privacy (large ε) regimes, respectively,
and improve over the geometric mechanism significantly (left). When the
regimes are mismatched, Dkl(M0||M1) under these mechanisms can be as
bad as 10% of the optimal one (right).

in Figure 3.4. For various input alphabet size |X | ∈ {3, 4, 5, 6}, we plot the

performance of this mixed strategy for each value of ε and each of the 100

randomly generated instances of P0 and P1. This mixed strategy achieves

60% of the optimal divergence for all instances. Further, it is not sensitive

to the size of the alphabet k. This strategy provides a good mechanism that

can be readily used in practice for any value of ε.

3.4.3 Lower bounds

In this section, we provide converse results on the fundamental limit of dif-

ferentially private mechanisms; these results follow from our main theorems

and are of independent interest in other applications where lower bounds in

statistical analysis are studied [40, 34, 41, 42]. For example, a bound similar

to the one we present next was used to provide converse results on the sample

complexity for statistical estimation with differentially private data in [22].

Corollary 3.4.5 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1 and any positive δ > 0, there exists a positive ε∗ that depends on P0

and P1 and δ such that for any ε ≤ ε∗ the induced marginals M0 and M1
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Figure 3.4: For varying input alphabet size |X | ∈ {3, 4, 5, 6}, at least 60%
of the optimal divergence can be achieved by taking the better one between
the binary and the randomized response mechanisms.

satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 2(1 + δ)(eε − 1)2

(eε + 1)

∥∥P0 − P1

∥∥2

TV
.
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This follows from Theorem 3.4.1 and observing that the binary mechanism

achieves

Dkl

(
M0||M1

)
=

(eε − 1)P0(T ) + 1

eε + 1
log
(1 + (eε − 1)P0(T )

1 + (eε − 1)P1(T )

)
+

(eε − 1)P0(T c) + 1

eε + 1
log
(1 + (eε − 1)P0(T c)

1 + (eε − 1)P1(T c)

)
=

(eε − 1)2

eε + 1
(P0(T )− P1(T )) +O(ε3)

=
(eε − 1)2

eε + 1

∥∥P0 − P1

∥∥2

TV
+O(ε3) , (3.17)

where T ⊆ X is the set of x such that P0(x) ≥ P1(x). Compared to [22,

Theorem 1], we recover their bound of 4(eε − 1)2‖P0 − P1‖2
TV with a smaller

constant. We want to note that Duchi et al.’s bound holds for all values of

ε and uses a different technique of bounding the KL divergence directly, but

no achievable mechanism has been provided. We instead provide an explicit

mechanism that is optimal in the high privacy regime.

Similarly, in the low privacy regime, we can show the following converse

result.

Corollary 3.4.6 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1 and any positive δ > 0, there exists a positive ε∗ that depends on P0

and P1 and δ such that for any ε ≥ ε∗ the induced marginals M0 and M1

satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ Dkl(P0||P1)− (1− δ)G(P0, P1)e−ε ,

where G(P0, P1) =
∑
X (1− P0(x)) log(P1(x)/P0(x)).

This follows directly from Theorem 3.4.4 and observing that the randomized

response mechanism achieves

Dkl(M0||M1) = Dkl(P0||P1)−G(P0, P1)e−ε +O(e−2ε) . (3.18)

Similarly, for total variation, we can get the following converse result.

This follows from Theorem 3.4.2 and explicitly computing the total variation
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achieved by the binary mechanism.

Corollary 3.4.7 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any pair of distributions P0

and P1, the induced marginals M0 and M1 satisfy the bound
∥∥M0−M1

∥∥
TV
≤

((eε − 1)/(eε + 1))
∥∥P0−P1

∥∥
TV

, and equality is achieved by the binary mech-

anism.

Figure 3.5 illustrates the gap between the divergence achieved by the geo-

metric mechanism described in the previous section and the optimal mecha-

nisms (the binary mechanism for the high privacy regime and the randomized

response mechanism for the low privacy regime). For each instance of the

100 randomly generated P0 and P1 over input of size k = 6, we plot the

resulting divergence Dkl(M0||M1) as a function of ‖P0 − P1‖TV for ε = 0.1,

and as a function of Dkl(P0||P1) for ε = 10. The binary and the randomized

response mechanisms exhibit the scaling predicted by Equation (3.17) and

(3.18), respectively.
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Figure 3.5: For small ε = 0.1 (left) the binary mechanism achieves the
optimal KL divergence, which scales as Equation (3.17). For large ε = 10
(right) the randomized response achieves the optimal KL divergence, which
scales as Equation (3.18). Both mechanisms improve significantly over the
geometric mechanism.
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3.5 Information Preservation

In this section, we study the fundamental tradeoff between local privacy and

mutual information. Consider a random variable X distributed according to

P . The information content in X is captured by entropy

H (X) = −
∑
X

P (x) logP (x) .

We are interested in releasing a differentially private version of X represented

by Y . The random variable Y should preserve the information content of X

as much as possible while meeting the local differential privacy constraints.

Similar to the hypothesis testing setting, we will show that a variant of the

binary mechanism is optimal in the high privacy regime and the randomized

response mechanism is optimal in the low privacy regime.

Let Q be a non-interactive privatization mechanism guaranteeing ε-local

differential privacy. The output of the privatization mechanism Y is dis-

tributed according to the induced marginal M given by

M(S) =
∑
x∈X

Q(S|x)P (x) ,

for S ⊆ Y . With a slight abuse of notation, we will use M and P to represent

both probability distributions and probability mass functions. The informa-

tion content in Y about X is captured by the well celebrated information

theoretic quantity called mutual information. The mutual information be-

tween X and Y is given by

I (X;Y ) =
∑
X

∑
Y

P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
= U (Q) . (3.19)

Notice that I (X;Y ) ≤ H (X) and I (X;Y ) is convex in Q [39]. To preserve

the information context in X, we wish to choose a privatization mechanism

Q such that the mutual information between X and Y is maximized sub-

ject to differential privacy constraints. In other words, we are interested in
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characterizing the optimal solution to

maximize
Q

I (X;Y )

subject to Q ∈ Dε
, (3.20)

where Dε is the set of all ε-locally differentially private mechanisms defined in

(4.7). The above mutual information maximization problem can be thought

of as a conditional entropy minimization problem since I (X;Y ) = H (X)−
H (X|Y ).

3.5.1 Optimal staircase mechanisms

From the definition of I (X;Y ), we have that

I (X;Y ) =
∑
Y

∑
X

P (x)Q (y|x) log

(
Q (y|x)

P TQy

)
=
∑
Y

µ (Qy) ,

where P TQy =
∑
X P (x)Q (y|x) and

µ (Qy) =
∑
X

P (x)Q (y|x) log
(
Q (y|x) /P TQy

)
.

Notice that µ (γQy) = γµ (Qy), and by the log-sum inequality, µ is convex.

Convexity and homogeneity together imply sublinearity. Therefore, Theo-

rems 3.3.2 and 3.3.4 apply to I (X;Y ) and we have that staircase mechanisms

are optimal.

For a given P , the binary mechanism for mutual information is defined as

a staircase mechanism with only two outputs y ∈ {0, 1} (see Figure 3.2). Let

T ⊆ X be the set that partitions X into two partitions, T and T c, such that

|P (T )− P (T c)| is minimized. Precisely,

T ∈ arg min
A⊆X

∣∣∣P (A)− 1

2

∣∣∣ . (3.21)

Observe that there are always multiple choices for T . Indeed, for any mini-

mizing set T , T c is also a minimizing set since |P (T )− 1/2| = |P (T c)− 1/2|.
When there is only one such pair, the binary mechanism is uniquely defined
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as

Q(0|x) =

{
eε

1+eε
if x ∈ T ,

1
1+eε

if x /∈ T .
Q(1|x) =

{
eε

1+eε
if x /∈ T ,

1
1+eε

if x ∈ T .
(3.22)

When there are multiple pairs, any pair (T, T c) can be chosen to define the

binary mechanism. All resulting binary mechanisms are equivalent from a

utility maximization perspective.

In what follows, we will establish that this simple mechanism is the optimal

mechanism in the high privacy regime. Intuitively, in the high privacy regime,

we cannot release more than one bit of information, and hence, the input al-

phabet is reduced to a binary output alphabet. In this case we have to maxi-

mize the information contained in the released bit by maximizing its entropy:

T ∈ arg max
A⊆X

(
− P (A) logP (A)− P (Ac) logP (Ac)

)
= arg max

A⊆X
|P (A)− 1/2|.

Theorem 3.5.1 For any distribution P , there exists a positive ε∗ that de-

pends on P such that for any positive ε ≤ ε∗, the binary mechanism maxi-

mizes the mutual information between the input and the output of a privati-

zation mechanism over all ε-locally differentially private mechanisms.

This implies that in the high privacy regime, the binary mechanism is the

optimal solution for (3.20).

Next, we show that the binary mechanism achieves near-optimal perfor-

mance for all (X , P ) and ε ≤ 1 even when ε∗ < 1. Let OPT denote the

maximum value of (3.20) and BIN denote the mutual information achieved

by the binary mechanism given in (3.22). The next theorem shows that

BIN ≥ 1

1 + eε
OPT .

Theorem 3.5.2 For any ε ≤ 1 and any distribution P , the binary mech-

anism is an (1 + eε)-approximation of the maximum mutual information

between the input and the output of a privatization mechanism among all

ε-locally differentially private mechanisms.

Note that 1 + eε ≤ 4 for ε ≤ 1 which is a commonly studied regime in

differential privacy applications. Therefore, we can always use the simple

binary mechanism and the resulting mutual information is at most a constant

factor away from the optimal.
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Figure 3.6: The binary and randomized response mechanisms are optimal
in the high-privacy (small ε) and low-privacy (large ε) regimes, respectively,
and improve over the geometric mechanism significantly (left). When the
regimes are mismatched, I (X;Y ) under these mechanisms can each be as
bad as 35% of the optimal one (right).

In the low privacy regime (ε ≥ ε∗), the randomized response mechanism

defined in(3.16) is optimal.

Theorem 3.5.3 There exists a positive ε∗ that depends on P such that for

any distribution P and all ε ≥ ε∗, the randomized response mechanism max-

imizes the mutual information between the input and the output of as priva-

tization mechanism over all ε-locally differentially private mechanisms.

3.5.2 Numerical experiments

For 100 instances of randomly chosen P defined over input alphabet of size

|X | = 6, we compare the average performance of the binary, randomized

response, and the geometric mechanisms to the optimal mechanism. We plot

(in Figure 3.6, left) the average performance measured by the normalized

mutual information I (X;Y )/H (X) for all 4 mechanisms. The average is

taken over the 100 instances of P . In the low privacy (large ε) regime,

the randomized response achieves optimal performance as predicted, which

converges to one. In the high privacy regime (small ε), the binary mechanism

achieves optimal performance as predicted. In all regimes, both mechanisms

significantly improve over the geometric mechanism. To illustrate how much

worse the binary and randomized response mechanisms can be (relative to
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the optimal staircase mechanism), we plot (in Figure 3.6, right) the mutual

information under each mechanism normalized by the mutual information

under the optimal staircase mechanism. This is done for all 100 instances

of P . In all instances, the binary mechanism is optimal for small ε and the

randomized response mechanism is optimal for large ε. However, I (X;Y )

under the randomized response mechanism can be as bad as 35% of the

optimal one (for small ε). Similarly, I (X;Y ) under the binary mechanism

can be as bad as 40% of the optimal one (for large ε).

For |X | ∈ {3, 4, 5, 6}, we plot (in Figure 3.7) the performance of the better

between the binary and randomized response mechanisms normalized by the

optimal mechanism for all 100 randomly generated instances of P . This

mixed strategy achieves at least 75% of the optimal mutual infirmation for

all instances of P . Moreover, it is not sensitive to the size of the alphabet

|X |.

3.5.3 Lower bounds

In this section, we provide converse results on the fundamental limit of lo-

cally differentially private mechanisms when utility is measured via mutual

information.

Corollary 3.5.4 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any distribution P and any

positive δ > 0, there exists a positive ε∗ that depends on P and δ such that

for any ε ≤ ε∗ the following bound holds:

I (X;Y ) ≤ (1 + δ)
1

2
P (T )P (T c) ε2,

where T is defined in (3.21).

This follows from Theorem 3.5.1 (optimality of the binary mechanism) and

observing that the binary mechanism achieves I (X;Y ) equal to

1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
. (3.23)
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Figure 3.7: For varying input alphabet size |X | ∈ {3, 4, 5, 6}, at least 75%
of the maximum mutual information can be achieved by taking the better
one between the binary and the randomized response mechanisms.
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Similarly, in the low privacy regime, we can show the following converse

result.

Corollary 3.5.5 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε-local differential privacy. Then, for any distributions P and any

positive δ > 0, there exists a positive ε∗ that depends on P and δ such that

for any ε ≥ ε∗ the following bound holds

I (X;Y ) ≤ H (X)− (1− δ) (k − 1) εe−ε.

This follows directly from Theorem 3.5.3 (optimality of the randomized re-

sponse mechanism) and observing that the randomized response mechanism

achieves

I (X;Y ) = H (X)− (k − 1) εe−ε +O(e−2ε). (3.24)

Figure 3.8 illustrates the gap between the mutual information achieved by

the geometric mechanism and the optimal mechanisms (the binary mecha-

nism for the high privacy regime and the randomized response mechanism

for the low privacy regime). For each instance of the 100 randomly generated

P over input of size k = 6, we plot the resulting mutual information I (X;Y )

as a function of P (T )P (T c) for ε = 0.1, and as a function of H (X) for

ε = 10. The binary and the randomized response mechanisms exhibit the

scaling predicted by Equations (3.23) and (3.24), respectively.

3.6 Approximate Local Differential Privacy

In this section, we generalize the results of the previous sections in the fol-

lowing ways:

1. We consider the class of utility functions that obey the data processing

inequality. Consider the composition of two privatization mechanisms

QW = Q ◦W where the output of the first mechanism Q is applied

to another mechanism W . We say that a utility function U(·) obeys

the data processing inequality if the following inequality holds for all
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Figure 3.8: For small ε = 0.1 (left) the binary mechanism achieves the
optimal mutual information, which scales as Equation (3.23). For large
ε = 10 (right) the randomized response mechanism achieves the optimal
mutual information, which scales as Equation (3.24). Both mechanisms
improve significantly over the geometric mechanism.

Q and W :

U(QW ) ≤ U(Q) .

The following proposition, proved in [43], shows that the class of utili-

ties obeying the data processing inequality includes all the utility func-

tions we studied in Section 3.3.

Proposition 3.6.1 Any utility function that can be written in the form

of U (Q) =
∑
Y µ(Qy), where µ is any sublinear function, obeys the data

processing inequality.

2. We consider (ε, δ)-differential privacy which generalizes the notion of

ε-differential privacy. (ε, δ)-differential privacy is commonly referred to

as approximate differential privacy and it was first introduced in [9].

For the release of a random variable X ∈ X , we say that a mechanism

Q is (ε, δ)-locally differentially private if

Q (S|x) ≤ eεQ (S|x′) + δ, (3.25)

for all S ⊆ Y and all x, x′ ∈ X . Note that ε-local differential privacy is

a special case of (ε, δ)-local differential privacy where δ = 0.
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3. We prove that the quaternary mechanism, defined in Equation (3.26),

is optimal for any ε and any δ. This is different from the treatment

conducted in the previous sections where we proved the optimality

of the binary (randomized response) mechanism for sufficiently small

(large) ε and δ = 0.

The treatment in this section, even though more general than the one in pre-

vious sections in the ways described above, holds only for binary alphabets

(i.e., |X | = 2). Finding optimal privatization mechanisms under (ε, δ)-local

differential privacy for larger input alphabets (i.e., |X | > 2) is an interest-

ing open question. Unlike ε-local differential privacy, the privacy constraints

under (ε, δ)-local differential privacy no longer decompose into separate con-

straints on each output y. This makes it difficult to generalize the techniques

developed in previous sections of this chapter. However, for the special case

of binary input alphabets, we can prove the optimality of one mechanism

for all values of (ε, δ) and all utility functions that obey the data processing

inequality.

For a binary random variable X ∈ X = {0, 1}, the quaternary mechanism

maps X to a quaternary random variable Y ∈ Y = {0, 1, 2, 3} and is defined

as

QQT(0|x) =

{
δ if x = 0 ,

0 if x = 1 ,

QQT(1|x) =

{
0 if x = 0 ,

δ if x = 1 ,

QQT(2|x) =


(1− δ) 1

1 + eε
if x = 0 ,

(1− δ) eε

1 + eε
if x = 1 ,

QQT(3|x) =


(1− δ) eε

1 + eε
if x = 0 ,

(1− δ) 1

1 + eε
if x = 1 .

(3.26)

In other words, the quaternary mechanism passes X unchanged with prob-

ability δ and applies the binary mechanism (defined in previous sections) with

probability 1 − δ. The main result of this section can be stated formally as

follows.
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Figure 3.9: The quaternary mechanism

Theorem 3.6.1 If |X | = 2, then for any ε, any δ, and any U (Q) that

obeys the data processing inequality, the quaternary mechanism maximizes

U (Q) subject to Q ∈ D(ε,δ), the set of all (ε, δ)-locally differentially private

mechanism.

The proof of Theorem 3.6.1 depends on an operational definition of differ-

ential privacy which we describe next. Consider a privatization mechanism

Q that maps X ∈ {0, 1} stochastically to Y ∈ Y . Given Y , construct a

binary hypothesis test on whether X = 0 or X = 1. Any binary hypoth-

esis test is completely described by a (possibly randomized) decision rule

X̂ : Y → {0, 1}. The two types of error associated with X̂ are false alarm:

X̂ = 1 when X = 0, and missed detection: X̂ = 0 when X = 1. The proba-

bility of false alarm is given by PFA = P(X̂ = 1|X = 0) while the probability

of missed detection is given by PMD = P(X̂ = 0|X = 1). For a fixed Q,

the convex hull of all pairs (PMD, PFA) for all decision rules X̂ defines a two-

dimensional error region where PMD is plotted against PFA. For example, the

quaternary mechanism given in Figure 3.9a has an error region RQQT
shown

in Figure 4.1.

It turns out that (ε, δ)-local differential privacy imposes the following con-

ditions on the error region of all (ε, δ)-locally differentially private mecha-
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nisms:

PFA + eεPMD ≥ 1− δ , and eεPFA + PMD ≥ 1− δ ,

for any decision rule X̂. These two conditions define an error region Rε,δ

shown in Figure 4.1. Interestingly, the next theorem shows that the converse

result is also true.

Theorem 3.6.2 A mechanism Q is (ε, δ)-locally differentially private if and

only if RQ ⊆ Rε,δ.

The proof of the above theorem can be found in [24]. Notice that it is no

coincidence that RQQT
= Rε,δ. This property will be essential to proving the

optimality of the quaternary mechanism.

Theorem 3.6.2 allows us to benefit from the data processing inequality

(DPI) and its converse, which follows from a celebrated result by [11]. These

inequalities, while simple by themselves, lead to surprisingly strong technical

results. Indeed, there is a long line of such a tradition in the information

theory literature (see Chapter 17 of [39]). Consider two privatization mech-

anisms, Q(1) and Q(2). Let Y and Z denote the output of the mechanisms

Q(1) and Q(2), respectively. We say that Q(1) dominates Q(2) if there exists

a coupling of Y and Z such that X–Y –Z forms a Markov chain. In other

words, we say Q(1) dominates Q(2) if there exists a stochastic mapping Q

such that Q(2) = Q(1) ◦Q.

Theorem 3.6.3 A mechanism Q(1) dominates a mechanism Q(2) if and only

if RQ(2) ⊆ RQ(1).

The proof of the above theorem can be found in [11]. Observe that by

Theorems 3.6.3 and 3.6.2, and the fact that RQQT
= Rε,δ, the quaternary

mechanism dominates any other differentially private mechanism. In other

words, for any differentially private mechanism Q, there exists a stochastic

mapping W such that Q = W ◦ QQT. Therefore, for any (ε, δ) and any

utility function U(.) obeying the data processing inequality, we have that

U(Q) ≤ U(QQT). This finishes the proof of Theorem 3.6.1.
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3.7 Conclusions and Summary

In this chapter, we have considered a broad class of convex utility functions

and assumed a setting where individuals cannot collaborate (communicate

with each other) before releasing their data. We showed that staircase mech-

anisms are optimal for a broad class of information theoretic utility functions

such as mutual information and f -divergences. We also considered private bi-

nary hypothesis testing and information preservation, two canonical problems

with a wide range of applications. Binary hypothesis testing and information

preservation are two canonical problems with a wide range of applications.

However, there are a number of non-trivial and interesting extensions to our

work. These extensions are discussed in detail in Chapter 5.

It turns out that the techniques we have developed in this chapter can

be generalized to find optimal privatization mechanisms in a setting where

different individuals can collaborate interactively and each individual can be

an analyst. This is precisely the topic of Chapter 4
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CHAPTER 4

MULTI-PARTY DIFFERENTIAL PRIVACY

4.1 Introduction

Multi-party computation (MPC) is a generic framework where multiple par-

ties share their information in an interactive fashion towards the goal of com-

puting some functions, potentially different at each of the parties. In many

situations of common interest, the key challenge is in computing the functions

as privately as possible, i.e., without revealing much about one’s information

to the other (potentially colluding) parties. For instance, an interactive vot-

ing system aims to compute the majority of (say, binary) opinions of each of

the parties, with each party being averse to declaring their opinion publicly.

Another example involves banks sharing financial risk exposures – the banks

need to agree on quantities such as the overnight lending rate which depends

on each bank’s exposure, which is a quantity the banks are naturally loath to

truthfully disclose [44]. A central learning theory question involves character-

izing the fundamental limits of interactive information exchange such that a

strong (and suitably defined) adversary only learns as little as possible while

still ensuring that the desired functions can be computed as accurately as

possible.

One way to formulate the privacy requirement is to ensure that each party

learns nothing more about the others’ information than can be learned from

the output of the function computed. This topic is studied under the rubric

of secure function evaluation (SFE); the SFE formulation has been exten-

sively studied with the goal of characterizing which functions can be securely

evaluated [45, 46, 47, 48]. One drawback of SFE is that depending on what

auxiliary information the adversary might have, disclosing the exact function

output might reveal each party’s data. For example, consider computing the

average of the data owned by all the parties. Even if we use SFE, a party’s
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data can be recovered if all the other parties collaborate. To ensure protec-

tion of the private data under such a strong adversary, we want to impose

the stronger privacy guarantee of differential privacy. Recent breaches of

sensitive information about individuals due to linkage attacks prove the vul-

nerability of existing ad-hoc privatization schemes, such as anonymization

of the records. In linkage attacks, an adversary matches up anonymized

records containing sensitive information with public records in a different

dataset. Such attacks have revealed the medical record of a former governor

of Massachusetts [49], the purchase history of Amazon users [50], genomic

information [51], and movie viewing history of Netflix users [52].

An alternative formulation is differential privacy, a relatively recent for-

mulation that has received considerable attention as a formal mathematical

notion of privacy that provides protection against such strong adversaries

(a recent survey is available at [53]). The basic idea is to introduce enough

randomness in the communication so that an adversary possessing arbitrary

side information and access to the entire transcript of the communication

will still have some residual uncertainty in identifying any of the bits of the

parties. This privacy requirement is strong enough that non-trivial func-

tions will be computed only with some error. Thus, there is a great need

for understanding the fundamental tradeoff between privacy and accuracy,

and for designing privatization mechanisms and communication protocols

that achieve the optimal tradeoffs. The formulation and study of an optimal

framework addressing this tradeoff is the focus of this chapter.

We study the following problem of multi-party computation under dif-

ferential privacy: each party possesses a single bit of information and the

information bits are statistically independent. Each party is interested in

computing a function, which could differ from party to party, and there

could be a central observer (observing the entire transcript of the interac-

tive communication protocol) interested in computing a separate function.

Performance at each party and the central observer is measured via the ac-

curacy of the function to be computed. We allow an arbitrary cost metric to

measure the distortion between the true and the computed function values.

Each party imposes a differential privacy constraint on its information bit

(the privacy level could be different from party to party) – i.e., there remains

an uncertainty in any specific party’s bit even to an adversary that has access

to the transcript of interactions and all the other parties’ bits. The inter-
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active communication is achieved via a broadcast channel that all parties

and the central observer can hear (this modeling is without loss of generality

since differential privacy protects against an adversary that can listen to the

entire transcript, the communication between any two parties might as well

be revealed to all the others). It is useful to distinguish between two types

of communication protocols: interactive and non-interactive. We say a com-

munication protocol is non-interactive if a message broadcasted by one party

does not depend on the messages broadcasted by other parties. In contrast,

interactive protocols allow the messages at any stage of the communication

to depend on all the previous messages.

4.1.1 Our contributions

Our main result is the exact optimality of a simple non-interactive protocol

in terms of maximizing accuracy for any given privacy levels: each party

randomizes (sufficiently) its own bit and broadcasts the noisy version. Each

party and the central observer then separately compute their respective deci-

sion functions to maximize the appropriate notion of their accuracy measure.

The optimality is general: it holds for all types of functions, heterogeneous

privacy conditions on the parties, all types of cost metrics, and both average

and worst-case (over the inputs) measures of accuracy. Finally, the optimal-

ity result is simultaneous, in terms of maximizing accuracy at each of the

parties and the central observer. Each party only needs to know its own

desired level of privacy, its own function to be computed, and its measure of

accuracy. Optimal data release and optimal decision making are naturally

separated.

4.1.2 Related work

Private MPC was first addressed in [54]. The study of accuracy-privacy

tradeoffs in the MPC context was first initiated by [40], which studies a

paradigm where differential privacy and secure function evaluation (SFE) co-

exist: the function to be computed is decided on using differentially private

schemes and the method to compute it is decided on using SFE. Specific

functions, such as the SUM function, were studied under this setting, but no
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exact optimality results were provided.

In the context of two parties, privacy-accuracy tradeoffs have been studied

in [55, 56] where a single function is computed by a “third-party” observing

the transcript of the interactive protocol. [55] constructs natural functions

that can only be computed very coarsely (using a natural notion of accuracy)

when compared to a client-server model (which is essentially the single party

setting). [56] shows that every any non-trivial privacy setting incurs some

loss in the accuracy of a non-trivial Boolean function. Further, focusing on

the specific scenario where each one of the two parties has a single bit of

information, [56] characterizes the exact accuracy-privacy tradeoff for AND

and XOR functions; the corresponding optimal protocol turns out to be non-

interactive. However, this result was derived under some assumptions: only

two parties are involved, the central observer is the only entity that computes

a function, the function has to be either XOR or AND, symmetric privacy

conditions are used for both parties, and accuracy is measured only as worst-

case over the four possible inputs. Further, their analysis techniques do not

generalize to the case when there are more than two parties.

Function approximation has been widely studied in the differential privacy

literature under a centralized model where there is a single trusted entity

owning a statistical database over a large number of individuals. In the cen-

tralized model, an algorithm is called interactive if it involves multiple rounds

of communications between the server and the client. Under this centralized

model, statistical learning has also been widely studied in differential privacy,

e.g., classification [57, 58], k-means clustering [59], and principal component

analysis [31, 60, 32, 33]. In particular, it has been shown in [57] that under

the centralized setting, there exists a class of concepts that is efficiently learn-

able by interactive algorithms whereas a non-interactive algorithm requires

exponential number of samples. In contrast, we consider a multi-party set-

ting where the privacy barrier is place before each individual. In multi-party

computation, all communication happens in multiple rounds, and a protocol

is called interactive if one party’s message depends on other party’s previous

messages. In this sense, the notion of interaction in multi-party computa-

tion is significantly different from what has been previously studied under

centralized client-server settings.
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4.2 Private Multi-Party Computation

Consider the setting where there are k parties, each with its own private

binary data xi ∈ {0, 1} generated independently. The independence assump-

tion here is necessary because without it each party can learn something

about others, which violates differential privacy, even without revealing any

information. Differential privacy implicitly imposes independence in a multi-

party setting. The goal of each party i ∈ [k] is to compute an arbitrary

function fi : {0, 1}k → Y of interest by interactively broadcasting messages.

There might be a central observer who listens to all the messages being broad-

casted, and wants to compute another arbitrary function f0 : {0, 1} → Y .

The k parties are honest in the sense that once they agree on what protocol

to follow, every party follows the rules. At the same time, they can be cu-

rious, and each party needs to ensure that other parties cannot learn its bit

with sufficient confidence. This is done by imposing local differential privacy

constraints. This setting is similar to the one studied in [22] in the sense

that there are multiple privacy barriers, each one separating an individual

party from the rest of the world. However, the main difference is that we

consider multi-party computation, where there are multiple functions to be

computed, and each node might possess a different function to be computed.

Let x = [x1, . . . , xk] ∈ {0, 1}k denote the vector of k bits, and x−i =

[x1, . . . , xi−1, xi+1, . . . , xk] ∈ {0, 1}k−1 be the vector of bits except for the

ith bit. The parties agree on an interactive protocol P to achieve the goal of

multi-party computation. A ‘transcript’ τ is the output of P , and it contains

the sequence of messages exchanged between the parties. Let the probability

that a transcript τ is broadcasted (via a series of interactive communica-

tions) when the data is x be denoted by Px,τ = P(τ |x) for x ∈ {0, 1}k

and for τ ∈ T . Then, a protocol can be represented as a matrix denoting

the probability distribution over a set of transcripts T conditioned on x:

P = [Px,τ ] ∈ [0, 1]2
k×|T |.

In the end, each party makes a decision on what the value of function fi is,

based on its own bit xi and the transcript τ that was broadcasted. A decision

rule is a mapping from a transcript τ ∈ T and private bit xi ∈ {0, 1} to a

decision y ∈ Y represented by a function f̂i(τ, xi). We allow randomized

decision rules, in which case f̂i(τ, xi) can be a random variable. For the
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central observer, a decision rule is a function of just the transcript, denoted

by a function f̂0(τ).

We consider two notions of accuracy: the average accuracy and the worst-

case accuracy. For the ith party, consider an accuracy measure wi : Y ×
Y → R (or equivalently a negative cost function) such that wi(fi(x), f̂i(τ, xi))

measures the accuracy when the function to be computed is fi(x) and the

approximation is f̂i(τ, xi). Then the average accuracy for this ith party is

defined as

ACCave(P,wi, fi, f̂i) ≡ (4.1)
1

2k

∑
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] ,

where the expectation is taken over the random transcript τ and any ran-

domness in the decision function f̂i. For example, if the accuracy measure is

an indicator such that wi(y, y
′) = I(y=y′), then ACCave measures the average

probability of getting the correct function output. For a given protocol P , it

takes (2k |T |) operations to compute the optimal decision rule:

f ∗i,ave(τ, xi) = arg max
y∈Y

∑
x−i∈{0,1}k−1

Px,τ wi(fi(x), y) , (4.2)

for each i ∈ [k]. The computational cost of (2k |T |) for computing the optimal

decision rule is unavoidable in general, since that is the inherent complexity of

the problem: describing the distribution of the transcript requires the same

cost. We will show that the optimal protocol requires a set of transcripts

of size |T | = 2k, and the computational complexity of the decision rule for

a general function is 22k. However, for a fixed protocol, this decision rule

needs to be computed only once before any message is transmitted. Further,

it is also possible to find a closed form solution for the decision rule when f

has a simple structure. One example is the XOR function where the optimal

decision rule is as simple as evaluating the XOR of all the received bits,

which requires O(k) operations. When there are multiple maximizers y, we

can choose either one of them arbitrarily, and it follows that there is no gain

in randomizing the decision rule for average accuracy.
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Similarly, the worst-case accuracy is defined as

ACCwc(P,wi, fi, f̂i) ≡ (4.3)

min
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] .

For worst-case accuracy, given a protocol P , the optimal decision rule of

the ith party with a bit xi can be computed by solving the following convex

program:

Q(xi) = (4.4)

arg max
Q∈R|T |×|Y|

min
x−i∈{0,1}k−1

∑
τ∈T

∑
y∈Y

Px,τ wi(fi(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0.

The optimal (random) decision rule f ∗i,wc(τ, xi) is to output y given transcript

τ according to P(y|τ, xi) = Q
(xi)
τ,y . This can be formulated as a linear program

with |T | × |Y| variables and 2k+ |T | constraints. Again, it is possible to find

a closed form solution for the decision rule when f has a simple structure:

for the XOR function, the optimal decision rule is again evaluating the XOR

of all the received bits requiring O(k) operations.

For a central observer, the accuracy measures are defined similarly, and the

optimal decision rule is now

f ∗0,ave(τ) = arg max
y∈Y

∑
x∈{0,1}k

Px,τ w0(f0(x), y) , (4.5)

and for worst-case accuracy the optimal (random) decision rule f ∗0,wc(τ) is to

output y given transcript τ according to P(y|τ) = Q
(0)
τ,y.

Q(0) = (4.6)

arg max
Q∈R|T |×|Y|

min
x∈{0,1}k

∑
τ∈T

∑
y∈Y

Px,τ w0(f0(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0,

where w0 : Y × Y → R is the measure of accuracy for the central observer.

65



4.3 Differentially Private Multi-Party Computation

Privacy is measured by approximate differential privacy [6, 7]. Since we allow

for heterogeneous privacy constraints across parties, we use (εi, δi) to denote

the desired privacy level of the ith party. We say that a protocol P is (εi, δi)-

differentially private for the ith party if for xi, x
′
i ∈ {0, 1}, x−i ∈ {0, 1}k−1,

and S ⊆ T , we have that

P(τ ∈ S|xi, x−i) ≤ eεi P(τ ∈ S|x′i, x−i) + δi . (4.7)

A mechanism P is differentially private if it is (εi, δi)-differentially private for

all i ∈ [k]. Differential privacy ensures that no adversary can infer the private

data xi with high enough confidence, no matter what auxiliary information

or computational power she might have.

Consider the following simple protocol known as the randomized response,

which is a term first coined by [21] and commonly used in many private com-

munications including the multi-party setting [55]. We will show in Section

4.4 that this is the optimal protocol that simultaneously maximizes the ac-

curacy for all the parties. Each party broadcasts a randomized version of its

bit denoted by x̃i such that

x̃i =



0 if xi = 0 with probability δi ,

1 if xi = 0 with probability
(1− δi)eεi

1 + eεi
,

2 if xi = 0 with probability
(1− δi)
1 + eεi

,

3 if xi = 0 with probability 0 ,

x̃i =



0 if xi = 1 with probability 0 ,

1 if xi = 1 with probability
(1− δi)
1 + eεi

,

2 if xi = 1 with probability
(1− δi)eεi

1 + eεi
,

3 if xi = 1 with probability δi .

(4.8)

The proof of optimality of this randomized response depends on an opera-

tional definition of differential privacy which we now present.
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Figure 4.1: Error region dictated by (εi, δi)-differential privacy

Given a broadcasted transcript τ and x−i (all private bits except for xi),

construct a binary hypothesis test on whether xi = 0 or xi = 1. A binary

hypothesis test is completely characterized by a (possibly randomized) deci-

sion rule x̂i : (τ, x−i)→ {0, 1}. The two types of error associated with x̂i are:

(1) false alarm: x̂i = 1 when xi = 0, and (2) missed detection: x̂i = 0 when

xi = 1. The probability of false alarm is given by PFA = P(x̂i = 1|xi = 0)

while the probability of missed detection is given by PMD = P(x̂i = 0|xi = 1).

For a fixed privacy protocol P , the convex hull of all pairs (PMD, PFA) for all

decision rules x̂i defines a two-dimensional error region where PMD is plotted

against PFA. For example, the randomized response mechanism PRR given

in (4.8) has an error region R(PRR, xi = 0, xi = 1) shown in Figure 4.1.

The differential privacy constraints in Equation (4.7) impose the following

conditions on the error regions of all (εi, δi)-differentially private protocols:

PFA + eεiPMD ≥ 1− δi,

eεiPFA + PMD ≥ 1− δi,
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for any decision rule x̂i and any i ∈ [k]. The above two conditions define an

error region R(εi, δi) shown in Figure 4.1. Interestingly, the next theorem

shows that the converse result is also true.

Lemma 4.3.1 A mechanism P is differentially private if and only ifR(P, xi =

0, xi = 1) ⊆ R(εi, δi) for all i ∈ [k].

The proof of the above lemma can be found in [43] (see Corollary 2.3 on page

4). Notice that it is no coincidence that R(PRR, xi = 0, xi = 1) = R(εi, δi)

(see Figure 4.1). This property will be essential in proving the optimality of

the randomized response.

Lemma 4.3.1 allows us to benefit from the data processing inequality (DPI)

and its converse, which follows from a celebrated result by [11]. These in-

equalities, while simple by themselves, lead to surprisingly strong technical

results. Indeed, there is a long line of such a tradition in the information

theory literature (see Chapter 17 of [39]).

Recall that τ contains the sequence of messages broadcasted by all k parties.

Let τ(i) represent the messages broadcasted by the ith party and observe

that τ = {τ(1), · · · , τ(k)}. Consider two privatization protocols, P1 and

P2, and let τ1 and τ2 denote the output transcripts under protocols P1 and

P2, respectively. We say that P1 dominates P2 if there exists a sequence of

stochastic transformations {W1, · · · ,Wk} such that for all i ∈ [k], given x−i,

τ2 can be simulated by applying Wi to τ1(i) and x−i. In other words, given

x−i, Wi(τ1(i), x−i) has the same distribution as τ2 .

Lemma 4.3.2 A multi-party privacy protocol P1 dominates a protocol P2 if

and only if R(P2, xi = 0, xi = 1) ⊆ R(P1, xi = 0, xi = 1) for all i ∈ [k].

The proof of the above lemma can be found in [11]. Lemma 4.3.2 will be

critical in proving the optimality of the randomized response.

Corollary 4.3.3 Any differentially private protocol P is dominated by the

randomized response PRR given in Equation (4.8). Therefore, there exists a

sequence of stochastic transformations {W1, · · · ,Wk} such that Wi(x̃i, x−i)

has the same distribution as τ for all i ∈ [k].
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Corollary 4.3.3 follows from Lemma 4.3.1, Lemma 4.3.2, and the fact that

R(εi, δi) = R(PRR, xi = 0, xi = 1) for all i ∈ [k].

4.4 Optimal Mechanisms for Multi-Party Differential

Privacy

We show, perhaps surprisingly, that the simple randomized response pre-

sented in (4.8) is the unique optimal protocol in a very general sense.

Theorem 4.4.1 Let the optimal decision rule be defined as in (4.2) for the

average accuracy and (4.5) for the worst-case accuracy. Then, for any pri-

vacy levels (εi, δi), any function fi : {0, 1}k → Y, and any accuracy measure

wi : Y × Y → R for i ∈ [k], together with the optimal decision rule, the

randomized response achieves the maximum accuracy for the ith party among

all differentially private interactive and non-interactive protocols. For the

central observer, the randomized response with the optimal decision rule de-

fined in (4.5) and (4.7) achieves the maximum accuracy among all {(εi, δi)}-
differentially private interactive protocols and all decision rules for any arbi-

trary function f0 and any measure of accuracy w0.

This is a strong optimality result. Every party and the central observer can

simultaneously achieve the optimal accuracy, using a universal randomized

response. Each party only needs to know its own desired level of privacy, its

own function to be computed, and its measure of accuracy. Optimal data re-

lease and optimal decision making are naturally separated. It does not follow

immediately that such a simple non-interactive randomized response mech-

anism would achieve the maximum accuracy. The proof critically harnesses

the data processing inequalities and is provided in Appendix C.1.

4.5 Private Multi-Party XOR Computation

For a given function and a given accuracy measure, analyzing the perfor-

mance of the optimal protocol provides the exact nature of the privacy-

accuracy tradeoff. Consider a scenario where a central observer wants to
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compute the XOR of all the k-bits, each of which is ε-differentially private.

In this special case, we can apply our main theorem to analyze the accuracy

exactly in a combinatorial form.

Corollary 4.5.1 Consider k-party computation for f0(x) = x1 ⊕ · · · ⊕ xk,

and the accuracy measure is one if correct and zero if not, i.e. w0(0, 0) =

w0(1, 1) = 1 and w0(0, 1) = w0(1, 0) = 0. For any {λ = eε}-differentially

private protocol P and any decision rule f̂ , the average and worst-case accu-

racies are bounded by

ACCave(P,w0, f0, f̂0) ≤
∑bk/2c

i=0

(
k
2i

)
λk−2i

(1 + λ)k
,

ACCwc(P,w0, f0f̂0) ≤
∑bk/2c

i=0

(
k
2i

)
λk−2i

(1 + λ)k
,

and the equality is achieved by the randomized response and optimal decision

rules in (4.5) and (4.7).

We prove the above corollary in Section C.2. The optimal decision for

both accuracies is simply to output the XOR of the received privatized bits.

This is a strict generalization of a similar result in [56], where XOR com-

putation was studied but only for a two-party setting. In the high pri-

vacy regime, where ε ' 0 (equivalently λ = eε ' 1), this implies that

ACCave = 0.5+2−(k+1)εk+O(εk+1) . The leading term is due to the fact that

we are considering an accuracy measure of a Boolean function. The second

term of 2−(k+1)εk captures the effect that we are essentially observing the

XOR through k consecutive binary symmetric channels with flipping prob-

ability λ/(1 + λ). Hence, the accuracy gets exponentially worse in k. On

the other hand, if those k-parties are allowed to collaborate, then they can

compute the XOR in advance and only transmit the privatized version of the

XOR, achieving accuracy of λ/(1+λ) = 0.5+(1/4)ε2 +O(ε3). This is always

better than not collaborating, which is the bound in Corollary 4.5.1.

4.6 Generalization to Multiple Bits

As an example, consider the first party with one bit x and the second party

with two bits y1 and y2. Each bit needs to be protected as per ε-differential
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privacy. A central observer wishes to compute the following function:

f(x, y1, y2) =

{
y1 ⊕ y2 if x = 0 ,

y1 ∧ y2 if x = 1 .

Randomized response would publish privatized versions of x, y1, and y2 ac-

cording to (4.8). In an interactive scheme, looking at x̃, the second party

publishes (the privatized version of) either y1 ⊕ y2 (if x̃ = 0) or y1 ∧ y2 (if

x̃ = 1). Upon receiving the privatized data, the central observer makes op-

timal decisions in each case. Figure 4.2 illustrates how these two protocols

compare in terms of average accuracy, where the accuracy is one if the ap-

proximation is correct and zero if the approximation is incorrect. For ε = 0,

both protocols cannot do better than the best random guess of zero, which

achieves average accuracy of 5/8 = 0.625. For large ε, both protocols achieve

the best accuracy of one.
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Figure 4.2: Interactive protocols can improve over the randomized response,
when each party owns multiple bits, for computing XOR or AND (left) and
computing the Hamming distance (right).

Another example of multiple bit multi-party computation is studied in

[55]. There are two parties each owning two bits of data x ∈ {0, 1}2 and

y ∈ {0, 1}2, and a third party wants to compute the Hamming distance

dH(x, y) =
∑2

i=1 |xi − yi|. Assuming each bit needs to be protected, the

randomized response would reveal each bit via Equation 4.8. On the other

hand, we can design an interactive scheme where one party reveals its two

bits via the randomized response, and the other party then outputs its best

estimate of the Hamming distance obeying differential privacy guarantees.
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Figure 4.2 illustrates how these two protocols compare in terms of average

accuracy, where the accuracy is 2 − |dH(x, y) − d̂| where d̂ is the optimal

decision made by the third party; the Hamming distance dH is one if the

approximation is correct and zero if the approximation is incorrect. For

ε = 0, both protocols cannot do better than the best random guess of zero.

which achieves average accuracy of 5/8 = 0.625. For large ε, both protocols

achieve the best accuracy of one.

4.7 Conclusions and Summary

In this chapter, we have studied the problem of differentially private multi-

party computation. We showed that a simple non-interactive randomized

response is optimal for all privacy levels (all values of ε and δ), heterogeneous

privacy levels across parties, all types of functions to be computed, all types

of cost metrics, and both average and worst-case (over the inputs) measures

of accuracy. Though our results are general, they only handle settings where

each party possesses a single bit. In the more general scenario where parties

can have multiple bits, interaction might be critical to achieving the optimal

privacy-utility tradeoffs.
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CHAPTER 5

CONCLUSION

In this thesis, we have addressed the fundamental limits of differential privacy

in three canonical privacy contexts (global, local, and multi-party). This

chapter provides a quick recap of the main results presented in this thesis,

and includes a discussion of important future work.

5.1 Global Privacy

In the global privacy context, trusted institutions want to release sensitive

information about individuals. Differential privacy provides a formal guar-

antee on the anonymity level of an individual user with respect to a data

release. However, such guarantees come at the expense of utility. The more

the privacy demanded, the lesser the utility of the released data. In Chapter

2, we studied the fundamental tradeoff between global differential privacy

and utility. Precisely, we showed that the correlated multi-dimensional stair-

case mechanism achieves the optimal privacy-utility tradeoff under `1 losses

and two-dimensional query functions. We believe that the muti-dimensional

staircase mechanism is universally optimal: it achieves the best privacy-

utility tradeoff for higher dimensional queries and more general loss function.

Even though this conjecture is backed by numerical evidence, it has yet to

be proven rigorously.

5.2 Local Privacy

In the local privacy context, data providers trust no one, not even the service

providers collecting their data. In this context, privacy is achieved by ran-

domizing the data before releasing it. This leads to a fundamental tradeoff

between privacy and utility. In Chapter 3, we studied the aforementioned
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privacy-utility tradeoff and showed that staircase mechanisms are optimal

for a broad class of information theoretic utility functions such as mutual

information and f -divergences. We also considered private binary hypothe-

sis testing and information preservation, two canonical problems with a wide

range of applications. Despite the generality of our local privacy framework,

it can be extended in several important and non-trivial ways.

Correlation among data

In some scenarios theXi’s could be correlated (e.g., when different individuals

observe different functions of the same random variable). In this case, the

data analyst is interested in inferring whether the data was generated from

P n
0 or P n

1 , where P n
ν is one of two possible joint priors on X1, ..., Xn. This

is a challenging problem because knowing Xi reveals information about Xj,

j 6= i. Therefore, the utility maximization problems for different individuals

are coupled in this setting.

Robust and m-ary hypothesis testing

In some cases the data analyst need not have access to P0 and P1, but

rather two classes of prior distribution Pθ0 and Pθ1 for θ0 ∈ Λ0 and θ1 ∈
Λ1. Such problems are studied under the rubric of universal hypothesis

testing and robust hypothesis testing. One possible direction is to select

the privatization mechanism that maximizes the worst case utility: Q∗ =

arg maxQ∈Dε minθ0∈Λ0,θ1∈Λ1 Df (Mθ0||Mθ1), where Mθν is the induced marginal

under Pθν .

The more general problem of private m-ary hypothesis testing is also an

interesting but challenging one. In this setting, the Xi’s can follow one of m

distributions P0, P1, ..., Pm−1. Consequently, the Yi’s can follow one of m

distributions M0, M1, ..., Mm−1. The utility can be defined as the average

f -divergence between any two distributions: 1/(m(m−1))
∑

i 6=j Df (Mi||Mj),

or the worst case one: mini 6=j Df (Mi||Mj).
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Non-exchangeable utility functions

The utility studied in this chapter was measured by functions that are ex-

changeable, i.e. the utility did not depend on the naming (labelling) of

the private and privatized data (X and Y ). This made sense for statistical

learning applications that depend on information theoretic quantities such as

f -divergences and mutual information. However, in some other applications,

the utility might be defined over X ∪Y in a metric space, where there exists

a natural measure of distance (or distortion) between the data points. In

this case, we can formulate the problem as a distortion minimization one

minimizeQ∈Dε
∑
x,y

d(x, y)P (x)Q(y|x) ,

where d(x, y) is some distortion metric. [28] studied this problem, and showed

that the mechanism Q(y|x) ∝ eε(1−d(x,y))/(k − 1 + eε) achieves near optimal

performance when ε is large enough, which is the low privacy regime. Notice

that when Hamming distance is used, d(x, y) = I(x 6= y), this recovers

the randomized response mechanism exactly. This provides a starting point

for generalizing the search for optimal mechanisms under non-exchangeable

utility functions.

5.3 Multi-Party Privacy

In the multi-party context, different parties interact to compute a joint func-

tion on their private data. In this context, differential privacy allows users

to interactively compute their functions while preventing them from learn-

ing each other’s information. In Chapter 4, we studied the privacy-utility

tradeoff in context where each individual possesses a single bit. Precisely,

we showed the optimality of a simple non-interactive protocol: each party

randomizes its bit (sufficiently) and shares the privatized version with the

other parties. This optimality result is very general: it holds for all types

of functions, heterogeneous privacy conditions on the parties, all types of

cost metrics, and both average and worst-case (over the inputs) measures of

accuracy.
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Generalization to multiple bits

When each party owns multiple bits, it is possible that interactive protocols

improve over the randomized response protocol. This issue was briefly dis-

cussed with examples in Section 4.6. As argued in Section 4.6, interaction

will be useful in settings where parties have more than just one bit. We

believe that simple non-interactive mechanisms are not optimal in this more

general setting. However, this results is yet to be proven.

Correlated sources

When the data xi’s are correlated (e.g. each party observe a noisy version

of the state of the world), knowing xi reveals some information about other

parties’ bits. In general, revealing correlated data requires careful coordi-

nation between multiple parties. The analysis techniques developed in this

thesis do not generalize to correlated data, since the crucial rank-one tensor

structure of S
(y)
τ is no longer present.

Extensions to general utility functions

A surprising aspect of the main result is that even though the worst-case

accuracy is a concave function over the protocol P , the maximum is achieved

at an extremal point of the manifold of rank-1 tensors. This suggests that

there is a deeper geometric structure of the problem, leading to possible

universal optimality of the randomized response for a broader class of utility

functions. It is an interesting task to understand the geometric structure of

the problem, and to ask what class of utility functions lead to optimality of

the randomized response.
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APPENDIX A

PROOFS FOR GLOBAL DIFFERENTIAL
PRIVACY

A.1 Operational Interpretation of Differential Privacy

A.1.1 Proof of Theorem 2.2.1

First we prove that (ε, δ)-differential privacy implies (2.1). From the def-

inition of differential privacy, we know that for all rejection set S ⊆ X ,

P(M(D0) ∈ S̄) ≤ eεP(M(D1) ∈ S̄)+δ. This implies 1−PFA(D0, D1,M, S) ≤
eεPMD(D0, D1,M, S) + δ. This implies the first inequality of (2.1), and the

second one follows similarly.

The converse follows analogously. For any set S, we assume

1− PFA(D0, D1,M, S) ≤ eεPMD(D0, D1,M, S) + δ.

Then, it follows that P(M(D0) ∈ S̄) ≤ eεP(M(D1) ∈ S̄) + δ for all choices

of S ⊆ X . Together with the symmetric condition P(M(D1) ∈ S̄) ≤
eεP(M(D0) ∈ S̄) + δ , this implies (ε, δ)-differential privacy.

A.1.2 Proof of Remark 1

We have a decision rule γ represented by a partition {Si}i∈{1,...,N} and cor-

responding accept probabilities {pi}i∈{1,...,N}, such that if the output is in a

set Si, we accept with probability pi. We assume the subsets are sorted such
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that 1 ≥ p1 ≥ . . . ≥ pN ≥ 0. Then, the probability of false alarm is

PFA(D0, D1,M, γ) =
N∑
i=1

pi P(M(D0) ∈ Si)

= pN +
N∑
i=2

(pi−1 − pi)P(M(D0) ∈ ∪j<iSj) .

and similarly, PMD(D0, D1,M, γ) = (1 − p1) +
∑N

i=2(pi−1 − pi)P(M(D1) /∈
∪j<iSj). Recall that

PFA(D0, D1,M, S) = P(M(D0) ∈ S),

PMD(D0, D1,M, S) = P(M(D1) ∈ S̄).

So for any decision rule γ, we can represent the pair (PMD, PFA) as a convex

combination:

(
PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)

)
=

N+1∑
i=1

(pi−1 − pi)
(
PMD(D0, D1,M,∪j<iSj), PFA(D0, D1,M,∪j<iSj)

)
,

where we used p0 = 1 and pN+1 = 0, and hence it is included in the convex

hull of the privacy region achieved by decision rules with hard thresholding.

A.1.3 Examples illustrating the strengths of the operational
interpretation of differential privacy

Remark 2 The following statements are true:

(a) If a mechanism is (ε, δ)-differentially private, then it is (ε̃, δ̃)-differentially

private for all pairs of ε̃ and δ̃ ≥ δ satisfying

1− δ
1 + eε

≥ 1− δ̃
1 + eε̃

.

(b) For a pair of neighboring databases D and D′, and all (ε, δ)-differentially

private mechanisms, the total variation distance defined as ‖M(D) −
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M(D′)‖TV = maxS⊆X P(M(D′) ∈ S)− P(M(D) ∈ S) is bounded by

sup
(ε, δ)-differentially private M

‖M(D)−M(D′)‖TV ≤ 1− 2(1− δ)
1 + eε

.

Proof 1 Proof of (a). From Figure 2.1, it follows immediately thatR(ε, δ) ⊆
R(ε̃, δ̃) when the conditions are satisfied. Then, for a (ε, δ)-private M , it fol-

lows from R(M) ⊆ R(ε, δ) ⊆ R(ε̃, δ̃) that M is (ε̃, δ̃)-differentially private.

Proof of (b). By definition, ‖M(D) −M(D′)‖TV = maxS⊆X P(M(D′) ∈
S)−P(M(D) ∈ S). Letting S be the rejection region in our hypothesis testing

setting, the total variation distance is defined by the following optimization

problem:

max
S

1− PMD(S)− PFA(S) (A.1)

subject to (PMD(S), PFA(S)) ∈ R(ε, δ), for all S ⊆ X .

From Figure 2.1 it follows immediately that the total variation distance can-

not be larger than δ + (1− δ)(eε − 1)/(eε + 1).

A.1.4 Proof of Theorem 2.2.3

Consider hypothesis testing betweenD0 andD1. If there is a point (PMD, PFA)

achieved by M ′ but not by M , then we claim that this is a contradiction to

the assumption that D–X–Y forms a Markov chain. Consider a decision

maker who only has access to the output of M . Under the Markov chain

assumption, we can simulate the output of M ′ by generating a random vari-

able Y conditioned on M(D) and achieve every point in the privacy region

of M ′ (see Remark 1 that follows Theorem 2.2.1 in Chapter 2). Hence, the

privacy region of M ′ must be included in the privacy region of M .

A.2 Optimal Mechanisms for Differential Privacy

In this section, we provide a detailed proof for Theorem 2.3.1.
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A.2.1 Proof outline

The key idea of the proof is to use a sequence of probability distributions

with piecewise constant probability density functions to approximate any

probability distribution satisfying the differential privacy constraint (2.7).

The proof consists of 4 steps in total, and in each step we narrow down the

set of probability distributions in which the optimal probability distribution

should lie:

• Step 1 proves that we only need to consider probability distributions

which have symmetric piecewise constant probability density functions.

• Step 2 proves that we only need to consider those symmetric piece-

wise constant probability density functions which are monotonically

decreasing.

• Step 3 proves that optimal probability density function should period-

ically decay.

• Step 4 proves that the optimal probability density function is staircase-

shaped in the multidimensional setting, and it concludes the proof of

Theorem 2.3.1.

A.2.2 Step 1

Given P ∈ SP , define

V (P) ,
∫ ∫

. . .

∫
Rd
L(x)P(dx1dx2 . . . dxd).

Define

V ∗ , inf
P∈SP

V (P). (A.2)

Our goal is to prove that V ∗ = inf
γ∈[0,1]

∫ ∫
. . .
∫
Rd L(x)fγ(x)dx1dx2 . . . dxd.

If V ∗ = +∞, then due to the definition of V ∗, we have

inf
γ∈[0,1]

∫ ∫
. . .

∫
Rd
L(x)fγ(x)dx1dx2 . . . dxd ≥ V ∗ = +∞,
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and thus infγ∈[0,1]

∫ ∫
. . .
∫
Rd L(x)fγ(x)dx1dx2 . . . dxd = V ∗ = +∞. So we

only need to consider the case V ∗ < +∞, i.e., V ∗ is finite. Therefore, in the

rest of the proof, we assume V ∗ is finite.

First we show that given any probability measure P ∈ SP , we can use a

sequence of probability measures with multidimensionally piecewise constant

probability density functions to approximate P .

Given i ∈ N and k ∈ N, define

Ai(k) = {x ∈ Rd|k∆

i
≤ ‖x‖1 < (k + 1)

∆

i
} ⊂ Rd.

It is easy to calculate the volume of Ai(k), which is

Vol(Ai(k)) =
2d

d!

(
(k + 1)d − kd

) ∆d

id
.

.

Lemma A.2.1 Given P ∈ SP with V (P) < +∞, any positive integer i ∈ N,

define Pi as the probability distribution with probability density function fi(x)

defined as

fi(x) = ai(k) ,
P(Ai(k))

Vol(Ai(k))
x ∈ Ai(k) for k ∈ N. (A.3)

Then Pi ∈ SP and

lim
i→+∞

V (Pi) = V (P).

We conjecture that Lemma A.2.1 holds for arbitrary dimension d, and

prove it for the case d = 2.

Before proving Lemma A.2.1 for d = 2, we prove an auxiliary Lemma which

shows that for probability mass function over Z2 satisfying ε-differential pri-

vacy constraint, we can construct a new probability mass function by averag-

ing the old probability mass function over each `1 ball and the new probability

mass function still satisfies the ε-differential privacy constraint.

Lemma A.2.2 For any given probability mass function P defined over the

set Z2 satisfying that

P(i1, j1) ≤ eεP(i2, j2),∀|i1 − i2|+ |j1 − j2| ≤ ∆, (A.4)
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define the probability mass function P̃ via

P̃(i, j) =

P(0, 0) (i, j) = (0, 0)

p|i|+|j| (i, j) 6= (0, 0)

where pk ,
∑

(i′,j′)∈Z2:|i′|+|j′|=k P(i′,j′)

4k
, ∀k ≥ 1.

Then P̃ is also a probability mass function satisfying the differential privacy

constraint, i.e.,

P̃(i1, j1) ≤ eεP̃(i2, j2),∀|i1 − i2|+ |j1 − j2| ≤ ∆. (A.5)

Proof 2 Due to the way how we define P̃, we have∑
(i,j)∈Z2

P̃(i, j) =
∑

(i,j)∈Z2

P(i, j) = 1,

and thus P̃ is a valid probability mass function defined over Z2.

Next we prove that P̃ satisfies (A.5). To simplify notation, define p0 ,

P(0, 0). Then we only need to prove that for any k1, k2 ∈ N such that |k1 −
k2| ≤ ∆, we have

pk1 ≤ eεpk2 .

Due to the symmetry property, without loss of generality, we can assume

k1 < k2.

The easiest case is k1 = 0. When k1 = 0, we have k2 ≤ ∆ and

P(0, 0) ≤ eεP(i, j),∀|i|+ |j| = k2. (A.6)

The number of distinct pairs (i, j) satisfying |i| + |j| = k is 4k for k ≥ 1.

Sum up all inequalities in (A.6), and we get

4k2P(0, 0) ≤ eε
∑

(i,j)∈Z2:|i|+|j|=k2

P(i, j)

⇔P(0, 0) ≤ eε
∑

(i,j)∈Z2:|i|+|j|=k2 P(i, j)

4k2

⇔p0 ≤ eεpk2 .
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For general 0 < k1 < k2, let D′ , k2 − k1 ≤ ∆. Define Bk via

Bk , {(i, j) ∈ Z2||i|+ |j| = k},∀k ∈ N.

Then the differential privacy constraint (A.4) implies that

P(i1, j1) ≤ eεP(i2, j2),∀(i1, j1) ∈ Bk1 , (i2, j2) ∈ Bk2 , |i1 − i2|+ |j1 − j2| = D′.

(A.7)

The set of points in Bk forms a rectangle, which has 4 corner points and

4(k − 1) interior points on the edges. For each corner point in Bk1, which

appears in the left side of (A.7), there are (2D′ + 1) points in Bk2 close to

it with an `1 distance of D′. And for each interior point in Bk1, there are

(D′ + 1) points in Bk2 close to it with an `1 distance of D′. Therefore, there

are in total 4(2D′ + 1) + 4(k1 − 1)(D′ + 1) distinct inequalities in (A.7).

If we can find certain nonnegative coefficients such that multiplying each

inequality in (A.7) by these nonnegative coefficients and summing them up

gives us ∑
(i′,j′)∈Z2:|i′|+|j′|=k1 P(i′, j′)

4k1

≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2 P(i′, j′)

4k2

,

then (A.5) holds. Therefore, our goal is to find the “right” coefficients asso-

ciated with each inequality in (A.7). We formulate it as a matrix filling-in

problem in which we need to choose nonnegative coefficients for certain en-

tries in a matrix such that the sum of each row is k1+D′

k1
, and the sum of each

column is 1.

More precisely, label the 4k1 points in Bk1 by {I1, I2, I3, . . . , I4k1}, where

we label the topmost point by 1 and sequentially label other points clockwise.

Similarly, we label the 4k2 points in Bk2 by {O1, O2, O3, . . . , O4k2}, where we

label the topmost point by 1 and sequentially label other points clockwise.

Consider the following 4k1 by 4k2 matrix M , where each row corresponds

to the point in Bk1 and each column corresponds to the point in Bk2, and

the entry Mij in the ith row and jth column is the coefficient corresponds

to inequality involved with the points Ii and Oj. If there is no inequality

associated with the points Ii and Oj, then Mij = 0.

In the case k1 = 2 and D′ = 3, the zeros/nonzeros pattern of M has the
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following form:

x x x 0 0 0 0 0 0 0 0 0 0 0 x x

0 x x x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 x x x x x 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x x x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x x x x x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 x x x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x x x x x 0

0 0 0 0 0 0 0 0 0 0 0 0 0 x x x


,

where x denotes an entry which can take any nonnegative coefficient.

For general k1 and k2, the pattern of M is that the first, (k1 + 1)th, (2k1 +

1)th and (3k1 + 1)th rows can have 2D′ + 1 nonzero entries, and all other

rows can have D′ + 1 nonzero entries.

We want to show that∑
(i′,j′)∈Z2:|i′|+|j′|=k1 P(i′, j′)

4k1

≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2 P(i′, j′)

4k2

,

or equivalently,

(1 +
D′

k1

)
∑

(i′,j′)∈Z2:|i′|+|j′|=k1

P(i′, j′) ≤ eε
∑

(i′,j′)∈Z2:|i′|+|j′|=k2

P(i′, j′).

Therefore, our goal is to find nonnegative coefficients to substitute each x

in the matrix such that the sum of each column is 1 and the sum of each

column is (1 + D′

k1
). We will give explicit formulas on how to choose the

coefficients.

The case k1 = 1 is trivial. Indeed, one can set all diagonal entries to be 1,

and set all other nonzero entries to be 1
2
. Therefore, we can assume k1 > 1.

Consider two different cases: k1 ≤ D′ and k1 ≥ D′ + 1.

We first consider the case k1 ≤ D′. Due to the periodic patterns in M , we

only need to consider rows from 1 to k1 + 1. Set all entries to be zero except
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that we set

M11 = M22 = · · · = Mk1k1 = 1,

M2,D′+2 = M3,D′+3 = · · · = Mk1+1,k1+D′+1 = 1

M1,j =
D′

2k1(D′ − k1 + 1)
, j ∈ [k1 + 1, D′ + 1] ∪ [4k1 −D′ + 1, 4k1]

Mk1+1,j =
D′

2k1(D′ − k1 + 1)
, j ∈ [k1 + 1, D′ + 1] ∪ [2k1 + 1 +D′, k1 + 1 + 2D′]

Mi,j =
1− D′

k1(D′−k1+1)

k1 − 1
. (A.8)

It is straightforward to verify that the above matrix M satisfies the prop-

erties that the sum of each column is 1 and the sum of each row is (1 + D′

k1
).

Therefore, we have

pk1 ≤ eεpk2 , ∀0 < k1 < k2, k1 ≤ k2 − k1 ≤ ∆.

Next we solve the case k1 ≥ D′ + 1. Again due to the periodic patterns in

M , we only need to consider the nonzero entries in rows from 1 to k1 + 1.

We use the following procedures to construct M :

1. For the first row, set M11 = 1 and set all other 2D′ nonzero entries to

be 1
2k1

.

2. For the second row, M22 is uniquely determined to be 1 − 1
2k1

. Set the

next D′−1 nonzero entries in the second row to be 1
k1

, i.e., M2j = 1
k1

for

j ∈ [3, D′ + 1]. The last nonzero entry M2,D′+2 is uniquely determined

to be

(1 +
D′

k1

)− (1− 1

2k1

)− D′ − 1

k1

=
3

2k1

.

3. For the third row, the first nonzero entry M33 is uniquely determined

to be 1− 1
2k1
− 1

k1
= 1− 3

2k1
. Set the next D′ − 1 nonzero entries to be

1
k1

, i.e., M3j = 1
k1

for j ∈ [4, D′ + 2]. The last nonzero entry M3,D′+3

is uniquely determined to be

(1 +
D′

k1

)− (1− 3

2k1

)− D′ − 1

k1

=
5

2k1

.
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4. In general, for the ith row (i ∈ [2, k1 − 1]), the first nonzero entry Mii

is set to be Mii = 1− 2i−3
2k1

, and the next D′− 1 nonzero entries are 1
k1

,

and the last nonzero entry Mi,i+D′ = 2i−1
2k1

.

5. For (k1 + 1)th row, by symmetry, we set Mk1+1,k1+1 = 1 and set other

2D′ nonzero entries to be 1
2k1

.

6. The nonzero entries in the k1th row are uniquely determined. Indeed,

we have

Mk1,k1 = 1− 2k1 − 3

2k1

,

Mk1,k1+D′ = 1− 1

2k1

,

Mk1,k1+j =
1

k1

, j ∈ [2, D′ − 1].

It is straightforward to verify that each entry in M is nonnegative and M

satisfies the properties that the sum of each column is 1 and the sum of each

row is (1 + D′

k1
). Therefore, we have

pk1 ≤ eεpk2 ,∀0 < k1 < k2, k1 ≥ D′ + 1 = k2 − k1 + 1.

Therefore, for all k1, k2 ∈ N such that |k2 − k1| ≤ ∆, we have

pk1 ≤ eεpk2 .

This completes the proof of Lemma A.2.2.

Proof 3 (Proof of Lemma A.2.1) First we prove that Pi ∈ SP, i.e., Pi
satisfies the differential privacy constraint (2.7).

By the definition of fi(x), fi(x) is a nonnegative function, and∫ ∫
. . .

∫
Rd
fi(x)dx1dx2 . . . dxd

=
+∞∑
k=0

ai(k)Vol(Ai(k))

=
+∞∑
k=0

P(Ai(k))

=P(Rd) = 1.
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So Pi is a valid probability distribution.

Next we show that fi(x) satisfies the differential privacy constraint. For

fixed i, on the x1 − x2 plane, we can use the lines x2 = x1 + k
i
∆ and x2 =

−x1 + k
i
∆ for all k ∈ Z to divide each Ai(k) into distinct squares with the

same size (each Ai(k) will be divided into 8k + 4 squares). By taking the

average of the probability density function over each square, we reduce the

probability density function to a discrete probability mass function over Z2

satisfying ε-differential privacy constraint. Then apply Lemma A.2.2, and we

have

ai(k1) ≤ eεai(k2),∀k1, k2 ∈ N with |k1 − k2| ≤ i.

Given x,y ∈ Rd such that ‖x − y‖1 ≤ ∆, let k1, k2 be the integers such

that

x ∈ Ai(k1),

y ∈ Ai(k2).

Then |k1 − k2| ≤ i. Therefore,

fi(x) ≤ eεfi(y),

which implies that the probability distribution Pi satisfies the differential pri-

vacy constraint (2.7).

Therefore, for any integer i ≥ 1, Pi ∈ SP.

Next we show that

lim
i→+∞

V (Pi) = V (P).

Given δ > 0, since V (P) is finite, there exists T ∗ = m∆ > 1 for some

m ∈ N such that∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx1dx2 . . . dxd) <
δ

2
.
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For each Ai(k) we have∫
. . .

∫
Ai(k)

L(x)Pi(dx1dx2 . . . dxd) =

∫
. . .

∫
Ai(k)

‖x‖1Pi(dx1dx2 . . . dxd)

≤ Pi(Ai(k))(k + 1)
∆

i

= P(Ai(k))(k + 1)
∆

i

≤ 2P(Ai(k))k
∆

i

≤ 2

∫
. . .

∫
Ai(k)

L(x)P(dx1dx2 . . . dxd).

Therefore, ∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx1dx2 . . . dxd)

≤ 2

∫ ∫
. . .

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx1dx2 . . . dxd)

≤ 2
δ

2
= δ.

L(x) is a bounded function when ‖x‖1 ≤ T ∗, and thus by the definition of

Riemann-Stieltjes integral, we have

lim
i→∞

∫ ∫
. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx1dx2 . . . dxd)

=

∫ ∫
. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx1dx2 . . . dxd).

So there exists a sufficiently large integer i∗ such that for all i ≥ i∗∣∣∣∣∫ ∫ . . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx1dx2 . . . dxd)

−
∫ ∫

. . .

∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx1dx2 . . . dxd)

∣∣∣∣ ≤ δ.

To simplify notation, we use dx to denote dx1dx2 . . . dxd.
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Hence, for all i ≥ i∗

|V (Pi)− V (P)|

=

∣∣∣∣∫
Rd
L(x)Pi(dx)−

∫
Rd
L(x)P(dx)

∣∣∣∣
=

∣∣∣∣∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx)

+

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx)

∣∣∣∣
≤
∣∣∣∣∫
{x∈Rd|‖x‖1<T ∗}

L(x)Pi(dx)−
∫
{x∈Rd|‖x‖1<T ∗}

L(x)P(dx)

∣∣∣∣
+

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)Pi(dx) +

∫
{x∈Rd|‖x‖1≥T ∗}

L(x)P(dx)

≤ (δ + δ +
δ

2
)

≤ 5

2
δ.

Therefore,

lim
i→+∞

V (Pi) = V (P).

Define SP i,sym , {Pi|P ∈ SP} for i ≥ 1, i.e., SP i,sym is the set of proba-

bility distributions satisfying differential privacy constraint (2.7) and having

symmetric piecewise constant (over Ai(k) ∀k ∈ N) probability density func-

tions.

Due to Lemma A.2.1, we have Lemma A.2.3.

Lemma A.2.3

V ∗ = inf
P∈∪∞i=1SPi,sym

V (P).

Therefore, to characterize V ∗, we only need to study probability distribu-

tions with symmetric and piecewise constant probability density functions.

A.2.3 Step 2

Given P ∈ Psym, we call {ai(0), ai(1), ai(2), . . . } the density sequence of

Pi ∈ SP i,sym, where ai(k) is defined in (A.3) ∀k ∈ N.
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Next we show that indeed we only need to consider those probability dis-

tributions with symmetric piecewise constant probability density functions

the density sequences of which are monotonically decreasing.

Define

SP i,md ,

{P|P ∈ SP i,sym, and the density sequence of P is monotonically decreasing}.

Then we get Lemma A.2.4.

Lemma A.2.4

V ∗ = inf
P∈∪∞i=1SPi,md

V (P).

Proof 4 We first show that among SP i,sym, to minimize the cost we only

need to consider these probability distributions with density sequences {a0, a1, a2, . . . }
satisfying that a0 ≥ a1. Indeed, given Pa ∈ SP i,sym with density sequence

{a0, a1, a2, . . . } such that a0 < a1, there exists Pb ∈ SP i,sym with density

sequence {b0, b1, b2, . . . } such that b0 ≥ b1 and

V (Pb) ≤ V (Pa).

Consider the probability distribution Pb ∈ SP i,sym with density sequence

{b0, b1, b2, , . . . } defined as

b0 = (1 + δ)a0,

bk = (1− δ′)ak,∀k ≥ 1,

where we choose δ > 0 and 0 < δ′ < 1 such that

b0 = b1, (A.9)

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1. (A.10)

Equation (A.10) makes Pb be a valid probability distribution. One can

easily solve (A.9) and (A.10), and write down the explicit expression for

δ, δ′. The density sequence {b0, b1, b2, . . . } satisfies b0 ≥ b1 (indeed, we have
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b0 = b1), and it is easy to check it satisfies the differential privacy constraint,

i.e.,

bk1 ≤ eεbk2 ,∀k1, k2 ∈ N with |k1 − k2| ≤ i.

Note that C(‖x‖1) is a monotonically increasing function of ‖x‖1, and

compared to Pa, Pb moves some probability of SP i,md from the (higher cost)

area {x|‖bx‖ ≥ ∆
i
} to the (lower cost) area {x|‖bx‖ ≤ ∆

i
}, and thus we have

V (Pb) ≤ V (Pa).

Therefore, among SP i,sym, to minimize the cost we only need to consider

these probability distributions with density sequences {a1, a2, a3, . . . } satisfy-

ing that a0 ≥ a1.

Next we show that among SP i,sym with density sequences {a1, a2, a3, . . . }
satisfying a0 ≥ a1, to minimize the cost we only need to consider these prob-

ability distributions with density sequences also satisfying that a1 ≥ a2.

Given Pa ∈ SP i,sym with density sequence {a1, a2, a3, . . . } such that a0 ≥ a1

and a1 < a2, there exists Pb ∈ SP i,sym with density sequence {b1, b2, b3, . . . }
such that b0 ≥ b1 and

b1 ≥ b2.

If i ≤ 2, we can construct Pb by scaling up a0, a1 and scale down ak for all

k ≥ 2. More precisely, define Pb with density sequence {b0, b1, b2, . . . } via

bk = (1 + δ)ak, k ≤ 1,

bk = (1− δ′)ak, k ≥ 2,

for some δ > 0 and 0 < δ′ < 1 such that

b2 = b1,

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

So we have b0 ≥ b1 ≥ b2. It is easy to check that Pb satisfies the differential

privacy constraint, and V (Pb) ≤ V (Pa) using the fact that C(‖x‖1) is a
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monotonically decreasing function in terms of ‖x‖1.

If i ≥ 3, then without loss of generality we can assume a2 ≤ a0. Indeed,

if a2 > a0, we can scale up a0, a1 and scale down ak for all k ≥ 2 to make

a2 = a0, and this operation will preserve the differential privacy constraint

and decrease the cost. Note that in this case we cannot use the same scal-

ing operation to make a2 ≤ a0, because it is possible that after the scaling

operation a0
ak
> eε for some 3 ≤ k ≥ i violating the differential privacy con-

straint. Hence, we can assume a0 ≥ a2 > a1. Let ak′ be the largest value in

{a3, . . . , a2+i}. If
ak′
a2
< eε, we can scale up a1 and scale down a2 until a1 = a2

or
ak′
a2

= eε. It is easy to see this scaling operation will preserve differential

privacy and decrease the cost. If after this scaling operation we have a2 = a1,

then we are done. Suppose a1 is still bigger than a2. Then a2 is the smallest

element in {a2, a3, . . . , a2+i}. Therefore, we have max2≤k≤i
a0
ak

= a0
a2

. Then we

can scale up a0, a1 and scale down ak for k ≥ 2 until a1 = a2. This operation

will preserve the differential privacy constraint and decrease the cost. If we

call the final probability distribution we obtained Pb, we have Pb ∈ SP i,sym,

and the density sequence satisfying b0 ≥ b1 ≥ b2 (indeed, b1 = b2), and

V (Pb) ≤ V (Pa).

By induction, we can show that among all probability distributions in SP i,sym,

to minimize the cost we only need to consider probability distributions with

monotonically decreasing density sequence.

Suppose among SP i,sym to minimize the cost we only need to consider

probability distribution with density sequence {a0, a1, a2, . . . } satisfying a0 ≥
a1 ≥ a2 ≥ · · · ≥ an. Then we can show that among SP i,sym to minimize the

cost we only need to consider probability distribution with density sequence

{a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ an+1.

Indeed, given Pa ∈ SP i,sym with density sequence {a0, a1, a2, . . . } satisfying

a0 ≥ a1 ≥ a2 ≥ · · · ≥ an, we can construct Pb ∈ SP i,sym with density

sequence {b0, b1, b2, . . . } satisfying

b0 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1,

and

V (Pb) ≤ V (Pa).
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If an+1 ≤ an, then we can choose Pb = Pa.
Suppose an+1 > an. Without loss of generality, we can assume

an+1 ≤ ak, for k ≤ n+ 2− i. (A.11)

If an+1 > an+2−i, then we can scale up {a0, a1, . . . , an} and scale down

{an+1, an+2, . . . } until an+1 = ak. It is easy to verify that this scaling op-

eration will preserve the differential privacy constraint and decrease the cost.

Let k∗ be the smallest integer such that ak∗ < an+1. Note that by (A.11)

we have n+ 3− i ≤ k∗ ≤ n. Let aj be the biggest element in

{an+2, an+3, . . . , an+1+i}.

Due to the differential privacy constraint, we have
aj
an+1

≤ eε. Then we can

scale up ak∗ and scale down an+1 until ak∗ = an+1 or
aj
an+1

= eε. This oper-

ation will preserve the differential privacy constraint and decrease the cost.

If after this scaling operation ak∗ is still bigger than an+1, then we can scale

up {a0, a1, . . . , an} and scale down {an+1, an+2, . . . } until ak∗ = an+1. Due

to the fact that an+1 is the smallest element in {an+1, an+2, . . . , an+1+i}, this

scaling operation will preserve the differential privacy constraint and decrease

the cost. Therefore, we will have an+1 ≤ ak∗.

Repeat the above steps for each k ∈ k∗ + 1, k∗ + 2, . . . , n such that ak <

an+1. If we call the final probability distribution we obtained Pb, we have

Pb ∈ SP i,sym, and the density sequence satisfying

b0 ≥ b1 ≥ b2 ≥ · · · ≥ bn,

and V (Pb) ≤ V (Pa).

Hence, among SP i,sym to minimize the cost we only need to consider prob-

ability distribution with density sequence {a0, a1, a2, . . . } satisfying a0 ≥ a1 ≥
a2 ≥ · · · ≥ an ≥ an+1.

Therefore, among all probability distributions in SP i,sym, to minimize the

cost we only need to consider probability distributions with monotonically

decreasing density sequence.
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We conclude that

V ∗ = inf
P∈∪∞i=1SPi,md

V (P).

This completes the proof of Lemma A.2.4.

A.2.4 Step 3

Next we show that among all symmetric piecewise constant probability den-

sity functions, we only need to consider those which are geometrically decay-

ing.

More precisely, given positive integer i,

SP i,pd ,

{P|P ∈ SP i,md, and P has density sequence {a0, a1, . . . , an, . . . , }

satisfying
ak
ak+i

= eε,∀k ∈ N},

then we get Lemma A.2.5

Lemma A.2.5

V ∗ = inf
P∈∪∞i=1SPi,pd

V (P).

Proof 5 Due to Lemma A.2.4, we only need to consider probability distri-

butions with symmetric and piecewise constant probability density functions

which are monotonically decreasing.

We first show that given Pa ∈ SP i,md with density sequence

{a0, a1, . . . , an, . . . , }, if a0
ai
< eε, then we can construct a probability distribu-

tions Pb ∈ SP i,md with density sequence {b0, b1, . . . , bn, . . . , } such that b0
bi

= eε

and

V (Pb) ≤ V (Pa).

Define a new sequence {b0, b1, . . . , bn, . . . } by scaling up a0 and scaling down
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{a1, a2, . . . }. More precisely, define {b0, b1, . . . , bn, . . . } via

b0 = a0(1 + δ),

bk = ak(1− δ′),∀ k ≥ 1,

for some δ > 0 and 0 < δ′ < 1 such that

b0

bi
= eε,

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

So {b0, b1, . . . , bn, . . . } is a valid probability density sequence. Let Pb be the

corresponding probability distribution. It is easy to check that Pb satisfies the

differential privacy constraint, i.e.,

bk
bk+i

≤ eε,∀k ≥ 0.

Hence, Pb ∈ SP i,md. Since C(‖bx‖1) is a monotonically increasing function

of ‖x‖1, we have V (Pb) ≤ V (Pa).

Therefore, for given i ∈ N, we only need to consider P ∈ SP i,md with

density sequence {a0, a1, . . . , an, . . . } satisfying a0
ai

= eε.

Next, we argue that among all probability distributions P ∈ SP i,md with

density sequence {a0, a1, . . . , an, . . . , } satisfying a0
ai

= eε, we only need to

consider those probability distributions with density sequence also satisfying
a1
ai+1

= eε.

Given Pa ∈ SP i,md with density sequence {a0, a1, . . . , an, . . . } satisfying
a0
ai

= eε and a1
ai+1

< eε, we can construct a new probability distribution Pb ∈
SP i,md with density sequence {b0, b1, . . . , bn, . . . } satisfying

b0

bi
= eε,

b1

bi+1

= eε,

and V (Pa) ≥ V (Pb).

First, it is easy to see a1 is strictly less than a0, since if a0 = a1, then
a1
ai+1

= a0
ai+1
≥ a0

ai
= eε. We can construct a new density sequence by increasing
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a1 and decreasing ai+1 to make a1
ai+1

. More precisely, we define a new sequence

{b0, b1, . . . , bn, . . . } as

bk = ak, ∀k 6= 1, k 6= i+ 1,

b1 = a1(1 + δ),

bi+1 = ai+1(1− δ′),

where δ > 0 and δ′ > 0 are chosen such that b1
bi+1

= eε and

+∞∑
k=0

bkVol(Ai(k)) =
+∞∑
k=0

akVol(Ai(k)) = 1.

It is easy to verify that {b0, b1, . . . , bn, . . . } is a valid probability density

sequence and the corresponding probability distribution Pb satisfies the dif-

ferential privacy constraint (2.7). Moreover, V (Pb) ≤ V (Pa). Therefore, we

only need to consider P ∈ SP i,md with density sequences {a0, a1, . . . , an, . . . }
satisfying a0

ai
= eε and a1

ai+1
= eε.

Use the same argument, we can show that we only need to consider P ∈
SP i,md with density sequences {a0, a1, . . . , an, . . . } satisfying

ak
ai+k

= eε,∀k ≥ 0.

Therefore,

V ∗ = inf
P∈∪∞i=1SPi,pd

V (P).

Due to Lemma A.2.5, we only need to consider probability distribution

with symmetric, monotonically decreasing, and geometrically decaying piece-

wise constant probability density function. Because of the properties of sym-

metry and periodically (geometrically) decaying, for this class of probability

distributions, the probability density function over Rd is completely deter-

mined by the probability density function over the set {x ∈ Rd|‖x‖1 < ∆}.
Next, we study what the optimal probability density function should be

over the set {x ∈ Rd|‖x‖1 < ∆}. It turns out that the optimal probability

density function over the set {x ∈ Rd|‖x‖1 < ∆} is a step function. We use

the following three steps to prove this result.
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A.2.5 Step 4

Lemma A.2.6 Consider a probability distribution Pa ∈ SP i,pd (i ≥ 2) with

density sequence {a0, a1, . . . , an, . . . }. Then there exists an integer k(i) and a

probability distribution Pb ∈ SP i,pd with density sequence {b0, b1, . . . , bn, . . . }
such that

b0 = b1 = b2 = · · · = bk(i),

b0

bi−1

= eε,

and

V (Pb) ≤ V (Pa).

Proof 6 For 0 ≤ k ≤ i− 1, define

wk ,
+∞∑
j=0

e−jε
∫ ∫

· · ·
∫

(j+ k
i
)∆≤‖x‖1<(j+ k

i
)∆

C(x)dx1dx2 . . . dxd,

and

uk ,
+∞∑
j=0

e−jεVol(Ai(ji+ k)).

Then the cost V (Pa) =
∑i−1

k=0wkak, and the constraint on ak is that

a0 ≥ a1 ≥ · · · ≥ ai−1,

a0 ≤ ai−1e
ε,

+∞∑
k=0

ukak = 1.

Therefore, to minimize V (P) among all probability distributions P ∈ SP i,pd,
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we need to solve the following linear programming problem

minimizea0,a1,...,ai−1

i−1∑
k=0

wkak,

subject to a0 ≥ a1 ≥ · · · ≥ ai−1,

a0 ≤ ai−1e
ε,

+∞∑
k=0

ukak = 1.

Let

hk ,
wk
uk
. (A.12)

In the following we show that when d = 2, there exists an integer k(i) such

that:

h0 ≥ h1 ≥ · · · ≥ hk(i), (A.13)

hk(i) ≤ hk(i)+1 ≤ · · · ≤ hi−1, (A.14)

h0 ≤ hi−1. (A.15)

When d = 2,

hk =
wk
uk

=
4
3

∆3

i3

∑+∞
j=0 e

−jε(1 + 3(ji+ k) + 3(ij + k)2

2∆2

i2

∑+∞
j=0 e

−jε(1 + 2(ji+ k))

=
2

3

∆

i

3i2c2 + (6ik + 3i)c1 + (1 + 3k + 3k2)c0

(1 + 2k)c0 + 2ic1

.

Let g(k) =, 3i2c2+(6ik+3i)c1+(1+3k+3k2)c0
(1+2k)c0+2ic1

. It is easy to compute the derivative

of g(k) with respect to k:

g′(k) =
6c2

0k
2 + 6c2

0k + c2
0 + 12c0c1ik + 6c0c1i− 6c2c0i

2 + 12c2
1i

2

((1 + 2k)c0 + 2ic1)2
.
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Note that the numerator of g′(k) is an increasing function of k, and

g′(0) = c2
0 + 6c0c1i− 6c2c0i

2 + 12c2
1i

2

=
b(6i2 − 6i+ 1)− 1

(b− 1)3
< 0,

for sufficiently large i, and

g′(i− 1) =
6i2 − 6i+ 1− b

(1− b)3
> 0.

Therefore, hk first increases as k increases, and then decreases as k in-

creases to i − 1. Hence, there exists an integer k(i) such that (A.13) and

(A.14) hold.

Next we compare hi−1 and h0:

hi−1 − h0 =
wi−1

ui−1

− w0

u0

=
2

3

∆

i

(3i− 2)(b− 1)2(i− 1)

(2bi− b+ 1)(b+ 2i− 1)
> 0.

Hence, (A.15) also holds.

We are now ready to prove Lemma A.2.6. Suppose ak(i) < ak(i)−1. We can

scale up ak(i) and scale down ak(i)−1 to make ak(i) = ak(i)−1. Since hk(i) ≤
hk(i)−1, i.e.,

wk(i)
uk(i)

≤ wk(i)−1

uk(i)−1
, this scaling operation will not increase the cost

V (Pa). Now we have ak(i) = ak(i)−1.

Suppose ak(i) = ak(i)−1 < ak(i)−2. Then we can scale up ak(i) and ak(i)−1,

and scale down ak(i)−2 to make ak(i) = ak(i)−1 = ak(i)−2. Since hk(i) ≤
hk(i)−1 ≤ hk(i)−2, this scaling operation will not increase the cost V (Pa).

Now we have ak(i) = ak(i)−1 = ak(i)−2.

After k(i) steps of these scaling operations, we can make a0 = a1 = · · · =
ak(i), and this will not increase the cost V (Pa).

Finally, if a0
ai−1

< eε, we can scale up a0, a1, . . . , ak(i), and scale down ai−1

to make a0
ai−1

= eε. Since hi−1 ≥ h0 ≥ h1 ≥ · · · ≥ hk(i), this scaling operation

will not increase the cost V (Pa).

Let Pb be the probability distribution we obtained after the k(i) + 1 steps of

scaling operations. Then Pb ∈ SP i,pd, and its density sequence

{b0, b1, . . . , bn, . . . }
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satisfies

b0 = b1 = b2 = · · · = bk(i),

b0

bi−1

= eε,

and

V (Pb) ≤ V (Pa).

This completes the proof of Lemma A.2.6.

Therefore, due to Lemma A.2.6, for sufficiently large i, we only need to

consider probability distributions P ∈ SP i,pd with density sequence

{a0, a1, . . . , an, . . . }

satisfying

a0 = a1 = a2 = · · · = ak(i), (A.16)

b0

bi−1

= eε. (A.17)

More precisely, define

SP i,fr = {P ∈ SP i,pd|P has density sequence

{a0, a1, . . . , an, . . . } satisfying (A.16) and (A.17)}.

Then due to Lemma A.2.6,

Lemma A.2.7

V ∗ = inf
P∈∪∞i=3SPi,fr

V (P).

Next, we argue that for each probability distribution P ∈ SP i,fr (i ≥ 3)

with density sequence {a0, a1, . . . , an, . . . }, we can assume that there exists
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an integer k(i) + 1 ≤ k ≤ (i− 2), such that

aj = a0,∀0 ≤ j < k, (A.18)

aj = ai−1,∀k < j < i. (A.19)

More precisely,

Lemma A.2.8 Consider a probability distribution Pa ∈ SP i,fr (i ≥ 3) with

density sequence {a0, a1, . . . , an, . . . }. Then there exists a probability distri-

bution Pb ∈ SP i,fr with density sequence {b0, b1, . . . , bn, . . . } such that there

exists an integer k(i) + 1 ≤ k ≤ (i− 2) with

bj = a0,∀ 0 ≤ j < k, (A.20)

bj = ai−1,∀ k < j < i, (A.21)

and

V (Pb) ≤ V (Pa). (A.22)

Proof 7 If there exists an integer k(i) + 1 ≤ k ≤ (i− 2) such that

aj = a0,∀ 0 ≤ j < k,

aj = ai−1,∀ k < j < i,

then we can set Pb = Pa.
Otherwise, let k1 be the smallest integer in {k(i) + 1, k(i) + 2, . . . , i − 1}

such that

ak1 6= a0,

and let k2 be the biggest integer in {k(i) + 1, k(i) + 2, . . . , i− 1} such that

ak2 6= ai−1.

It is easy to see that k1 6= k2. Then we can scale up ak1 and scale down

ak2 simultaneously until either ak1 = a0 or ak2 = ai−1. Since hk , wk
uk

is

an increasing function of k when k > k(i), and k(i) < k1 < k2, this scaling

operation will not increase the cost.
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After this scaling operation we can update k1 and k2, and either k1 is

increased by one or k2 is decreased by one.

Therefore, continue in this way, and finally we will obtain a probability

distribution Pb ∈ SP i,fr with density sequence {b0, b1, . . . , bn, . . . } such that

(A.20), (A.21) and (A.22) hold.

This completes the proof.

Define

SP i,step = {P ∈ SP i,fr | P has density sequence {a0, a1, . . . , an, . . . }

satisfying(A.20) and (A.21) for some k(i) < k ≤ (i− 2)}.

Then due to Lemma A.2.8, we have Lemma A.2.9.

Lemma A.2.9

V ∗ = inf
P∈∪∞i=3SPi,step

V (P).

As i → ∞, the probability density function of P ∈ SP i,fr will converge

to a multidimensional staircase function. Therefore, for d = 2 and the cost

function L(x) = ‖x‖1,∀x ∈ R2, then

inf
P∈SP

∫ ∫
R2

L(x)P(dx1dx2) = inf
γ∈[0,1]

∫ ∫
R2

L(x)fγ(x)dx1dx2.

This completes the proof of Theorem 2.3.1.

A.3 Composition Theorem in Differential Privacy

A.3.1 Proof of Theorem 2.4.3

We propose a simple mechanism and prove that the proposed mechanism

dominates over all (ε, δ)-differentially private mechanisms. Analyzing the

privacy region achieved by the k-fold composition of the proposed mechanism,

we get a bound on the privacy region under adaptive composition. This gives

an exact characterization of privacy under composition, since we show both

converse and achievability. We prove that no other family of mechanisms can
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achieve ‘more degraded’ privacy (converse), and that there is a mechanism

that we propose which achieves the privacy region (achievability).

Achievability

We propose the following simple mechanism M̃i at the i-th step in the compo-

sition. Null hypothesis (b = 0) outcomes X i,0 = Mi(D
i,0, qi)’s which are inde-

pendent and identically distributed as a discrete random variable X̃0 ∼ P̃0(·),
where

P(X̃0 = x) = P̃0(x) ≡


δ for x = 0 ,

(1−δ) eε
1+eε

for x = 1 ,
1−δ
1+eε

for x = 2 ,

0 for x = 3 .

(A.23)

Alternative hypothesis (b = 1) outcomes X i,1 = Mi(D
i,1, qi)’s are indepen-

dent and identically distributed as a discrete random variable X̃1 ∼ P̃1(·),
where

P(X̃1 = x) = P̃1(x) ≡


0 for x = 0 ,

1−δ
1+eε

for x = 1 ,
(1−δ) eε

1+eε
for x = 2 ,

δ for x = 3 .

(A.24)

In particular, the output of this mechanism does not depend on the database

Di,b or the query qi, and only depends on the hypothesis b. The privacy

region of a single access to this mechanism is R(ε, δ) in Figure 2.1. Hence,

by Theorem 2.2.4, all (ε, δ)-differentially private mechanisms are dominated

by this mechanism.

In general, the privacy region R(M,D0, D1) of any mechanism can be rep-

resented as an intersection of multiple {(ε̃j, δ̃j)} privacy regions. For a mech-

anism M , we can compute the (ε̃j, δ̃j) pairs representing the privacy region

as follows. Given a null hypothesis database D0, an alternative hypothesis

database D1, and a mechanism M whose output space is X , let P0 and P1

denote the probability density function of the outputs M(D0) and M(D1)

respectively. To simplify notations we assume that P0 and P1 are symmetric,

i.e. there exists a permutation π over X such that P0(x) = P1(π(x)) and
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P1(x) = P0(π(x)). This ensures that we get a symmetric privacy region.

The privacy regionR(M,D0, D1) can be described by its boundaries. Since

it is a convex set, a tangent line on the boundary with slope −eε̃j can be

represented by the smallest δ̃j such that

PFA ≥ −eε̃jPMD + 1− δ̃j , (A.25)

for all rejection sets (cf. Figure 2.5). Letting S denote the complement of

a rejection set, such that PFA = 1 − P0(S) and PMD = P1(S), the minimum

shift δ̃j that still ensures that the privacy region is above the line (A.25) is

defined as δ̃j = dε̃j(P0, P1) where

dε̃(P0, P1) ≡ max
S⊆X

{
P0(S)− eε̃ P1(S)

}
.

The privacy region of a mechanism is completely described by the set of

slopes and shifts, {(ε̃j, δ̃j) : ε̃j ∈ E and δ̃j = dε̃j(P0, P1)}, where

E ≡ { 0 ≤ ε̃ <∞ : P0(x) = eε̃ P1(x) for some x ∈ X} .

Any ε̃ /∈ E does not contribute to the boundary of the privacy region. For

the above example distributions P̃0 and P̃1, E = {ε} and dε(P̃0, P̃1) = δ.

Remark 3 For a database access mechanism M over a output space X and

a pair of neighboring databases D0 and D1, let P0 and P1 denote the proba-

bility density function for random variables M(D0) and M(D1) respectively.

Assume there exists a permutation π over X such that P0(x) = P1(π(x)).

Then, the privacy region is

R(M,D0, D1 ) =
⋂
ε̃∈E

R
(
ε̃, dε̃(P0, P1)

)
,

where R(M,D,D′) and R(ε̃, δ̃) are defined as in (2.3) and (2.2).

The symmetry assumption is to simplify notations, and the analysis can be

easily generalized to deal with non-symmetric distributions.

Now consider a k-fold composition experiment, where at each sequential

access M̃i, we receive a random output X i,b independent and identically

distributed as X̃b. We can explicitly characterize the distribution of k-fold
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composition of the outcomes: P(X1,b = x1, . . . , X
k,b = xk) =

∏k
x=1 P̃b(xi).

It follows form the structure of these two discrete distributions that, E =

{e(k−2bk/2c)ε, e(k+2−2bk/2c)ε, . . . , e(k−2)ε, ekε}. After some algebra, it also follows

that

d(k−2i)ε

(
(P̃0)k, (P̃1)k

)
= 1− (1− δ)k + (1− δ)k

∑i−1
`=0 (k`)

(
eε(k−`)−eε(k−2i+`)

)
(1+eε)k

for i ∈ {0, . . . , bk/2c}. From Remark 3, it follows that the privacy region is

R({εi, δi}) =
⋂bk/2c
i=0 R

(
εi, δi

)
, where εi = (k − 2i)ε and δi’s are defined as in

(2.12). Figure 2.4 shows this privacy region for k = 1, . . . , 5 and for ε = 0.4

and for two values of δ = 0 and δ = 0.1.

Converse

We will now prove that this region is the largest region achievable under

k-fold adaptive composition of any (ε, δ)-differentially private mechanisms.

From Corollary 2.2.2, any mechanism whose privacy region is included in

R({εi, δi}) satisfies (ε̃, δ̃)-differential privacy. We are left to prove that for

the family of all (ε, δ)-differentially private mechanisms, the privacy region

of the k-fold composition experiment is included inside R({εi, δi}). To this

end, consider the following composition experiment, which reproduces the

view of the adversary from the original composition experiment.

At each time step i, we generate a random variable X i,b distributed as

X̃b independent of any other random events, and call this the output of a

database access mechanism M̃i such that M̃i(D
i,b, qi) = X i,b. Since, X i,b only

depends on b, and is independent of the actual database or the query, we use

M̃i(b) to denote this outcome.

We know that M̃i(b) has privacy region R(ε, δ) for any choices of Di,0,

Di,1 and qi. Now consider the mechanism Mi from the original experiment.

Since it is (ε, δ)-differentially private, we know from Theorem 2.2.1 that

R(Mi, D
i,0, Di,1) ⊆ R(ε, δ) for any choice of neighboring databases Di,0, Di,1.

Hence, from the converse of data processing inequality (Theorem 2.2.4), we

know that there exists a mechanism Ti that takes as input X i,b and produces

an output Y i,b which is distributed as Mi(D
i,b, qi) for all b ∈ {0, 1}. Hence,

Y i,b is independent of the past conditioned on X i,b, Di,0, Di,1, qi,Mi. Precisely
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we have the following Markov chain:

(b, R, {X`,b, D`,0, D`,1, q`,M`}`∈[i−1])–(X i,b, Di,0, Di,1, qi,Mi)–Y
i,b ,

where R is any internal randomness of the adversary A. Since, (X, Y )–Z–W

implies X–(Y, Z)–W , we have

b–(R, {X`,b, D`,0, D`,1, q`,M`}`∈[i])–Y
i,b .

Notice that if we know R and the outcomes {Y `,b}`∈[i], then we can repro-

duce the original experiment until time i. This is because the choices of

Di,0, Di,1, qi,Mi are exactly specified by R and {Y `,b}`∈[i]. Hence, we can

simplify the Markov chain as

b–(R,X i,b, {X`,b, Y `,b}`∈[i−1])–Y
i,b . (A.26)

Further, since X i,b is independent of the past conditioned on b, we have

X i,b–b–(R, {X`,b, Y `,b}`∈[i−1]) . (A.27)

It follows that

P(b, r, x1 . . . , xk, y1, . . . , yk)

= P(b, r, x1, . . . , xk, y1, . . . , yk−1)P(yk|r, x1, . . . , xk, y1, . . . , yk−1)

= P(b, r, x1, . . . , xk−1, y1, . . . , yk−1)P(xk|b)P(yk|r, x1, . . . , xk, y1, . . . , yk−1) ,

where we used (A.26) in the first equality and (A.27) in the second. By

induction, we get a decomposition

P(b, r, x1, . . . , xk, y1, . . . , yk)

= P(b, r)
k∏
i=1

P(xi|b)
k∏
i=1

P(yi|r, x1, . . . , xi, y1, . . . , yi−1)

= P(b, r, x1, . . . , xk)P(y1, . . . , yk|r, x1, . . . , xk)

= P(b|r, x1, . . . , xk)P(y1, . . . , yk, r, x1, . . . , xk) .

From the construction of the experiment, it also follows that the inter-

nal randomness R is independent of the hypothesis b and the outcomes
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X i,b’s: P(b|r, x1, . . . , xk) = P(b|x1, . . . , xk). Then, marginalizing over R, we

get P(b, x1, . . . , xk, y1, . . . , yk) = P(b|x1, . . . , xk)P(y1, . . . , yk, x1, . . . , xk). This

implies the following Markov chain:

b–({X i,b}i∈[k])–({Y i,b}i∈[k]) , (A.28)

and it follows that a set of mechanisms (M1, . . . ,Mk) dominates (M̃1, . . . , M̃k)

for two databases {Di,0}i∈[k] and {Di,1}i∈[k]. By the data processing inequal-

ity for differential privacy (Theorem 2.2.3), this implies that

R
(
{Mi}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
⊆ R

(
{M̃i}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
= R

(
{εi, δi}

)
.

This finishes the proof of the desired claim.

Alternatively, one can prove (A.28), using a probabilistic graphical model.

Precisely, the Bayesian network shown in Figure A.1 describes the depen-

dencies among various random quantities of the experiment described above.

Since the set of nodes (X1,b, X2,b, X3,b, X4,b) d-separates node b from the rest

of the Bayesian network, it follows immediately from the Markov property

of this Bayesian network that (A.28) is true (cf. [61]).

A.3.2 Proof of Theorem 2.4.4

We need to provide an outer bound on the privacy region achieved by X̃0 and

X̃1 defined in (A.23) and (A.24) under k-fold composition. Let P0 denote

the probability mass function of X̃0 and P1 denote the PMF of X̃1. Also, let

P k
0 and P k

1 denote the joint PMF of k i.i.d. copies of X̃0 and X̃1 respectively.

Also, for a set S ⊆ X k, we let P k
0 (S) =

∑
x∈S P

k
0 (x). In our example,
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b R

X1,b

X2,b

X3,b

X4,b

Y 1,b

Y 2,b

Y 3,b

Y 4,b

D1,0, D1,1, q1,M1

D2,0, D2,1, q2,M2

D3,0, D3,1, q3,M3

D4,0, D4,1, q4,M4

Figure A.1: Bayesian network representation of the composition
experiment. The subset of nodes (X1,b, X2,b, X3,b, X4,b) d-separates node b
from the rest of the network.

X = {1, 2, 3, 4}, and

P0 =
[
δ (1−δ)eε

1+eε
1−δ
1+eε

0
]
,

P1 =
[
0 1−δ

1+eε
(1−δ)eε

1+eε
δ
]
,

P 2
0 =


δ2 δ (1−δ)eε

1+eε
δ (1−δ)

1+eε
0

δ (1−δ)eε
1+eε

(
(1−δ)eε

1+eε

)2 (
1−δ
1+eε

)2

eε 0

δ 1−δ
1+eε

(
1−δ
1+eε

)2

eε
(

1−δ
1+eε

)2

0

0 0 0 0

 , etc.

We can compute the privacy region from P k
0 and P k

1 directly, by computing

the line tangent to the boundary. A tangent line with slope −eε̃ can be

represented as

PFA = −eε̃PMD + 1− dε̃(P k
0 , P

k
1 ) . (A.29)

To find the tangent line, we need to maximize the shift, which is equivalent to

moving the line downward until it is tangent to the boundary of the privacy
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region (cf. Figure 2.5).

dε̃(P
k
0 , P

k
1 ) ≡ max

S⊆Xk
P k

0 (S)− eε̃P k
1 (S) .

Notice that the maximum is achieved by a set B ≡ {x ∈ X k |P k
0 (x) ≥

eε̃P k
1 (x)}. Then,

dε̃(P
k
0 , P

k
1 ) = P k

0 (B)− eε̃P k
1 (B) .

For the purpose of proving the bound of the form (2.12), we separate the

analysis of the above formula into two parts: one where either P k
0 (x) or P k

1 (x)

is zero and the other when both are positive. Effectively, this separation

allows us to treat the effects of (ε, 0)-differential privacy and (0, δ)-differential

privacy separately. In previous work [16], they separated the analysis in a

similar way. Here we provide a simpler proof technique. Further, all the

proof techniques we use naturally generalize to compositions of general (ε, δ)-

differentially private mechanisms other than the specific example of X̃0 and

X̃1 we consider in this section.

Let X̃k
0 denote a k-dimensional random vector whose entries are inde-

pendent copies of X̃0. We partition B into two sets: B = B0

⋃
B1 and

B0

⋂
B1 = ∅. Let B0 ≡ {x ∈ X k : P k

0 (x) ≥ eε̃P k
1 (x), and P k

1 (x) = 0} and

B1 ≡ {x ∈ X k : P k
0 (x) ≥ eε̃P k

1 (x), and P k
1 (x) > 0}. Then, it is not hard

to see that P k
0 (B0) = 1 − P(X̃k

0 ∈ {1, 2, 3}k) = 1 − (1 − δ)k, P k
1 (B0) = 0,

P k
0 (B1) = P k

0 (B1|X̃k
0 ∈ {1, 2}k)P(X̃k

0 ∈ {1, 2}k) = (1 − δ)k P k
0 (B1|X̃k

0 ∈
{1, 2}k), and P k

1 (B1) = (1− δ)k P k
1 (B1|X̃k

1 ∈ {1, 2}k). It follows that

P k
0 (B0)− eε̃P k

1 (B0) = 1− (1− δ)k , and

P k
0 (B1)− eε̃P k

1 (B1) = (1− δ)k
(
P k

0 (B1|X̃k
0 ∈ {1, 2}k)

− eε̃P k
1 (B1|X̃k

1 ∈ {1, 2}k)
)
.

Let P̃ k
0 (x) ≡ P k

0 (x|x ∈ {1, 2}k) and P̃ k
1 (x) ≡ P k

1 (x|x ∈ {1, 2}k). Then, we

have

dε̃(P
k
0 , P

k
1 ) = P k

0 (B0)− eε̃P k
1 (B0) + P k

0 (B1)− eε̃P k
1 (B1)

= 1− (1− δ)k + (1− δ)k
(
P̃ k

0 (B1)− eε̃P̃ k
1 (B1)

)
. (A.30)
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Now, we focus on upper bounding P̃ k
0 (B1) − eε̃P̃ k

1 (B1), using a variant of

Chernoff’s tail bound. Notice that

P̃ k
0 (B1)− eε̃P̃ k

1 (B1) = EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)]

− eε̃EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
) P̃ k

1 (X̃k)

P̃ k
0 (X̃k)

]
= EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)(1− eε̃ P̃

k
1 (X̃k)

P̃ k
0 (X̃k)

)]
≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (A.31)

where we use a random variable Z ≡ log(P̃ k
0 (X̃k

0 )/P̃ k
1 (X̃k

0 )) and the last line

follows from I(x≥ε̃)(1 − eε̃−x) ≤ eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0. To

show this inequality, notice that the right-hand side is always non-negative.

So it is sufficient to show that the inequality holds, without the indicator on

the left-hand side. Precisely, let f(x) = eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) + eε̃−x− 1.

This is a convex function with f(x∗) = 0 and f ′(x∗) = 0 at x∗ = ε̃+ log((λ+

1)/λ). It follows that this is a non-negative function.

Next, we give an upper bound on the moment generating function of Z.

EP̃0
[eλ log(P0(X)/P1(X))] =

eε

eε + 1
eλε +

1

eε + 1
e−λε

≤ e
eε−1
eε+1

λε+ 1
2
λ2ε2 ,

for any λ, which follows from the fact that pex + (1− p)e−x ≤ e(2p−1)x+(1/2)x2

for any x ∈ R and p ∈ [0, 1] [62, Lemma A.1.5]. Substituting this into (A.31)
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with a choice of λ = ε̃−kε(eε−1)/(eε+1)
kε2

, we get

P̃ k
0 (B1)− eε̃P̃ k

1 (B1)

≤ exp
{eε − 1

eε + 1
λεk +

1

2
λ2ε2k − λε̃+ λ log λ− (λ+ 1) log(λ+ 1)

}
= exp

{
− kε2

2

(
λ− 1

kε2

(
ε̃− kεe

ε − 1

eε + 1

))2

− 1

2kε2

(
ε̃− kε(eε − 1)

eε + 1

)2

+ λ log
λ

λ+ 1
− log(λ+ 1)

}
≤ exp

{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2

− log(λ+ 1)
}

≤ 1

1 + ε̃−kε(eε−1)/(eε+1)
kε2

exp
{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2 }
=

1

1 +

√
2kε2 log(e+(

√
kε2/δ̃))

kε2

1

e+
√
kε2

δ̃

≤ 1
√
kε2 +

√
2 log(e+ (

√
kε2/δ̃))

δ̃
eδ̃√
kε2

+ 1
,

for our choice of ε̃ = kε(eε − 1)/(eε + 1) + ε

√
2k log(e+ (

√
kε2/δ̃)). The

right-hand side is always less than δ̃.

Similarly, one can show that the right-hand side is less than δ̃ for the

choice of ε̃ = kε(eε − 1)/(eε + 1) + ε
√

2k log(1/δ̃). We get that the k-fold

composition is (ε̃, 1− (1− δ)k(1− δ̃))-differentially private.

A.3.3 Proof of Theorem 2.4.5

In this section, we closely follow the proof of Theorem 2.4.4 in Section A.3.2

carefully keeping the dependence on `, the index of the composition step.

For brevity, we omit the details which overlap with the proof of Theorem

2.4.4. By the same argument as in the proof of Theorem 2.4.3, we only need

to provide an outer bound on the privacy region achieved by X̃
(`)
0 and X̃

(`)
1

under k-fold composition, defined as

P(X̃
(`)
0 = x) = P̃

(`)
0 (x) ≡


δ` for x = 0 ,

(1−δ`) eε`
1+eε`

for x = 1 ,
1−δ`
1+eε`

for x = 2 ,

0 for x = 3 .

, and
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P(X̃
(`)
1 = x) = P̃

(`)
1 (x) ≡


0 for x = 0 ,

1−δ`
1+eε`

for x = 1 ,
(1−δ`) eε`

1+eε`
for x = 2 ,

δ` for x = 3 .

Using the similar notations as Section A.3.2, it follows that under k-fold

composition,

dε̃(P
k
0 , P

k
1 ) = 1−

k∏
`=1

(1− δ`)

+
(
P̃ k

0 (B1)− eε̃P̃ k
1 (B1)

) k∏
`=1

(1− δ`) . (A.32)

Now, we focus on upper bounding P̃ k
0 (B1) − eε̃P̃ k

1 (B1), using a variant of

Chernoff’s tail bound. We know that

P̃ k
0 (B1)− eε̃P̃ k

1 (B1) = EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)]

− eε̃EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
) P̃ k

1 (X̃k)

P̃ k
0 (X̃k)

]
= EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)(1− eε̃ P̃

k
1 (X̃k)

P̃ k
0 (X̃k)

)]
≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (A.33)

where we use a random variable Z ≡ log(P̃ k
0 (X̃k

0 )/P̃ k
1 (X̃k

0 )) and the last line

follows from the fact that I(x≥ε̃)(1−eε̃−x) ≤ eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any

λ ≥ 0.

Next, we give an upper bounds on the moment generating function of Z.

From the definition of P̃
(`)
0 and P̃

(`)
1 , E[eλZ ] =

(
E
P̃

(`)
0

[eλ log(P̃
(`)
0 (X̃

(`)
0 )/P̃

(`)
1 (X̃

(`)
0 ))]

)k
.

Let ε̃ =
∑k

`=1(eε` − 1)ε`/(e
ε` + 1) +

√
2
∑k

`=1 ε
2
` log

(
e+ (

√∑k
`=1 ε

2
`/δ̃)

)
.

Next we show that the k-fold composition is (ε̃, 1 − (1 − δ̃)
∏

`∈[k](1 − δ`) )-

differentially private.

E
P̃

(`)
0

[eλ log(P
(`)
0 (X)/P

(`)
1 (X))] ≤ e

eε`−1
eε`+1

λε`+
1
2
λ2ε`

2

,
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for any λ. Substituting this into (A.33) with a choice of

λ =
ε̃−

∑
`∈[k] ε`(e

ε` − 1)/(eε` + 1)∑
`∈[k] ε

2
`

,

we get

P̃ k
0 (B1)− eε̃P̃ k

1 (B1)

≤ 1

1 +
ε̃−
∑
`∈[k] ε`(e

ε`−1)/(eε`+1)∑
`∈[k] ε

2
`

exp
{
− 1

2
∑

`∈[k] ε
2
`

(
ε̃−

∑
`∈[k]

ε`
eε` − 1

eε` + 1

)2 }
.

Substituting ε̃, we get the desired bound.

Similarly, we can prove that with

ε̃ =
k∑
`=1

(eε` − 1)ε`/(e
ε` + 1) +

√√√√2
k∑
`=1

ε2
` log

(
1/δ̃
)
,

the desired bound also holds.
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APPENDIX B

PROOFS FOR LOCAL DIFFERENTIAL
PRIVACY

B.1 Operational Interpretation of Differential Privacy

B.2 Proof of Theorem 3.2.1

We start by proving the following equivalent definition for local differential

privacy.

Claim 1 A conditional distribution Q is said to be ε-locally differentially

private if and only if for all A,B ⊂ X , such that A ∩ B = ∅ and all S ⊂ Y,

we have that

Q (S|A) ≤ eεQ (S|B) , (B.1)

where Q (S|A) = P(Y ∈ S|X ∈ A) and ε ∈ [0,∞).

Proof 8 To see that Claim 1 implies local differential privacy, set A = {x}
and B = {x′} for any x 6= x′. Observe that Q (S|x) ≤ eεQ (S|x′) holds

trivially for x = x′. We now show that local differential privacy implies

Claim 1. First, observe that

Q (S|A) = P(Y ∈ S|X ∈ A) =

∑
x∈AQ (S|x)P (X = x)

P (X ∈ A)
.

Therefore,

Q (S|A)

Q (S|B)
=

P (X ∈ B)

P (X ∈ A)

∑
x∈AQ (S|x)P (X = x)∑
x∈B Q (S|x)P (X = x)

≤ maxx∈AQ (S|x)

minx∈B Q (y|x)

≤ eε,
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where the first inequality follows from the fact that
∑

x∈AQ (y|x)P (X = x) ≤
maxx∈AQ (y|x)P (X ∈ A),

∑
x∈B Q (y|x)P (X = x) ≥ minx∈B Q (y|x)P (X ∈ B),

and the second inequality follows from Claim 1. This finishes the proof.

Assume that Q is ε-locally differentially private and fix any sets A,B ⊂ X
such that A ∩ B = ∅. Without loss of generality1, consider the set of all

deterministic decision rules X̂ : Y → {A,B}. These rules can be described

by (a) partitioning the output alphabet Y into (S, Sc) for some S ⊂ Y , and

(b) assigning X̂ = A whenever Y ∈ S and X̂ = B whenever Y ∈ Sc. In this

case,

PFA = P(X̂ = A|X ∈ B) = Q(Y ∈ S|X ∈ B) ≥ e−εQ(Y ∈ S|X ∈ A)

PMD = P(X̂ = B|X ∈ A) = Q(Y ∈ Sc|X ∈ A) ≥ e−εQ(Y ∈ Sc|X ∈ B),

where both inequalities follow from Claim 1. Replacing Q(Y ∈ S|X ∈ A) by

1− PMD and Q(Y ∈ Sc|X ∈ B) by 1− PFA, we get that

PFA + eεPMD ≥ 1

eεPFA + PMD ≥ 1. (B.2)

This proves that local differential privacy implies Theorem 3.2.1. The con-

verse can be shown similarly.

B.3 Optimal Mechanisms for Differential Privacy

We start the proof with a few definitions, a lemma, and a general result that

applies to any convex utility function that obeys a mild assumption.

Recall that for an input alphabet X with |X | = k, we represent the set

of ε-locally differentially private mechanisms that lead to output alphabets

Y with |Y| = ` by Dε,`. The set of all ε-locally differentially private mech-

anisms is given by Dε = ∪`∈NDε,`. A utility function U (Q) is convex in Q

if U
(
λQ(1) + (1− λ)Q(2)

)
≤ λU

(
Q(1)

)
+ (1− λ)U

(
Q(2)

)
for any λ ∈ (0, 1).

Convex utility functions are ubiquitous in information theory and statistics.

1Randomized rules can never achieve a (PFA, PMD) pair outside the convex hull of
(PFA, PMD) pairs achieved by deterministic rules.
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Assumption 1 If a k × ` privatization mechanism Q(1) ∈ Dε,` is obtained

by deleting an all-zero column of a k× `+ 1 privatization mechanism Q(2) ∈
Dε,`+1, then U

(
Q(1)

)
= U

(
Q(2)

)
.

Naturally, one would expect that if we delete the zero columns of a pri-

vatization mechanism Q(2) to obtain a new privatization mechanism Q(1),

we would still get the same utility. This is because a “reasonable” utility

function should not depend on output alphabets with zero probability.

Theorem B.3.1 If U (Q) is a convex utility function that satisfies Assump-

tion 1, then the following holds

max
Q∈Dε

U (Q) = max
Q∈∪k`=1Dε,`

U (Q) . (B.3)

This theorem implies that among all ε-locally differentially private mecha-

nisms, we only need to consider those that lead to output alphabets of size

` ≤ k. In other words, enlarging the input alphabet cannot further maximize

the utility. The proof of Theorem B.3.1 is given in Section B.3.1.

Lemma B.3.2 A k × ` conditional distribution Q is ε-locally differentially

private if and only if it can be written as Q = SΘ, where S is a k× ` matrix

with Sij ∈ [1, eε] and Θ = diag (θ1, . . . , θ`) with its diagonal entries in R+.

The proof of Lemma B.3.2 is provided in Section B.3.2. With the above re-

sults, we are now ready to prove Theorems 3.3.2 and 3.3.4. By Lemma B.3.2,

for any Q ∈ Dε,` we have that Qj = θjSj. Suppose U (Q) =
∑

j∈[`] µ(Qj),

where µ is a sublinear function. Since µ is sublinear, it is convex and

µ (θjSj) = θjµ (Sj). U (Q) is convex in Q because

U
(
λQ(1) + (1− λ)Q(2)

)
=

∑
j∈[`]

µ
(
λθ

(1)
j S

(1)
j + (1− λ) θ

(2)
j S

(2)
j

)
≤

∑
j∈[`]

λµ
(
θ

(1)
j S

(1)
j

)
+ (1− λ)µ

(
θ

(2)
j S

(2)
j

)
= λU

(
Q(1)

)
+ (1− λ)U

(
Q(2)

)
,

for any λ ∈ (0, 1). Furthermore, U (Q) satisfies Assumption 1 because

µ (Qj) = 0 whenever θj = 0. Let Q∗ = S∗Θ∗ ∈ arg maxQ∈∪k`=1Dε,`
U (Q)

and note that by Theorem B.3.1, U (Q∗) = maxQ∈Dε U (Q). Suppose that
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Q∗ is of dimensions k × `, where ` ≤ k. Each of the ` columns of Q∗ can be

expressed as a convex combination of the columns of S(k), the staircase pat-

tern matrix. This is because the 2k columns of S(k) are the corner points of

the cube [1, eε]k and each S∗j ∈ [1, eε]k. Therefore, S∗j =
∑2k

i=1 λijS
(k)
i , where

λij ≥ 0 for all i and j, and
∑2k

i=1 λij = 1 for all j. Create the 2k-dimensional

vector θ̃ such that θ̃i =
∑`

j=1 λijθ
∗
j and let Q̃ = S(k)Θ̃.

U (Q∗)− U(Q̃) =
∑̀
j=1

µ
(
S∗j
)
θ∗j −

2k∑
i=1

µ

((∑̀
j=1

λijθ
∗
j

)
S

(k)
j

)

=
∑̀
j=1

µ

 2k∑
i=1

λijS
(k)
i

 θ∗j −
2k∑
i=1

∑̀
j=1

λijθ
∗
jµ
(
S

(k)
j

)

=
∑̀
j=1

θ∗j

µ
 2k∑

i=1

λijS
(k)
i

− 2k∑
i=1

λijµ
(
S

(k)
j

)
≤ 0,

by the convexity of µ (z) and the non-negativity of θ∗j ’s. Moreover, observe

that since S(k)θ̃ = 1, θ̃ is a valid choice for the linear program of (3.12). This

implies that

max
S(k)θ=1,θ≥0

2k∑
j=1

µ
(
S

(k)
j

)
θj ≥ U(Q̃) ≥ U (Q∗) = max

Q∈Dε
U (Q) (B.4)

On the other hand, for any Q̃ = S(k)Θ̃, where θ̃ is valid for the linear program

of (3.12), we have that Q̃ ∈ Dε,2k ⊂ Dε and therefore,

max
S(k)θ=1,θ≥0

2k∑
j=1

µ
(
S

(k)
j

)
θj ≤ max

Q∈D
U (Q) .

Thus, maxS(k)θ=1,θ≥0

∑2k

j=1 µ
(
S

(k)
j

)
θj = maxQ∈D U (Q). This proves Theo-

rem 3.3.4.

The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded one.

Thus, the linear program of (3.12) is bounded and has a solution, say θ∗, at

one of the corner points of the polytope. Since there are k equality constraints

given by S(k)θ = 1 and 2k inequality constraints given by θ ≥ 0, any corner

point, including θ∗, cannot have more than k non-zero entries. Form S̃ by
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deleting the columns of S(k) corresponding to zero entries of θ∗. Similarly,

form θ̃ by deleting the zero entries of θ∗ and let Q̃ = S̃Θ̃, where Θ̃ = diagθ̃. It

is easy to verify that U(Q̃) = U(Q∗) = µT θ∗; hence, Q̃ solves linear program

of (3.12). Moreover, Q̃ has at most k columns and S̃ij = {1, eε}. Therefore,

Q̃ is a staircase mechanism of dimension k × `, where ` ≤ k.

B.3.1 Proof of Theorem B.3.1

We start the proof of Theorem B.3.1 with an important lemma the proof of

which is presented in Section B.3.3.

Lemma B.3.3 The set of all k × `, ε-locally differentially private mecha-

nisms Dε,` forms a closed and bounded polytope in Rk`
+ . Moreover, let Q be a

corner point of the polytope formed by Dε,`, then Q has at most k non-zero

columns.

Fix an ` > k. Since U (Q) is convex in Q, it suffices to consider the corner

points of Dε,` when maximizing U (Q) subject to Q ∈ Dε,`. By Lemma

B.3.3, any Q(1), a k× ` corner point of Dε,`, has at most k non-zero columns.

Therefore, the privatization mechanism Q(2), obtained by deleting the all-

zero columns of Q(1), has at most k columns. Notice that Q(2) ∈ ∪ki=1Dε,i.
Since U (Q) satisfies Assumption 1, we have that U

(
Q(1)

)
= U

(
Q(2)

)
and

therefore, it suffices to consider Q ∈ ∪ki=1Dε,i when maximizing U (Q) subject

to Q ∈ Dε,`. Thus,

sup
Q∈Dε

U (Q) = sup
`∈N

{
max
Q∈Dε,`

U (Q)

}
= sup

`∈N

{
max

Q∈∪ki=1Dε,i
U (Q)

}
= max

Q∈∪ki=1Dε,i
U (Q) ,

which finishes the proof.

B.3.2 Proof of Lemma B.3.2

Claim 2 Let Q ∈ Dε,`. If Qij = 0 for some j ∈ {1, ..., `} then Qij = 0 for

all i ∈ {1, ..., k}.
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Proof 9 Assume that Qi1j = 0 and Qi2j 6= 0 for some i1, i2 ∈ {1, ..., k}. It

is obvious that q (yj|xi2) ≤ q (yj|xi1) eε is not satisfied. Therefore, Q is not a

locally differentially private mechanism.

It is easy to check that any k × ` stochastic matrix Q = SΘ, where Θ is

a diagonal matrix with non-negative entries and S is a k × ` matrix with

Sij ∈ [1, eε], satisfies the local differential privacy constraints. Thus, Q ∈
Dε,`. On the other hand, assume that Q ∈ Dε,`. If Qij = 0 for some j then

by Claim 2 we have that Qij = 0 for all i and therefore, we can set θj = 0

and Sij = 1 for all i. If Qij > 0 then by Claim 2 we have that Qij > 0 for

all i. In this case, let θj = miniQij and observe that θj > 0 since Qij > 0

for all i. Let Sij = Qij/θi, then it is clear (from the definition of θi) that

Sij ≥ 1. On the other hand, from the differential privacy constraints, we

have that Qij ≤ Qkje
ε for all k and thus, Qij ≤ minkQkje

ε which proves

that Sij = Qij/minkQkj ≤ eε. This establishes that any Q ∈ Dε,` can be

written as Q = SΘ, where Θ is a diagonal matrix with non-negative entries

and S is a k × ` matrix with Sij ∈ [1, eε].

B.3.3 Proof of Lemma B.3.3

We start by showing that Dε,` forms a closed and bounded polytope in Rk`
+ .

We are interested in studying the corner points of the polytope formed by

Dε,` because convex utility functions are maximized at one of these corner

points whenever the space of privatization mechanisms is restricted to Dε,`.

Claim 3 A privatization mechanism Q ∈ Dε,` if and only if for all x, x′ ∈ X
and all y ∈ Y we have that Q (y|x) ≤ Q (y|x′) eε.

Proof 10 By definition, Q is differentially private if for all x, x′ ∈ X and

all B ⊆ Y we have that Q (B|x) ≤ Q (B|x′) eε. By choosing B = {y} for

some y ∈ Y the first direction of the above lemma is proven. In order to

prove the other direction, assume that for all x, x′ ∈ X and all y ∈ Y we

have that Q (y|x) ≤ Q (y|x′) eε. Then for any B ⊆ Y, the following holds:∑
y∈B

Q (y|x) ≤
∑
y∈B

Q (y|x′) eε

⇔ Q (B|x) ≤ Q (B|x′) eε.
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Letting Q ∈ Dε,`, then by Claim 3, it is easy to see that Q must satisfy

`k(k − 1) inequalities of the form Q (y|x) ≤ Q (y|x′) eε. These inequalities

can be compactly represented by

Ãq ≤ 0, (B.5)

where q = [Q (y1|x1) , ..., Q (y1|xk) , ...., Q (y`|x1) , ..., Q (y`|xk)]T and Ã is a

`k(k − 1) × k` matrix that contains all the local differential privacy linear

constraints. Observe that there is a one-to-one mapping between Q and q.

Here is an example for the case when k = ` = 2
1 −eε 0 0

−eε 1 0 0

0 0 1 −eε

0 0 −eε 1


︸ ︷︷ ︸

Ã


Q (y1|x1)

Q (y1|x2)

Q (y2|x1)

Q (y2|x2)

 ≤ 0. (B.6)

Moreover, since Q is a row stochastic matrix (a conditional distribution)

it satisfies Q1 = 1, where 1 represents the all ones vector of appropriate

dimensions. This condition can be rewritten as

Bq = 1, (B.7)

where B is a k × k` binary matrix. For the case when k = ` = 2, we have

that [
1 0 1 0

0 1 0 1

]
︸ ︷︷ ︸

B


Q (y1|x1)

Q (y1|x2)

Q (y2|x1)

Q (y2|x2)

 =

[
1

1

]
. (B.8)

Finally, observe that Q (y|x) ≥ 0 for all x ∈ X and y ∈ Y . These constraints

can be incorporated as follows. Let A =
[
ÃT , −I`k

]T
, where I`k is the

`k × `k identity matrix, then Aq ≤ 0. To summarize, Q ∈ Dε,` if and only if

Aq ≤ 0 (B.9)

Bq = 1.
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Therefore, the set of all k× `, ε-locally differentially private mechanisms Dε,`
forms a convex polytope in Rk`

+ .

We now proceed to proving that if Q is a corner point of the polytope

formed by Dε,`, then Q has at most k non-zero columns. This claim is obvious

for all k× ` privatization mechanisms with ` ≤ k. Therefore, we restrict our

attention to the case where ` > k. Let Aj be the matrix including all the

inequality constraints imposed on the jth column of Q. Observe that the rows

of Aj form a subset of the rows of A, defined in (B.9), and recall that there

are k(k − 1) differential privacy and k non-negativity inequality constraints

imposed on the jth column of Q. Therefore, Aj is a k2 × k matrix and we

have that AjQj ≤ 0, where Qj represents the jth column of Q. By Claim 2,

we know that Qj is either equal to zero or contains non-zero entries.

Claim 4 In what follows, the term linearly independent inequality constraints

refers to linear independent rows of Aj.

• If Qj = 0, then k linearly independent inequality constraints are achieved

with equality.

• If Qj 6= 0, then at most k−1 linearly independent inequality constraints

can be achieved with equality.

Proof 11 In fact, the number of linearly independent inequality constraints

(achieved or not) cannot exceed k because Aj has a rank less than or equal

to k. If Qj = 0, then the k non-negativity inequality constraints are achieved

with equality and it is easy to see that they are all linearly independent (in

fact, they form an orthonormal basis to Rk). This proves the first part of the

claim. We now establish the second part of the claim by showing that if Qj 6=
0, we cannot have k linearly independent inequality constraints achieved with

equality. Assume that Qj 6= 0 and let Ãj be the matrix including the largest

collection of linearly independent rows of Aj corresponding to the inequality

constraints that are achieved with equality. In other words, ÃjQj = 0. If

Ãj contains k rows, then its rank is equal to k. However, this implies that

Qj = 0, a contradiction. Therefore, at most k − 1 linearly independent

inequality constraints can be achieved with equality when Qj 6= 0.

Suppose that Q is a corner point of Dε,` and out of its ` columns, `>0 are

non-zero and `=0 (`=0 = `−`>0) are zero. Moreover, assume that the number
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of non-zero columns of Q is larger than k (i.e., `>0 > k). In this case, from

Claim 4, we can see that Q achieves at most `>0(k− 1) + (`− `>0)k linearly

independent inequality constraints with equality. Furthermore, at most k ad-

ditional linearly independent equality constraints (linearly independent rows

of the matrix B defined in (B.9)) can be met by Q. Therefore, the total

number of linearly independent constraints that Q achieves with equality is

at most `>0(k − 1) + (`− `>0)k + k = −`>0 + (` + 1)k < `k, where the last

strict inequality follows from the fact that `>0 > k. This implies that Q

cannot be a corner point of Dε,`. Therefore, any corner point of Dε,` must

have at most k non-zero columns.

B.4 Private Hypothesis Testing

B.4.1 Proof of Theorem 3.4.1

Let T = {x : P0(x) ≥ P1(x)}. In other words,

P0(T )− P1(T ) = max
A⊆X

P0(A)− P1(A).

Recall that for a given P0 and P1, the binary mechanism is defined as a

staircase mechanism with only two outputs y ∈ {0, 1} satisfying

Q(0|x) =

{
eε

1+eε
if P0(x) ≥ P1(x) ,

1
1+eε

if P0(x) < P1(x) .

Q(1|x) =

{
eε

1+eε
if P0(x) < P1(x) ,

1
1+eε

if P0(x) ≥ P1(x) .
(B.10)

Lemma B.4.1 For any pair of distributions P0 and P1, there exists a posi-

tive ε∗ that depends on P0 and P1 such that for all y ∈ Y, all ` ∈ N, and all

Q ∈ Dε,` with ε ≤ ε∗, we have that

(eε − 1)P0 (T c) + 1

(eε − 1)P1 (T c) + 1
≤ M0(y)

M1(y)
≤ (eε − 1)P0 (T ) + 1

(eε − 1)P1 (T ) + 1
. (B.11)

Moreover, the above upper and lower bounds are achieved by the binary mech-

anism given in (B.10).
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Observe that because P0 (T ) ≥ P1 (T ) and P0 (T c) ≤ P1 (T c), the direction

of the above inequalities makes sense.

Let M̃ν be the induced marginal for the binary mechanism when Pν is the

original distribution. Following the analysis techniques developed in [43], we

define hypothesis testing region R(M̃0, M̃1) as the convex hull of all achievable

probabilities of missed detection and false alarm, when testing whether ν = 0

or ν = 1 based on Ybin distributed as M̃ν :

R(M̃0, M̃1) ≡ conv
({

(M̃1(S), M̃0(Sc)) : ∀S ⊆ Y
})

,

where S ∈ Y is the accept region for hypothesis ν = 0. For the binary

mechanism, this ends up being a very simple triangular region. The slopes

defining the two sides of the triangular region are: −maxS M̃0(S)/M̃1(S) =

−((eε − 1)P0(T ) + 1)/((eε − 1)P1(T ) + 1) and −minS M̃0(Sc)/M̃1(Sc) =

−((eε − 1)P0(T c) + 1)/((eε − 1)P1(T c) + 1).

M̃0(Sc)

M̃1(S)

R(M̃0, M̃1) R(M0,M1)

Figure B.1: Hypothesis testing regions for two mechanisms.

For any other mechanism satisfying the ε-local differential privacy for ε ≤
ε∗, the above lemma implies that for any choice of the rejection region S, the
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slopes satisfy −M0(S)/M1(S) ≥ −((eε − 1)P0(T ) + 1)/((eε − 1)P1(T ) + 1)

and −M0(Sc)/M1(Sc) ≤ −((eε − 1)P0(T c) + 1)/((eε − 1)P1(T c) + 1). In the

hypothesis testing region, this implies that

R(M0,M1) ⊆ R(M̃0, M̃1) ,

as in the following Figure B.1.

From Theorem 2.5 of [43], we know that this implies a certain Markov

property. Precisely, let Ybin denote the output of the binary mechanism, and

Ydp denote the output of any ε-local differentially private mechanism. Then,

it follows that there exists a coupling of Ybin and Ydp such that they form

a Markov chain: ν–Ybin–Ydp, where ν is the hypothesis on Pν whether the

data was generated from ν = 0 or ν = 1. Then, it follows from the data

processing inequality of f -divergences that

Df (M̃0, M̃1) ≥ Df (M0,M1) .

It follows that there is no algorithm with larger f -divergence than the binary

mechanism.

B.4.2 Proof of Lemma B.4.1

We start by showing that the binary mechanism achieves the upper and lower

bounds presented in the statement of the lemma. Let MB
0 and MB

1 denote

the induced marginals under the binary mechanism given in (B.10). For

ν ∈ {0, 1}, we have that

MB
ν (0) =

∑
x∈X

P0 (x)Q(0|x) =
1

eε + 1
((eε − 1)Pν (T ) + 1)

MB
ν (1) =

∑
x∈X

P0 (x)Q(1|x) =
1

eε + 1
((eε − 1)Pν (T c) + 1) .

ComputingMB
0 (0) /MB

1 (0) andMB
0 (1) /MB

1 (1) we see that the binary mech-

anism achieves the upper and lower bounds for all values of ε.

As in Lemma B.3.2, for any ` ∈ N, Q ∈ Dε,` can be represented as Q = SΘ,

where S ∈ [1, eε]k×` and Θ = diag (θ1, ..., θ`) with its diagonal entries in R+.

We now show that for any ` ∈ N and any Q ∈ Dε,`, the following upper
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bound holds:

M0(y)

M1(y)
=

∑
i∈[k] P0 (xi)Sij∑
i∈[k] P1 (xi)Sij

≤ (eε − 1)P0 (T ) + 1

(eε − 1)P1 (T ) + 1
, (B.12)

for all y ∈ Y and sufficiently small ε. The above expression can be alterna-

tively written as

(eε − 1) (P0 (T )− P1 (T ))

+ (eε − 1)
∑
i∈[k]

(Sij − 1) (P0 (T )P1 (xi)− P1 (T )P0 (xi))

−
∑
i∈[k]

(Sij − 1) (P0 (xi)− P1 (xi)) ≥ 0, (B.13)

where Sj ∈ [1, eε]k. Equation (B.13) is linear in Sj and is therefore minimized

(and maximized) at the corner points of [1, eε]k×`, a cube in Rk×`
+ . The

corner points of this cube are given by the staircase patterns: Sj ∈ {1, eε}k.
To begin with, let Sj be a staircase pattern with Tj = {xi : Sij = eε} 6= T .

Then Equation (B.13) is equivalent to

(eε − 1) {(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))}

+ (eε − 1)2 {P0 (T )P1 (Tj)− P1 (T )P0 (Tj)} ≥ 0. (B.14)

Using the fact that P0 (T )−P1 (T ) > P0 (Tj)−P1 (Tj) for all Tj 6= T , the in-

equality in (B.13) holds true for all ε whenever P0 (T )P1 (Tj) ≥ P1 (T )P0 (Tj).

If P0 (T )P1 (Tj) < P1 (T )P0 (Tj), then the inequality in (B.13) holds true for

all ε ≤ ε(j), where

ε(j) = log

(
(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))

P1 (T )P0 (Tj)− P0 (T )P1 (Tj)
+ 1

)
> 0. (B.15)

On the other hand, it is easy to verify that when Tj = T , we have that

(eε − 1) {(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))

+ (eε − 1) (P0 (T )P1 (Tj)− P1 (T )P0 (Tj))} = 0,

for all ε. In this case, set ε(j) = 0 and ε1 = minj∈[2k] ε(j). Therefore, for any

` ∈ N and any Q ∈ Dε,`, the upper bound in the statement of the lemma
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holds for all ε ≤ ε1.

We now show that for any ` ∈ N and any Q ∈ Dε,`, the following lower

bound holds

(eε − 1)P0 (T c) + 1

(eε − 1)P1 (T c) + 1
≤ M0(y)

M1(y)
=

∑
i∈[k] P0 (xi)Sij∑
i∈[k] P1 (xi)Sij

, (B.16)

for all y ∈ Y and sufficiently small ε. The above expression can be alterna-

tively written as

(eε − 1) (P0 (T )− P1 (T ))

+ (eε − 1)
∑
i∈[k]

(Sij − 1) (P0 (T )P1 (xi)− P1 (T )P0 (xi))

+ eε
∑
i∈[k]

(Sij − 1) (P0 (xi)− P1 (xi)) ≥ 0, (B.17)

where Sj ∈ [1, eε]k. Equation (B.17) is linear in Sj and is therefore minimized

at the corner points of [1, eε]k, a cube in Rk
+. The corner points of this cube

are given by staircase patterns: Sj ∈ {1, eε}k. To begin with, let Sj be a

staircase pattern with Tj = {xi : Sij = eε} 6= T c, then Equation (B.17) is

equivalent to

(eε − 1) {(P0 (T )− P1 (T )) + eε (P0 (Tj)− P1 (Tj))}

+ (eε − 1)2 {P0 (T )P1 (Tj)− P1 (T )P0 (Tj)} ≥ 0. (B.18)

Using the fact that P0 (T )− P1 (T ) > P1 (Tj)− P0 (Tj) for all Tj 6= T c, then

for sufficiently small ε, Equation (B.17) can be written as

ε {(P0 (T )− P1 (T ))− (P1 (Tj)− P0 (Tj))}+O
(
ε2
)
> 0. (B.19)

This proves that there exists a positive ε(j) such that the left hand side of

Equation (B.18) is positive for all ε ≤ ε(j). On the other hand, it is easy to

verify that when Tj = T c, we have that

(eε − 1) {(P0 (T )− P1 (T )) + eε (P0 (Tj)− P1 (Tj))

+ (eε − 1) (P0 (T )P1 (Tj)− P1 (T )P0 (Tj))} = 0,

for all ε. In this case, let ε(j) = 0 and let ε2 = minj∈[2k] ε(j). Therefore, for
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any ` ∈ N and any Q ∈ Dε,`, the lower bound in the statement of the lemma

holds for all ε ≤ ε2. To conclude, let ε∗ = min(ε1, ε2). Then both, the upper

and lower bounds, hold for all ε ≤ ε∗.

B.4.3 Proof of Theorem 3.4.2

The total variation (TV) distance ‖M0 − M1‖TV is a special case of f -

divergence Df (M0||M1) with f(x) = 1
2
|x− 1|. Therefore, by Theorem 3.3.4,

we have that

max
Q∈Dε

∥∥M0 −M1

∥∥
TV

= maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(B.20)

where µj = µ
(
S

(k)
j

)
= 1

2

∣∣∑
i∈[k] (P0(xi)− P1(xi))S

(k)
ij

∣∣ for j ∈ {1, . . . , 2k}
and S(k) is the k × 2k staircase pattern matrix given in Definition 3.3.3.

The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded

one. Thus, there is no duality gap and solving the above linear program is

equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(B.21)

Note that any satisfiable solution α∗ to (B.21) provides an upper bound to

(B.20) since maxµT θ = min 1Tα ≤ 1Tα∗. Let T = {x : P0(x) ≥ P1(x)} and

Tj = {xi : S
(k)
ij = eε} for j ∈ [2k]. Consider the following choice of dual

variable

α∗i =
1

2

eε − 1

eε + 1

∣∣P0(xi)− P1(xi)
∣∣, (B.22)

for i ∈ [k]. Observe that

1Tα∗ =
1

2

eε − 1

eε + 1

∑
i∈[k]

∣∣P0(xi)− P1(xi)
∣∣

=
1

2

eε − 1

eε + 1

∥∥P0 − P1

∥∥
1

=
eε − 1

eε + 1

∥∥P0 − P1

∥∥
TV
. (B.23)
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We claim that α∗ is a feasible dual variable for all values of ε. In order to

prove that α∗ is a feasible dual variable, we show that S(k)T

j α
∗ − µj ≥ 0 for

all j ∈ [2k] and all ε. For all j ∈ [2k], we have that

gj = 2
(
S(k)T

j α
∗ − µj

)
=

eε − 1

eε + 1

∑
i∈[k]

|P0(xi)− P1(xi)|S(k)
ij −

∣∣∣∣∣∣
∑
i∈[k]

(P0(xi)− P1(xi))S
(k)
ij

∣∣∣∣∣∣
=

eε − 1

eε + 1

{∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij +

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij

}

−

∣∣∣∣∣∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij −

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij

∣∣∣∣∣ .(B.24)

Notice that we have arranged the equation such that all the summands are

non-negative. Without loss of generality, we will assume that∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij ≥

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij .

From the equality
∑

xi∈T (P0(xi)− P1(xi)) =
∑

xi∈T c (P1(xi)− P0(xi)) and

the fact that S
(k)
ij ∈ {1, eε} for all i and j, it follows that

e−ε
∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij ≤

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij . (B.25)

This is true because the right-hand side is minimized when the S
(k)
ij ’s for

xi ∈ T c are all equal to 1 and the left-hand side is maximized when the S
(k)
ij ’s

for xi ∈ T are all equal to eε. Now, (B.24) can be written as

gj =
1

eε + 1

{
−2
∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij + 2eε

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij

}
≥ 0 ,

where the last inequality follows from (B.25).

This establishes the satisfiability of α∗ for all ε which, in turn, shows that

(B.23) is indeed an upper bound to the primal problem. It remains to show

that this upper bound can be achieved via the binary mechanism. To this
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extent, recall that for a given P0 and P1, the binary mechanism is defined as

a staircase mechanism with only two outputs y ∈ {0, 1} satisfying

Q(0|x) =

{
eε

1+eε
if P0(x) ≥ P1(x) ,

1
1+eε

if P0(x) < P1(x) .

Q(1|x) =

{
eε

1+eε
if P0(x) < P1(x) ,

1
1+eε

if P0(x) ≥ P1(x) .
(B.26)

Computing the TV distance between M0 and M1 under (B.26), we get that

∥∥M0 −M1

∥∥
TV

=
eε − 1

eε + 1

∥∥P0 − P1

∥∥
TV
. (B.27)

Hence, the binary mechanism in (B.26) achieves the upper bound in (B.23).

This proves the optimality of the binary mechanism for all ε.

B.4.4 Proof of Theorem 3.4.4

The Kullback-Leibler (KL) divergence Dkl(M0||M1) is a special f -divergence

Df (M0||M1) with f(x) = x log x. Therefore, by Theorem 3.3.4, we have that

max
Q∈Dε

Dkl(M0||M1) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(B.28)

where

µj = µ
(
S

(k)
j

)
=
∑
i∈[k]

P0(xi)S
(k)
ij log

(∑
i∈[k] P0(xi)S

(k)
ij∑

i∈[k] P1(xi)S
(k)
ij

)

for j ∈ {1, . . . , 2k} and S(k) is the k × 2k staircase pattern matrix given in

Definition 3.3.3.

The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded

one. Thus, there is no duality gap and solving the above linear program is

equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(B.29)
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Note that any satisfiable solution α∗ to (B.29) provides an upper bound to

(B.28) since maxµT θ = min 1Tα ≤ 1Tα∗. Let T = {x : P0(x) ≥ P1(x)} and

Tj = {xi : S
(k)
ij = eε} for j ∈ [2k]. Set ji = {j : Tj = xi} for i ∈ [k], and

consider the following choice of dual variable

α∗i =
1

(eε − 1) (eε + k − 1)

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

) ,

(B.30)

for i ∈ [k]. Observe that since Tji = xi we have that Pν (Tji) = Pν (xi) and

since

µj =
∑
i∈[k]

P0(xi)S
(k)
ij log

(∑
i∈[k] P0(xi)S

(k)
ij∑

i∈[k] P1(xi)S
(k)
ij

)

= (P0 (Tj) (eε − 1) + 1) log
(P0 (Tj) (eε − 1) + 1)

(P1 (Tj) (eε − 1) + 1)

we have that

1Tα∗

=
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
−
∑
i∈[k]

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
− (k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

(P0 (xi) (eε − 1) + 1) log
(P0 (xi) (eε − 1) + 1)

(P1 (xi) (eε − 1) + 1)
. (B.31)

We claim that α∗ is a feasible dual variable for sufficiently large ε. In order

to prove that α∗ is a feasible dual variable, we show that S(k)T

j α
∗ − µj ≥ 0

for all j ∈ [2k] for all ε ≥ ε∗, where ε∗ is a positive quantity that depends on
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the priors P0 and P1. Using the facts that

log (a+ eεb) = ε+ log b+O
(
e−ε
)

1

eε + k − 1
= e−ε +O

(
e−2ε

)
,

for large ε, we get that

µj = (P0 (Tj) (eε − 1) + 1) log
(P0 (Tj) (eε − 1) + 1)

(P1 (Tj) (eε − 1) + 1)

=

(
P0 (Tj) log

P0 (Tj)

P1 (Tj)

)
eε + (1− P0 (Tj)) log

P0 (Tj)

P1 (Tj)
+O

(
e−ε
)
.

On the other hand,

S(k)T

j α
∗ =

1

(eε − 1) (eε + k − 1)

∑
i∈[k]

S
(k)
ij (eε + k − 2)

(
P0 (xi) log

P0 (xi)

P1 (xi)
eε +O (1)

)
− 1

(eε − 1) (eε + k − 1)

∑
i∈[k]

∑
l∈[k],l 6=i

S
(k)
ij

(
P0 (xl) log

P0 (xl)

P1 (xl)
eε +O (1)

)
=

1

(eε − 1) (eε + k − 1)

∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 e3ε +O
(
e2ε
)

=

∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 eε +O (1) .

Assume, to begin with, that j 6= {j1, j2, ..., jk}. Then

S(k)T

j α
∗ − µj =

P0 (Tj) log
P0 (Tj)

P1 (Tj)
−
∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 eε +O (1) .

(B.32)

Notice that for j 6= {j1, j2, ..., jk}, P0 (Tj) log
P0(Tj)

P1(Tj)
>
∑

xi∈Tj P0 (xi) log P0(xi)
P1(xi)

by the log-sum inequality. Therefore, there exists a ε(j) > 0 such that

S(k)T

j α
∗−µj ≥ 0 for all ε ≥ ε(j). If j ∈ {j1, j2, ..., jk}, it is not hard to check

that S(k)T

j α
∗−µj = 0 for all ε. In this case, set ε(j) = 0. This establishes the

satisfiability of α∗ for all ε ≥ ε∗ = maxj∈[2k] ε(j). The satisfiability of α∗, in

turn, shows that (B.31) is indeed an upper bound to the primal problem. It
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remains to show that this upper bound can be achieved via the randomized

response. To this extent, recall that the randomized response is given by

Q(y|x) =

{
eε

|X |−1+eε
if y = x ,

1
|X |−1+eε

if y 6= x .
(B.33)

Computing the KL divergence between M0 and M1 under (B.33), we get that

Dkl(M0||M1) =
1

(eε + k − 1)

∑
i∈[k]

(P0 (xi) (eε − 1) + 1) log
(P0 (xi) (eε − 1) + 1)

(P1 (xi) (eε − 1) + 1)
.

(B.34)

Hence, the randomized response in (B.33) achieves the upper bound in (B.31).

This proves the optimality of the randomized response for all ε ≥ ε∗.

B.4.5 Proof of Theorem 3.4.3

We start the proof with a fundamental bound on the symmetrized KL diver-

gence between the M0 and M1.

Lemma B.4.2 For any ε ≥ 0, let Q be any conditional distribution that

guarantees ε differential privacy. Then for any pair of distributions P0 and

P1, the induced marginals M0 and M1 must satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 4 (eε − 1)2

∥∥P0 − P1

∥∥2

TV
. (B.35)

The above lemma appears as Theorem 1 in [22]. By Lemma B.4.2, we have

that

OPT = max
Q∈Dε

Dkl

(
M0||M1

)
≤ 4 (eε − 1)2

∥∥P0 − P1

∥∥2

TV
. (B.36)

Let MB
0 and MB

1 be the marginals obtained by using the binary mechanism

given in (3.15). By Corollary 3.4.7, we have that ‖MB
0 −MB

1 ‖TV = eε−1
eε+1
‖P0−

P1

∥∥
TV

. Consequently, by applying Pinsker’s inequality to the KL divergence
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between MB
0 and MB

1 we get that

BIN = Dkl

(
MB

0 ||MB
1

)
≥ 2

∥∥MB
0 −MB

1

∥∥2

TV

= 2

(
eε − 1

eε + 1

)2 ∥∥P0 − P1

∥∥2

TV
. (B.37)

Combining (B.36) and (B.37) we get that BIN ≥ 1
2(eε+1)2

OPT which was

to be shown.

B.5 Information Preservation

B.5.1 Proof of Theorem 3.5.1

By Theorem 3.3.4, we have that

max
Q∈Dε

I (X;Y ) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(B.38)

where µj = µ
(
S

(k)
j

)
=
∑

i∈[k] P (xi)S
(k)
ij log

(
S
(k)
ij∑

i∈[k] P (xi)S
(k)
ij

)
for j ∈ {1, . . . , 2k}

and S(k) is the k× 2k staircase pattern matrix given in Definition 3.3.3. The

polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded one. Thus,

there is no duality gap and solving the above linear program is equivalent to

solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(B.39)

Note that any satisfiable solution α∗ to (B.39) provides an upper bound to

(B.38) since maxµT θ = min 1Tα ≤ 1Tα∗. Let Tj = {xi : S
(k)
ij = eε} and set

j1 = {j : Tj = T} and j2 = {j : Tj = T c}. Consider the following choice of
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dual variable

α∗i =
1

(eε + 1) (eε − 1)


eεµ
(
S
(k)
j1

)
−µ
(
S
(k)
j2

)
|T | ∀i ∈ T

eεµ
(
S
(k)
j2

)
−µ
(
S
(k)
j1

)
|T c| ∀i ∈ T c

. (B.40)

Observe that since Tj1 = T , Tj2 = T c, and

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

, (B.41)

we have that

1Tα∗

=
1

(eε + 1) (eε − 1)

{∑
i∈T

1

|T |

(
eεµ
(
S

(k)
j1

)
− µ

(
S

(k)
j2

))
+
∑
i∈T c

1

|T c|

(
eεµ
(
S

(k)
j2

)
− µ

(
S

(k)
j1

))}

=
1

(eε + 1)

(
µ
(
S

(k)
j1

)
+ µ

(
S

(k)
j1

))
=

1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
.

(B.42)

We claim that α∗ is a feasible dual variable for sufficiently small ε. In order

to prove that α∗ is a feasible dual variable, we show that
(
S(k)Tα∗

)
j
−µj ≥ 0

for all j ∈ {1, . . . , 2k} and all ε ≤ ε∗, where ε∗ is a positive quantity that

depends on P . Using the facts that

eε = 1 + ε+
1

2
ε+O

(
ε3
)

log (a+ eεb) = bε+
b(1− b)

2
ε2 +O

(
ε3
)

1

1 + eε
=

1

2
− 1

4
ε+O

(
ε2
)
,
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for small ε, we get that

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1)

=
1

2
P (Tj)P

(
T cj
)
ε2 +O

(
ε3
)
.

On the other hand,(
S(k)Tα∗

)
j

= S
(k)
j

T
α∗

=
1

(eε + 1) (eε − 1)

{∑
i∈T

S
(k)
ij

|T |

(
eεµ
(
S

(k)
j1

)
− µ

(
S

(k)
j2

))
+
∑
i∈T c

S
(k)
ij

|T c|

(
eεµ
(
S

(k)
j2

)
− µ

(
S

(k)
j1

))}

=
1

(eε + 1) (eε − 1)

(
eεµ
(
S

(k)
j1

)
− µ

(
S

(k)
j2

))( |Tj ∩ T |
|T |

eε +
|T cj ∩ T |
|T |

)
+

1

(eε + 1) (eε − 1)

(
eεµ
(
S

(k)
j2

)
− µ

(
S

(k)
j1

))( |Tj ∩ T c|
|T c|

eε +
|T cj ∩ T c|
|T c|

)
=

1

(eε + 1)

(
1

2
P (T )P (T c) ε2 +O

(
ε3
)){ |Tj ∩ T c|

|T c|
+
|T cj ∩ T c|
|T c|

+
|Tj ∩ T |
|T |

+
|T cj ∩ T |
|T |

+O (ε)

}
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
,

where we have used the facts that Tj1 = T , Tj2 = T c, and

µ
(
S

(k)
j1

)
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)

µ
(
S

(k)
j2

)
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
.

Let f(z) = |z − 1
2
|, g(z) = −z log z − (1− z) log(1− z), and h(z) = z(1− z)

for 0 ≤ z ≤ 1. On the one hand, g and h are monotonically increasing

over 0 ≤ z ≤ 1
2

and monotonically decreasing over 1
2
≤ z ≤ 1 but on the

other hand, f is monotonically decreasing over 0 ≤ z ≤ 1
2

and monotonically
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increasing over 1
2
≤ z ≤ 1. Therefore,

T ∈ arg min
A⊆X

∣∣∣P (A)− 1

2

∣∣∣
⇔ T ∈ arg max

A⊆X
− P (A) logP (A)− P (Ac) logP (Ac)

⇔ T ∈ arg max
A⊆X

P (A)P (Ac).

Since the set T was chosen so that it maximizes P (T )P (T c), we have that

P (T )P (T c) ≥ P (Tj)P
(
T cj
)

for all j ∈ {1, . . . , 2k}. Assume, to begin with,

that j 6= {j1, j2}. Then by the uniqueness of the maximizer assumption

stated in the theorem, we have that P (T )P (T c) > P (Tj)P
(
T cj
)
.

(
STα∗

)
j
− µj =

1

2

(
P (T )P (T c)− P (Tj)P

(
T cj
))
ε2 +O

(
ε3
)
, (B.43)

and thus, there exists an ε∗ that depends on P such that
(
S(k)Tα∗

)
j
−µj ≥ 0

for all ε ≤ ε∗. If j = {j1, j2}, it is not hard to check that
(
S(k)Tα∗

)
j
−µj = 0

for all ε. This establishes the satisfiability of α∗ for all ε ≤ ε∗ which proves

an upper bound on the primal problem (given in (B.42)). It remains to show

that the upper bound can be indeed achieved via the binary mechanism. To

this extent, recall that the binary mechanism is given by

Q(0|x) =

{
eε

1+eε
if x ∈ T ,

1
1+eε

if x /∈ T .
Q(1|x) =

{
eε

1+eε
if x /∈ T ,

1
1+eε

if x ∈ T .
(B.44)

Computing the I (X;Y ) under (B.44), we get that

I (X;Y )

=
1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
.

Hence, the binary mechanism in (B.44) achieves the upper bound in (B.42).

This proves the optimality of the binary mechanism for all ε ≤ ε∗.
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B.5.2 Proof of Theorem 3.5.2

We start by proving an upper bound on maxQ∈Dε I (X;Y ) which is tight for

ε ≤ 1. Recall that by Theorem 3.3.4, we have that

OPT = max
Q∈Dε

I (X;Y ) = maximize
θ

2k∑
j=1

µjθj

subject to S(k)θ = 1

θ ≥ 0,

where

µj = µ
(
S

(k)
j

)
=

∑
i∈[k]

P (xi)S
(k)
ij log

(
S

(k)
ij∑

i∈[k] P (xi)S
(k)
ij

)
= P (Tj) e

εε

− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1) , (B.45)

Tj = {i : S
(k)
ij = eε}, and S(k) is the k × 2k staircase pattern matrix given in

Definition 3.3.3.

Lemma B.5.1 For all distributions P and all ε, the following bound holds

OPT = max
Q∈Dε

I (X;Y ) ≤
(

max
j
µj

)
k

eε + k − 1
. (B.46)

The proof of this lemma is given in Section B.5.3. In what follows, we will

make the dependency of µj on P (Tj) and ε explicit by writing µj (P (Tj) , ε)

for µj. From the proof of Theorem 3.5.1, we have that the partition set T

defined in (3.21) is given by T ∈ arg maxA⊆X P (A)P (Ac). It is easy to check

that the binary mechanism given in (3.22) achieves the following utility

BIN =
µ (P (T ) , ε) + µ (P (T c) , ε)

eε + 1
. (B.47)

Lemma B.5.2 For all distributions P and all ε ≤ 1, the following bound

holds:
maxj µj

µ (P (T ) , ε) + µ (P (T c) , ε)
≤ 1. (B.48)
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The proof of the above lemma is given in Section B.5.4. Combining the

results of lemmas B.5.1 and B.5.2 we get that

OPT

BIN
≤ maxj µj

µ (P (T ) , ε) + µ (P (T c) , ε)

k

eε + k − 1
(eε + 1)

≤ k

eε + k − 1
(eε + 1)

≤ eε + 1,

for all ε ≤ 1. This concludes the proof.

B.5.3 Proof of Lemma B.5.1

To begin with, since S
(k)
1 = 1 = 1

eε
S

(k)

2k
and µ is homogeneous, we have that

θ1µ1 + θ2kµ2k =
(

1
eε
θ1 + θ2k

)
µ2k . Therefore, the following two maximization

problems are equivalent:

maximize
θ

2k∑
j=1

µjθj

subject to S(k)θ = 1

θ ≥ 0

=

maximize
θ

2k−1∑
j=1

µ̃jθj

subject to S̃(k)θ = 1

θ ≥ 0,

(B.49)

where µ̃j = µj+1 and S̃(k) is obtained by deleting the first column of S(k).

Moreover, using the fact that maxj∈[2k−1] µ̃j ≤ maxj∈[2k] µj and weak duality,

we get that

maximize
θ

µ̃T θ

subject to S̃(k)θ = 1

θ ≥ 0

≤
(

max
j∈[2k−1]

µ̃j

)
maximize

θ
1T θ

subject to S̃(k)θ = 1

θ ≥ 0

≤
(

max
j∈[2k]

µj

)
minimize

α
1Tα

subject to S̃(k)Tα ≥ 1.
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Consider the following choice of dual variable α∗i = 1
eε+k−1

. We claim that

α∗ is satisfiable. This can be easily verified by noting that(
S̃(k)Tα∗

)
j

= S̃
(k)T

j α∗ =
|Tj|eε + (k − |Tj|)

eε + k − 1
=
|Tj|(eε − 1) + k

eε + k − 1
≥ 1,

where the last inequality holds since |Tj| ≥ 1 (this is true because we have

deleted the first column of S(k)). Therefore, OPT ≤ (maxj µj) 1Tα∗ =

(maxj µj)
k

eε+k−1
which was to be shown.

B.5.4 Proof of Lemma B.5.2

Let µ (z, ε) be the function obtained by replacing P (Tj) by the continuous

variable z ∈ [0, 1] in µj (P (Tj) , ε). Taking the derivative of µ (z, ε) with

respect to z we get

µ′ (z, ε) = eεε− (eε − 1)− (eε − 1) log (z(eε − 1) + 1) . (B.50)

Observe that µ′ (z, ε) > 0 for all

z < z∗(ε) =
1

eε − 1

(
e{

eεε
eε−1

−1} − 1
)
, (B.51)

µ′ (z, ε) < 0 for all z > z∗(ε), and µ′ (z, ε) = 0 for z = z∗(ε). Combining

this with the fact that µ (0, ε) = µ (1, ε) = 0 we get that µ (z, ε) ≥ 0 for all

z ∈ [0, 1] and for any fixed ε, µ (z, ε) is maximized at z∗(ε).

Set x∗ ∈ arg maxx∈X P (x) and fix an ε ≤ 1. We will treat the following

three cases separately.

Case 1: P (x∗) ∈ [1− z∗(ε), 1].

Claim 5 Let T = {x∗}. Then

{T, T c} = arg max
A⊆X

P (A)P (Ac)

and

max
A⊆X

µ(P (A), ε) = max (µ(P (T ), ε), µ(P (T c), ε)) .

Proof 12 Observe that z∗(ε) ≤ 1
2

for all ε and T c = X \ {x∗}. The

function f(z) = z(1 − z) decreases over the range [1
2
, 1] ⊇ [1 − z∗(ε), 1].
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Thus, for all A ⊃ T , P (T )P (T c) > P (A)P (Ac) because P (T ) ≥ 1 − z∗(ε).

This proves that T ∈ arg maxA⊆X P (A)P (Ac) and for all A ⊃ T , A /∈
arg maxA⊆X P (A)P (Ac). Using a similar approach, we can show that T c ∈
arg maxA⊆X P (A)P (Ac) and for all A ⊂ T c, A /∈ arg maxA⊆X P (A)P (Ac).

Therefore, {T, T c} = arg maxA⊆X P (A)P (Ac). This proves the first part of

the claim. The function µ (z, ε) increases over the range [0, z∗(ε)]. Thus, for

all A ⊆ T c, µ(P (A), ε) ≤ µ(P (T c), ε) because P (T c) ≤ z∗(ε). On the other

hand, note that µ (z, ε) decreases over the range [z∗(ε), 1] which includes the

range [1−z∗(ε), 1]. Thus, for all A such that A ⊇ T , µ(P (A), ε) ≤ µ(P (T ), ε)

because P (T ) ≥ 1− z∗(ε). This proves that max (µ(P (T ), ε), µ(P (T c), ε)) =

maxA⊆X µ(P (A), ε).

Using the above claim, we can conclude that the partition set T defined in

(3.21) is equal to {x∗} and

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ maxA⊆X µ(P (A), ε)

max (µ(P (T ), ε), µ(P (T c), ε))
= 1.

Case 2: P (x∗) ∈ [1
2
, 1 − z∗(ε)]. Using the first part of the proof of Claim

5, we can show that if T = {x∗}, then {T, T c} = arg maxA⊆X P (A)P (Ac).

Therefore, the partition set T defined in (3.21) is equal to {x∗} and

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ µ(z∗(ε), ε)

µ (P (x∗) , ε) + µ (1− P (x∗) , ε)
≤ 1.

Case 3: P (x∗) ∈ [0, 1
2
].

Claim 6 There exists a set A ⊂ X such that 1
2
− P (x∗) ≤ P (A) ≤ 1

2
.

Proof 13 Without loss of generality, assume that the sequence P (xi), i ∈ [k],

is sorted in increasing order. Let l∗ = min{l :
∑l

i=1 P (xi) ≥ 1
2
}. From the

definition of l∗, P ({x1, . . . , xl∗−1}) < 1
2

and P ({x1, . . . , xl∗}) ≥ 1
2
. Further,

P ({x1, . . . , xl∗−1}) = P ({x1, . . . , xl∗})− P (xl∗)
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and since x∗ ∈ arg maxx∈X P (x), P (xl∗) ≤ P (x∗). Therefore, if A =

{x1, . . . , xl∗−1}, then 1
2
− P (x∗) ≤ P (A) ≤ 1

2
.

Let P (T ) = min{P (B) : B ∈ arg maxA⊆X P (A)P (Ac)}. We claim that
1
4
≤ P (T ) ≤ 1

2
. The upper bound on P (T ) follows immediately from its

definition. To prove the lower bound on P (T ), consider the set A given in

Claim 6 and observe that

P (T ) ≥ max(P (x∗), P (A))

≥ max(P (x∗),
1

2
− P (x∗))

≥ 1

4
.

All the inequalities follow from Claim 6 and the fact that P (x∗) ∈ [0, 1
2
].

Since 1
4
≤ P (T ) ≤ 1

2
, we have that 1

2
≤ P (T c) ≤ 3

4
. Moreover, the

function µ (z, ε) decreases over the range [z∗(ε), 1] ⊃ [1
2
, 3

4
] and increases over

the range [1
4
, z∗(ε)]. Therefore, µ (P (T c), ε) ≥ µ

(
3
4
, ε
)

and µ (P (T ), ε) ≥
min

(
µ
(

1
2
, ε
)
, µ
(

1
4
, ε
))

. Putting it all together, we have that

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ µ(z∗(ε), ε)

min
(
µ
(

1
2
, ε
)
, µ
(

1
4
, ε
))

+ µ
(

3
4
, ε
)

≤ 1.

B.5.5 Proof of Theorem 3.5.3

By Theorem 3.3.4, we have that

max
Q∈Dε

I (X;Y ) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(B.52)

where

µj = µ
(
S

(k)
j

)
=
∑
i∈[k]

P (xi)S
(k)
ij log

(
S

(k)
ij∑

i∈[k] P (xi)S
(k)
ij

)
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for j ∈ {1, . . . , 2k} and S(k) is the k × 2k staircase pattern matrix given in

Definition 3.3.3. The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed

and bounded one. Thus, there is no duality gap and solving the above linear

program is equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(B.53)

Note that any satisfiable solution α∗ to (B.53) provides an upper bound to

(B.52) since maxµT θ = min 1Tα ≤ 1Tα∗. Let Tj = {xi : S
(k)
ij = eε} and set

ji = {j : Tj = i} for i ∈ {1, . . . , k}. Consider the following choice of dual

variable

α∗i =
1

(eε − 1) (eε + k − 1)

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

) ,

(B.54)

for i ∈ {1, . . . , k}. Observe that since Tji = i we have that P (Tji) = P (xi)

and since

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

,
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we have that

1Tα∗

=
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
−
∑
i∈[k]

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
− (k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

{
P (xi) e

ε log
eε

P (xi) (eε − 1) + 1

+ (1− P (xi)) log
1

P (xi) (eε − 1) + 1

}
.

(B.55)

We claim that α∗ is a feasible dual variable for sufficiently large ε. In order

to prove that α∗ is a feasible dual variable, we show that
(
S(k)Tα∗

)
j
−µj ≥ 0

for all j ∈ {1, . . . , 2k} and all ε ≥ ε∗, where ε∗ is a positive quantity that

depends on P . Using the fact that

log (a+ eεb) = ε+ log b+O
(
e−ε
)
, (B.56)

for large ε, we get that

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1)

(
ε+ logP (Tj) +O

(
e−ε
))

= − (P (Tj) logP (Tj)) e
ε +O (ε) .
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On the other hand,(
S(k)Tα∗

)
j

= S
(k)
j

T
α∗

= eε
∑
i∈Tj

α∗i +
∑
i∈T cj

α∗i

=
−1

(eε − 1) (eε + k − 1)

∑
i∈[k]

S
(k)
ij (eε + k − 2) (P (xi) logP (xi) e

ε +O (ε))

}

+
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

∑
l∈[k],l 6=i

S
(k)
ij ((P (xl) logP (xl)) e

ε +O (ε))


= − 1

(eε − 1) (eε + k − 1)

∑
i∈Tj

P (xi) logP (xi)

 e3ε +O
(
e2εε

)
= −

∑
i∈Tj

P (xi) logP (xi)

 eε +O (ε) .

Assume, to begin with, that j 6= {j1, j2, ..., jk}. Then

(
S(k)Tα∗

)
j
− µj =

P (Tj) logP (Tj)−
∑
i∈Tj

P (xi) logP (xi)

 eε +O (ε) .

(B.57)

Notice that for j 6= {j1, j2, ..., jk}, P (Tj) logP (Tj) >
∑

i∈Tj P (xi) logP (xi).

Therefore, there exists an ε∗ > 0 such that
(
S(k)Tα∗

)
j
−µj ≥ 0 for all ε ≥ ε∗.

If j ∈ {j1, j2, ..., jk}, it is not hard to check that
(
S(k)Tα∗

)
j
− µj = 0 for all

ε. This establishes the satisfiability of α∗ for all ε ≥ ε∗. It remains to show

that the upper bound can be indeed achieved via the randomized response

mechanism. To this extent, recall that the randomized response is given by

Q(y|x) =


eε

|X | − 1 + eε
if y = x ,

1

|X | − 1 + eε
if y 6= x .

(B.58)
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Computing the I (X;Y ) under (B.58), we get that

I (X;Y ) =
1

eε + k − 1

∑
i∈[k]

{
P (xi) e

ε log
eε

P (xi) (eε − 1) + 1

+ (1− P (xi)) log
1

P (xi) (eε − 1) + 1

}
.

Hence, the randomized response mechanism achieves the upper bound (B.55).

This proves the optimality of the randomized response for all ε ≥ ε∗.

B.6 Approximate Local Differential Privacy

B.6.1 Proof of Proposition 3.6.1

Let U (Q) be a utility mechanism of the form U (Q) =
∑
Y µ(Qy), where

µ is a sublinear function. Consider a stochastic mapping W of dimensions

` ×m and let QW be the stochastic mapping obtained by first applying Q

to X ∈ X to obtain Y ∈ Y and then applying W to Y to obtain Z ∈ Z.

U (QW ) =
∑
Z

µ ((QW )z)

=
∑
Z

µ

(∑
Y

QyWy,z

)
≤

∑
Y,Z

Wy,zµ (Qy)

=
∑
Y

µ(Qy)

= U (Q) ,

where the inequality follows from sublinearity and the second to last equality

follows from the row stochastic property of W . Therefore, U (Q) obeys the

data processing inequality.
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APPENDIX C

PROOFS FOR MULTI-PARTY
DIFFERENTIAL PRIVACY

C.1 Proof of Main Result

To prove Theorem 4.4.1, it is sufficient to prove Theorem C.1.1 stating that

any other protocol can be simulated from the randomized response outputs.

Let {xi}i∈[k] and τRR = {x̃i}i∈[k] denote the k private bits and transcript

under the randomized response PRR (Equation (4.8)), respectively. We will

prove that any differentially private multi-party protocol can be simulated

from τRR. This proves the desired theorem, since the optimal protocol and

the optimal decision rules can be simulated by each node (and the central

observer) upon receiving the randomized responses. Hence, proving that

randomized response is sufficient to achieve optimal performance (on any

metric).

Theorem C.1.1 For any protocol P that generates a random transcript τ ,

there exists a stochastic transformation T such that the joint distribution of

the bits and the transcript can be simulated from the randomized outputs:

(x1, . . . , xk, τ)
D
= (x1, . . . , xk, T (x̃1, . . . , x̃k)) , (C.1)

where
D
= denotes equality in distribution, and x̃i is a randomized response of

xi.

To prove the above theorem, our strategy is to apply an induction argument

over a class of stochastic transformations {T1, T2, · · · , Tk}, where T` operates

on x̃`1 = (x̃1, . . . , x̃`) and xk`+1 = (x`+1, . . . , xk). We will prove the following
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series of equations:

(x1, . . . , xk, τ)
D
= (x1, . . . , xk, T1(x̃1, x

k
2)) (C.2)

D
= (x1, . . . , xk, T2(x̃2

1, x
k
3)) (C.3)

...
D
= (x1, . . . , xk, Tk(x̃

k
1)) . (C.4)

We first prove Equation (C.2). To do so, we show an equivalent version of

this equation, which is (x1, τ)
D
= (x1, T (x̃1, x

k
2)) for all fixed values of xk2.

Equation (C.2) follows by applying Bayes rule to this equation. First, note

that for all fixed xk2,

R
(
P, x1 = 0, x1 = 1

)
⊆ R(ε1, δ1) , (C.5)

by the fact that τ is (ε1, δ1)-differentially private and Lemma 4.3.1. Next,

notice that by construction, the randomized response achieves this outer

bound, i.e.

R
(
PRR, x1 = 0, x1 = 1

)
= R(ε1, δ1) , (C.6)

for all values of xk2 which holds only under the current assumption that

xk1 are independent. Hence from the reverse data processing inequality in

Corollary 4.3.3, it follows that for each instance of xk2, there exists a stochastic

transformation such that τ is simulated from x̃1, i.e. (x1, τ)
D
= (x1, T (x̃1, x

k
2)).

This proves the desired Equation (C.2).

We now prove an inductive step that allows us to recursively show Equations

(C.3) and (C.4). We want to prove that there always exists a stochastic

transformation T`+1 such that

(xk1, T`(x̃
`
1, x

k
`+1))

D
= (xk1, T`+1(x̃`+1

1 , xk`+2)) , (C.7)

for any stochastic transformation T` satisfying (ε`+1, δ`+1)-differential privacy.

Again, we prove that (x`+1, T`(x̃
`
1, x

k
`+1))

D
= (x`+1, T`+1(x̃`+1

1 , xk`+2)) for all val-

ues of (x`1, x̃
`
1, x

k
`+1). Then, Equation (C.7) follows from Bayes rule. First note

that from the assumption that T`(x̃
`
1, x

k
`+1) is (ε`+1, δ`+1)-differentially private

with respect to x`+1, we know that for any fixed values of (x`1, x̃
`
1, x

k
`+2), bi-
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nary hypothesis testing on x`+1 based on the observation T`(x̃
`
1, x

k
`+1) must

obey the differential privacy constraint:

P(T`(x̃
`
1, x

k
`+1) ∈ S|x`+1, x

`
1, x̃

`
1, x

k
`+2) ≤

eε`+1P(T`(x̃
`
1, x

k
`+1) ∈ S|x`+1, x

`
1, x̃

`
1, x

k
`+2) + δ`+1 ,

and since T`(x̃
`
1, x

k
`+1) is conditionally independent of x`1 given x̃`1, we get

P(T`(x̃
`
1, x

k
`+1) ∈ S|x`+1, x̃

`
1, x

k
`+2) ≤

eε`+1P(T`(x̃
`
1, x

k
`+1) ∈ S|x`+1, x̃

`
1, x

k
`+2) + δ`+1 .

This implies that for each value of (x̃`1, x
k
`+2),

R
(
T`, x`+1 = 0, x`+1 = 1

)
⊆ R(ε`+1, δ`+1) .

Next, notice that by construction, the randomized response achieves this

outer bound, i.e.

R
(
PRR, x`+1 = 0, x`+1 = 1

)
= R(ε`+1, δ`+1) , (C.8)

for all values of (x̃`1, x
k
`+2) which holds only under the current assumption

that xk1 are independent. Hence from the reverse data processing inequal-

ity in Corollary 4.3.3, it follows that for each instance of (x̃`1, x
k
`+2), there

exists a stochastic transformation such that T` is simulated from x̃`+1, i.e.

(x`+1, T`(x̃
`
1, x

k
`+1))

D
= (x`+1, T`+1(x̃`+1, x̃

`
1, x

k
`+2)). This proves the desired in-

duction step in Equation (C.7). Consequently, by induction Equation (C.4)

holds, and this proves Theorem C.1.1.

C.2 Proof of Optimal Multi-Party XOR Computation

Recall that λ = eε. Let X̃ denote the random output of the randomized

response, and let f(X̃) denote the XOR of all k bits. Notice that P (X, X̃) =

(λk−dh(X,X̃))/(1 + λ)k where dh(·, ·) denotes the Hamming distance. For a

given X̃ the decision is either f(X̃) or the complement of it. We will first

show that f(X̃) is the optimal decision rule.

It is sufficient to show that E[w(f(X), f(X̃))|X̃] ≥ E[w(f(X), f̄(X̃))|X̃].
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Since, E[w(f(X), f(X̃))|X̃] =
∑

i even

(
k
i

)
λk−i/(1+λ)k and E[w(f(X), f̄(X̃))|X̃] =∑

i odd

(
k
i

)
λk−i/(1 + λ)k, it follows that

E[w(f(X), f(X̃))|X̃]− E[w(f(X), f̄(X̃))|X̃] = (λ− 1)k/(1 + λ)k ≥ 0 ,

since λ ≥ 1. By symmetry, the decision rule is the same for all X̃, and also

for the worst case accuracy. This finishes the desired characterization of the

optimal accuracy.

To get the asymptotic analysis of the accuracy, notice that E[w(f(X), f(X̃))]+

E[w(f(X), f̄(X̃))] = 1 and E[w(f(X), f(X̃))] + E[w(f(X), f̄(X̃))] = (λ −
1)k/(1 +λ)k = (eε− 1)k/(2 + (eε− 1))k = (1/2)kεk +O(εk+1). It follows that

E[w(f(X), f(X̃))] = 1/2 + (1/2)k+1εk +O(εk+1).
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