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Abstract—Anonymous messaging platforms allow users to
spread messages over a network (e.g., a social network) without
revealing message authorship to other users. Popular demand for
anonymous messaging is evidenced by the success of mobile apps
like Whisper and Yik Yak. In such platforms, the spread of mes-
sages is typically modeled as a diffusion process. Recent advances
in network analysis have revealed that such diffusion processes
are vulnerable to author deanonymization by adversaries with
access to metadata, such as timing information. In this work,
we ask the fundamental question of how to intervene in the
propagation of anonymous messages in order to make it difficult
to find the source. In particular, we study the performance of
a message propagation protocol called adaptive diffusion intro-
duced in [1]. We prove that it achieves asymptotically optimal
source-hiding and significantly outperforms standard diffusion.
We further demonstrate empirically that adaptive diffusion hides
the source effectively on real social graphs.

I. INTRODUCTION

People have the right to express themselves without fear of
repercussion. Popular means of expression today (Facebook,
Twitter, and various messaging apps – Whatsapp, Kakao)
seamlessly allow users to share potentially sensitive content
with their friends. However, messaging platforms are not
designed with user privacy in mind. Indeed, the contrary is
often true [2], [3], and the wealth of information in these
social networks can lead to invasive monitoring by advertisers,
employers, service providers, or government agencies. This
monitoring typically exploits metadata: non-content data that
characterizes content, like timestamps. Metadata can often be
as sensitive as data itself [4], [5].

The privacy implications of social media are gaining at-
tention; in response, a number of anonymous social networks
have cropped up recently, including Whisper [6], Yik Yak [7],
Blind [8] and the now-defunct Secret [9]. These anonymous
messaging apps are microblogging services that hide message
authorship from other users. When a user posts a message,
the message spreads (without authorship information) to the
users’ contacts, or friends, in an underlying social network. If
a message recipient approves a message by pressing the ‘like’
button, the message is further propagated to the recipient’s
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friends, and so on. The message thus spreads anonymously
through the network—no single user can learn who authored
a message. One drawback of existing anonymous messaging
applications is that they are centralized, so company-owned
servers store all messages and metadata. These servers are a
central point of failure; an adversary wanting to deanonymize
an individual can access the centralized servers via legal or
technological means. And of course, the service provider itself
has immediate access to authorship information.

A solution is to use a distributed architecture, in which
there is no centralized repository of data or metadata [10].
Users rely only on local information to transmit messages,
and they pass only minimal metadata. Distributed architectures
organically avoid many anonymity challenges, like the central
point of failure. Unfortunately, recent advances in network
analysis such as [11], [12] suggest that a moderately powerful
adversary can still infer which node has started the message,
using limited metadata. Our goal in this work is to present a
message propagation protocol and prove that it provides strong
anonymity guarantees, even against an authoritarian adversary
(described below).

Adversarial Models. We consider an adversary that has access
to the underlying contact network G(V,E). The adversary
lacks the resources to monitor all network traffic, but it can
collect partial metadata in a number of ways:

One way is to explicitly corrupt some fraction of nodes by
bribery or coercion; these corrupted spy nodes continuously
monitor metadata like message timestamps and relay IDs;
we call this a spy-based adversary. This adversary represents
government agencies using fake or corrupted social media
accounts to monitor users [13].

Alternatively, an adversary could use side channels to collect
information on whether a node is infected, i.e., whether it
received the message, at a fixed time; we call this a snapshot
adversarial model. If an adversary uses spies and a snapshot,
we call it a spy+snapshot adversary. The snapshot adversary
has been well-studied in the literature; for both source identi-
fication [11] and source obfuscation [1]. However, spy-based
adversaries have not been studied from the source obfuscation
perspective. In this paper, we focus on spy-based adversaries,
and briefly discuss the implications of the spy+snapshot ad-
versary in Sec. IV.

Under the spy-based adversarial model, we suppose each
node other than the source is a spy independently with
probability p. At some point in time, the source node v∗

starts propagating its message over the graph according to a
spreading protocol chosen by the platform (to be determined).
Each spy node si ∈ V observes: (1) the time Tsi (relative to
an absolute reference) at which it receives the message, (2)
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the parent node psi that relayed the message, and (3) any
other metadata used by the spreading mechanism (such as
control signaling in the message header). At some time, spies
aggregate their observations; using the collected metadata and
the structure of the underlying graph, the adversary estimates
the author of the message, v̂. A problem of central interest is
to find a spreading mechanism that minimizes the probability
of detection, P(v̂ = v∗). This is the focus of this paper.

Spreading mechanisms. A common construction for mod-
eling epidemic propagation over networks is diffusion: a
symmetric random process in which each node spreads the
message to its neighbors according to independent, random
delays. Diffusion is a commonly-studied and useful model
due to its simplicity and first-order approximation of actual
propagation dynamics. Critically, it captures the symmetric
spreading of most social media platforms.

Finding a computationally-efficient algorithm for (near-)
optimal maximum likelihood (ML) message source inference
is an open problem under the spy-based adversarial model,
as is the corresponding detection probability analysis. Recent
work [12], [14] has focused on identifying the message source
through heuristic, low-cost algorithms. These findings suggest
that a spy-based adversary with metadata can locate the source
with high probability under diffusion spreading. Indeed, when
the underlying graph is a d-regular tree, we empirically ob-
serve that the probability of detection under diffusion increases
with time and the degree of the underlying graph (Figure 1). In
the diffusion spreading used to generate Figure 1, each node
propagates the message to each of its neighbors independently
with probability q = 0.7 in each time step. We used the
Gaussian estimator from [12], which is suboptimal for this
spreading model; as such, the plotted curves are lower bounds
on the probability of detection using an ML estimator. This has
poor implications for anonymity; contact networks may have
high degree nodes, and the adversary is not time-constrained.

We therefore seek a different spreading model with strong
anonymity guarantees when the underlying graph has high
degree, and estimation occurs at T = ∞. In this paper, we
analyze the anonymity properties of adaptive diffusion, the
spreading model from [1]. Adaptive diffusion was originally
designed to provide anonymity against a snapshot adversary.
There is no reason to believe a priori that adaptive diffusion
should perform well against a spy-based adversary with its
access to timing information; surprisingly, it does.

Contributions. Our contributions are as follows:
(1) We identify adaptive diffusion as an algorithm that

provides strong anonymity guarantees against a spy-based
adversary. Since [1] contains multiple variants of adaptive
diffusion, we identify the specific parameter setting under
which it is both analytically tractable and provides strong
anonymity guarantees.

(2) Under the spy-based adversarial model and adaptive
diffusion spreading, we identify a computationally-efficient
algorithm for maximum likelihood source detection when
the underlying contact network is infinite and tree-structured
(Algorithm 2).
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Fig. 1. Probability of detection (computed with a non-ML estimator) when
a message is spread using diffusion over a d-regular tree. Detection becomes
more accurate as time and underlying graph degree increase.

(3) We give a precise analysis of the anonymity properties
of adaptive diffusion. Such analysis is currently open for
regular diffusion; we provide exact expressions for adaptive
diffusion over regular trees (Theorem 1) and a lower bound
for regular diffusion (Proposition III.2), and show that our
results are numerically stable for social network graphs, i.e.,
finite, irregular, and cyclic.

(4) We show that over regular trees, adaptive diffusion has
asymptotically optimal hiding guarantees (Proposition III.1) as
the degree of the underlying tree increases. This differs from
regular diffusion, whose anonymity properties degrade as de-
gree increases. Intuitively, spies near the source provide more
information than distant ones; by spreading symmetrically,
diffusion ensures that all nearby spies receive the message.
Adaptive diffusion instead spreads asymmetrically, thereby
preventing most nearby spies from seeing the message early
enough to deanonymize.

Related Work. A snapshot-based adversary observes which
nodes are infected at a certain time T . When the infection
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spreads as per standard diffusion on a d-regular tree, efficient
ML estimators exist for finding the source from the snapshot
[11]. Further, the adversary can identify the source with
probability converging to a constant lower-bounded by 1/3,
as the time-to-attack grows. Subsequent work suggests that
even under various diffusion models and estimators, source
detection with a snapshot is reliable [15], [16], [17], [18],
[19], [20], [21], [22].

If we know when the adversary will attack, one solution
for hiding the source on a d-regular tree is the following. For
the first half, the infection propagates on a line in a randomly
chosen direction; for the remaining half, the infection spreads
as per diffusion from the end of the line. At time T all nodes
in the boundary of the snapshot are equally likely to be the
source, by symmetry. However, this line-and-diffusion protocol
fails to protect the source if the adversary attacks before or
after time T . As a remedy, adaptive diffusion was proposed to
provide strong protection against a snapshot-based adversary
[1]. At any time T , adaptive diffusion ensures that all nodes are
equally likely to have been the source. This provides perfect
obfuscation; no adversary can find the source with probability
larger than 1/NT where NT is the number of infected nodes.

When the adversary collects timestamps (and other meta-
data) from spy nodes, standard diffusion reveals the location
of the source [12], [19]. However, ML estimation is known to
be NP-hard [14], and analyzing the probability of detection is
also challenging. Figure 1 shows that even with sub-optimal
estimators, the source can be effectively identified. Since both
snapshot and spy-based adversaries are plausible, we want to
go beyond diffusion and line-and-diffusion. A natural question
of interest is how to spread a message in order to provide
strong protection against both types of adversaries: snapshot
and spy-based. Related challenges include (a) identifying
the best algorithm that the adversary might use to infer the
location of the source; (b) providing analytical guarantees
for the proposed spreading model; and (c) identifying the
fundamental limit on what any spreading model can achieve.
We address all of these challenges.

Our work is part of a larger ecosystem that enables practical
and truly anonymous messaging platforms. For instance, we
assume that nodes communicate in a distributed fashion, but
anonymity-preserving, peer-to-peer (P2P) presence lookup is
an active research area [23], as is privacy-preserving dis-
tributed data storage in P2P systems [24]. Plausible attacks
that are not addressed in this paper may operate below
the application layer (e.g., by monitoring the network or
even physical layer) [25], [26]. Lower-level protections may
be more appropriate against such an opponent, harnessing
factors like physical proximity of users [27]. Even at the
application layer, other cryptographic approaches exist, like
Riposte, which anonymously writes content to electronic mes-
sage boards [28], and numerous systems built around dining-
cryptographer nets [29], [30]. We focus on attacks based on
statistical inference and learning by adversaries operating at
the application layer.

II. WARM-UP EXAMPLE: LINE GRAPH

We begin by considering the special contact network of a
line graph. This example highlights how severely metadata can
hurt anonymity; nonetheless, Section III illustrates that our
seemingly-negative result on lines does not extend to higher-
degree trees.

Consider a line graph G(V,E) in which V = Z, nodes
s1 = 0 and s2 = n+1 are spies, and E = {(i, i+1) | i ∈ Z}.
One of the n nodes between the spies is chosen uniformly
at random as a source, denoted by v∗ ∈ {1, . . . , n}. When
the message reaches a spy si, the spy collects at least two
pieces of metadata: the timestamp Tsi and the parent node
psi that relayed the message. We let t0 denote the time
the source starts propagating the message according to some
global reference clock. Let Ts1 = T1 + t0 and Ts2 = T2 + t0
denote the timestamps when the two spy nodes receive the
message, respectively. Knowing the spreading protocol and
the metadata, the adversary uses the maximum likelihood
estimator to optimally estimate the source.

In this section, we first show that under standard diffusion,
the probability of source detection scales as 1/

√
n. We also

show that if spy nodes observed only timestamps and parent
nodes, adaptive diffusion would achieve the optimal detection
probability of 1/n. However, adaptive diffusion passes extra
metadata, which we call a control packet, to coordinate the
message spread (details below). Control packets allow a spy
to identify the source with probability 1. To overcome this
challenge, we propose a new implementation of adaptive
diffusion that provably achieves 1/

√
n (Proposition II.1). It

is an open question if a smaller probability of detection can
be achieved on a line.

Standard diffusion. Consider a standard discrete-time ran-
dom diffusion with a parameter q ∈ (0, 1) where each unin-
fected neighbor is infected with probability q. The adversary
observes Ts1 and Ts2 . Knowing the value of q, it computes the
ML estimate v̂ML = argmaxv∈[n] PT1−T2|V ∗(Ts1 − Ts2 |v),
which is optimal assuming uniform prior on v∗. Since t0
is not known, the adversary can only use the difference
Ts1 − Ts2 = T1 − T2 to estimate the source. We can exactly
compute the corresponding probability of detection; Figure
2 (bottom) illustrates that the posterior (and the likelihood)
is concentrated around the ML estimate, and the source can
only hide among O(

√
n) nodes. The detection probability

correspondingly scales as 1/
√
n (top).

Adaptive diffusion on a line. Adaptive diffusion introduced
in [1] on a line is a random message spreading model governed
by the location of a virtual source vt at any (even) time t.
At time 0, the source determines either the left or the right
neighbor to be the next virtual source with equal probability.
The message is propagated to the chosen node at time t = 1.
At t = 2, the new virtual source v2 propagates the message to
its uninfected neighbor. At this point, three nodes are infected,
with the virtual source v2 at the center. At any given even time
t, the infected subgraph is a subset of t + 1 nodes, centered
around the virtual source vt. At each even time t, the protocol
has two options: keep the virtual source where it is, or pass
it to the only neighbor who has not yet been a virtual source.
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Fig. 2. Comparisons of probability of detection as a function of n (top)
and the posterior distribution of the source for an example with n = 101
and T2 −T1 = 25 (bottom). The line with ‘control packet revealed’ uses the
Pólya’s urn implementation.

The protocol keeps the current virtual source with probability
2δH(vt,v

∗)
t+2 , where δH(vt, v

∗) denotes the hop distance between
the source and the virtual source, and passes it otherwise. The
control packet therefore contains two pieces of information:
δH(vt, v

∗) and t. In the next two time steps, the message
spreads in such a way that two more nodes are infected,
and the virtual source is again at the center of the infected
subgraph. This choice of virtual-source-spreading probability
is optimal against a snapshot adversary, guaranteeing perfect
obfuscation of the source.

Suppose spy nodes only observed timestamps and par-
ent nodes but not control packets. The adversary could
then numerically compute the ML estimate v̂ML =
argmaxv∈[n] PT1−T2|V ∗(Ts1 − Ts2 |v). Figure 2 shows the
posterior is close to uniform (bottom) and the probability
detection would scale as 1/n (top), which is the best one
can hope for. Of course, spies do observe control packets,
including the information to generate the randomness. This
reveals the distance to the true source δH(vT , v

∗), and the true
source is exactly identified with probability 1. We therefore
introduce a new implementation (tailored for the line graph)
that is robust to control packet information.

Adaptive diffusion via Pólya’s urn. The random process
governing the virtual source’s propagation is identical to a

Pólya’s urn process [31]. We propose the following alternative
implementation of adaptive diffusion. At t = 0 the protocol
decides whether to pass the virtual source left (D = `)
or right (D = r) with probability half. Let D denote this
random choice. Then, a latent variable q is drawn from the
uniform distribution over [0, 1]. Thereafter, at each even time
t, the virtual source is passed with probability q or kept with
probability 1 − q. The Bayesian interpretation of Pólya’s urn
processes shows that this process is equivalent to the adaptive
diffusion process.

Further, in practice, the source could simulate the whole
process in advance. The control packet would simply reveal to
each node how long it should wait before further propagating
the message. Under this implementation, spy nodes only
observe timestamps Ts1 and Ts2 , parent nodes, and control
packets containing the infection delay for the spy and all its
descendants in the infection. Given this, the adversary can
exactly determine the timing of infection with respect to the
start of the infection T1 and T2, and also the latent variables D
and q. A proof of this statement and the following proposition
is provided in Section VI-A1. Precisely, we provide an upper
bound on the detection probability for such an adversary.

Proposition II.1. When the source is uniformly chosen from
n nodes between two spy nodes, the ML estimator achieves a
detection probability upper bounded by

P
(
V ∗ = v̂ML

)
≤ π
√
8√
n

+
2

n
.

Equipped with the ML estimator, we can also simulate
adaptive diffusion on a line. Figure 2 (top) illustrates that
even with access to control packets, the adversary achieves
probability of detection scaling as 1/

√
n – similar to standard

diffusion. For a given value of T1, the posterior and the
likelihood are concentrated around the ML estimate, and the
source can only hide among O(

√
n) nodes, as shown in the

bottom panel for T1 = 58. In the realistic adversarial setting
where control packets are revealed at spy nodes, adaptive
diffusion can only hide as well as standard diffusion over a
line.

III. MAIN RESULTS ON d-REGULAR TREES

In this section, we show that adaptive diffusion hides the
source better than diffusion over d-regular trees, d > 2, and
its probability of detection is asymptotically optimal in the
degree of the underlying tree. In contrast to the line example,
this holds even when the adversary has access to all metadata.
We first present a characterization of the fundamental limit
for any spreading protocol. Namely, a lower bound on the
probability of detection for any choice of spreading protocol.

Proposition III.1. No spreading protocol that infects at least
one node can have a probability of detection less than p, i.e.

min
protocol

max
v̂

P(v̂ = v∗) ≥ p ,

where the minimization is over all spreading protocols that
infect at least one node and the maximization is over all
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Fig. 3. Adaptive diffusion (AD) theoretical performance for varying d (left). Adaptive diffusion improves over standard diffusion (D) and the gap increases
as the degree of the underlying contact network increases (center, right).

estimators that are measurable functions over the observed
meta-data and the network.

Consider the first-spy estimator, which returns as the esti-
mated source the parent of the first spy to observe the message.
Regardless of spreading mechanism, this estimator returns the
true source with probability at least p; with probability p, the
first node (other than the true source) to receive the message
is a spy. This is illustrated in the top panels in Figure 3 as a
fundamental limit. Note that this lower bound is independent
of the degree, and we expect this to be tighter for larger degree
trees. The reason is that if d is larger, then it is more likely
that one of the neighbors of the source is a spy. However, for
standard diffusion, the gap between this fundamental limit and
the detection probability achieved becomes larger as degree
increases. This is illustrated in the top center and top right
panels above.

Standard diffusion. The ML estimator under standard
diffusion is computationally intractable, and characterizing
the probability of detection achieved by such an estimator is
also an open problem. We consider a discrete-time diffusion
process, in which each infected node passes the message
to each neighbor with probability q in each timestep. As
q increases, the variance of the associated geometric delay
decreases, revealing the true source with higher probability.
To lower bound the probability of detection achieved by the
best estimator, we consider two heuristic estimators in the
numerical experiments: (1) the Gaussian estimator from [12],
and (2) the first-spy estimator, which simply returns the parent
of the first spy to observe the message. The estimator in [12]

is ML when delays are i.i.d. Gaussian, whereas our delays are
geometric. We nonetheless expect it to perform well for small
p; since the distance between spies will be large, the delay
distribution can be approximated by a Gaussian.

Figure 3 compares the probability of detection and expected
hop distance for diffusion (q = 0.7) using heuristic estimators,
against adaptive diffusion using the ML estimator. The lower
bound for detection probability under standard diffusion (top)
is the maximum of the simulated Pinto et al. estimator [12]
and the first-spy estimator; the opposite holds for expected
hop distance (bottom). For all p, adaptive diffusion performs
better than diffusion, and the gap increases with degree. This
effect is sensitive to q for small d, but we show in Section
IV that over real social graphs, the sensitivity to q becomes
negligible. We make this observation precise in the following
lower bound:

Proposition III.2. Suppose the contact network is a regular
tree with degree d. Consider a spy-based adversary and diffu-
sion spreading—that is, in each timestep, each infected node
infects each uninfected neighbor independently with proba-
bility q. The optimal source estimator achieves a detection
probability at least

max
v̂

P(v̂ = v∗) ≥ 1− (1− qp)d ,

where the maximization is taken over all measurable functions
over the observed meta-data and the network.

This bound implies that as degree increases, the probability
of detecting the true source of diffusion approaches 1. The
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proposition also results from the first-spy estimator used in
Proposition III.1. We consider all neighbors of v∗ that (a) are
spies and (b) receive the message at t = 1. If there is at least
one such node, then the source is identified with probability
1. Each neighbor of v∗ meets these criteria with probability
pq.

Adaptive diffusion. Unlike standard diffusion, the ML
estimator is tractable under adaptive diffusion. Further, we can
characterize the probability of detection achieved by this ML
estimator precisely, and prove it significantly improves over
the standard diffusion and achieves the asymptotically optimal
performance.

In [1], the authors present two protocols for spreading over
trees with degree d > 2: the ‘tree protocol’ and the generalized
‘adaptive diffusion’ algorithm. Against a snapshot adversary,
adaptive diffusion provides stronger anonymity guarantees, but
against a spy-based adversary, its spreading pattern can lead to
deanonymization. However, if the underlying contact network
is a tree, the tree protocol is equivalent to adaptive diffusion
for a specific parameter choice. This choice always places
the source at a leaf of the infected subgraph, and has strong
anonymity properties. We focus on the tree protocol, exploiting
its simplicity and asymmetric spreading. Further, we show
that this protocol achieves provably (asymptotically) optimal
source obfuscation, significantly improving upon standard dif-
fusion. Moving forward, we use the terms ‘tree protocol’ and
‘adaptive diffusion’ interchangeably. We did not analyze the
tree protocol over lines because the metadata deterministically
reveals the source.

The spreading protocol follows Protocol 4 (tree protocol)
from [1]; the goal is to build an infected subtree with the
true source at one of the leaves. Whenever a node v passes
a message to node w, it includes three pieces of metadata:
(1) the parent node pw = v, (2) a binary direction indicator
uw ∈ {↑, ↓}, and (3) the node’s level in the infected subtree
mw ∈ N. The parent pw is the node that relayed the message
to w. The direction bit uw flags whether node w is a spine
node, responsible for increasing the depth of the infected
subtree. The level mw describes the hop distance from w to
the nearest leaf node in the final infected subtree, as t→∞.
The parent metadata did not appear in the original protocol
[1], and is included purely to facilitate the adversary’s source
estimation. Even with this extra metadata, the tree protocol
achieves asymptotically optimal hiding.

At time t = 0, the source chooses a neighbor uniformly
at random (e.g., node 1) and passes the message and meta-
data (p1 = 0, u1 =↑, m1 = 1). Figure 4 illustrates an ex-
ample spread, in which node 0 passes the message to node
1. Yellow denotes spine nodes, which receive the message
with uw =↑, and gray denotes those that receive it with
uw =↓. Whenever a node w receives a message, there are
two cases. if uw =↑, node w chooses another neighbor z
uniformly at random and forwards the message with ‘up’ meta-
data: (pz = w, uz =↑, mz = mw + 1). All of w’s remaining
neighbors z′ receive the message with ‘down’ metadata:
(pz′ = w, uz′ =↓, mz′ = mw − 1). For instance, in Figure
4, node 1 passes the ‘up’ message to node 2 and the ‘down’
message to node 3. On the other hand, if uw =↓ and mw > 0,

node w forwards the message to all its remaining neighbors
with ‘down’ metadata: (pz = w, uz =↓, mz = mw − 1). If
a node receives mw = 0, it does not forward the message
further. Algorithm 1 describes this process more precisely.

Observe that adaptive diffusion ensures that the infected
subgraph is a balanced tree with the true source at one of
the leaves. Moreover, unlike regular diffusion, the message
does not reach all the nodes in the network under adaptive
diffusion (even when T = ∞). Even though this may seem
like a fundamental drawback for adaptive diffusion, it can be
shown that the infected subgraph has a size proportional to
(d−1)T/2 on regular trees (compared to (d−1)T under regular
diffusion). More critically, real social networks have cycles,
so neighbors of nodes with mw = 0 can still get the message
from other nodes in the network. For instance, in simulation on
a subset of the Facebook social graph, messages spread with
adaptive diffusion reached 81% of network nodes within 20
time steps. Real social networks (and the associated simulation
details) are discussed in greater detail in Section IV.

Algorithm 1 Spreading on a tree
1: Input: contact network G = (V,E), source v∗, time T
2: Output: infected subgraph GT = (VT , ET )
3: V0 ← {v∗}
4: mv∗ ← 0 and uv∗ ←↑
5: v∗ selects one of its neighbors w at random
6: V1 ← V0 ∪ {w}
7: mw ← 1 and uw ←↑
8: t← 2
9: for t ≤ T do

10: for all v ∈ Vt−1 with uninfected neighbors and mv > 0
do

11: if uv =↑ then
12: v selects one of its uninfected neighbors w at

random
13: Vt ← Vt−1 ∪ {w}
14: mw ← mw + 1 and uw ←↑
15: end if
16: for all uninfected neighboring nodes z of v do
17: Vt ← Vt−1 ∪ {z}
18: uz ←↓ and mz ← mv − 1
19: end for
20: end for
21: t← t+ 1
22: end for

In the spy-based adversarial model, each spy si in the
network observes any received messages, the associated meta-
data, and a timestamp Tsi . Figure 4 (right) illustrates the
information observed by each spy node, where spies are
outlined in red.

ML estimator under adaptive diffusion. A precise ML
estimation algorithm is detailed in Algorithm 2. Because
adaptive diffusion has deterministic timing, spies only help
the estimator discard candidate nodes. We assume the message
spreads for an infinite time. Then there is at least one spy on
the spine with probability one; consider the first such spy to
receive the message, s0. Notice that it is possible to derive an
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Fig. 4. Message spread using the tree protocol from [1] (left), and the
information observed by the spy nodes 3, 7, and 8 (right). Timestamps in
this figure are absolute, but they need not be.

Algorithm 2 ML Source Estimator for Algorithm 1
1: Input: contact network G = (V,E), spy nodes S =
{s0, s1 . . .} and metadata si : (psi ,msi , usi)

2: Output: ML source estimate v̂ML

3: Let s0 denote the lowest-level spine spy, with metadata
(ps0 ,ms0 , us0).

4: Ṽ ← {v ∈ V : δH(v, s0) ≤ ms0 and ps0 ∈ P(v, s0)}
5: Ẽ ← {(u, v) : (u, v) ∈ E and u, v ∈ Ṽ }
6: Define the feasible subgraph as F (Ṽ , Ẽ)
7: L← ∅ {Set of feasible pivots}
8: K ← ∅ {Set of eliminated pivot neighbors}
9: for all s ∈ S with s ∈ Ṽ do

10: Let
[
hs,`s
h`s,s0

]
= 1

2

[
1 −1
1 1

]
·
[
|P (s, s0)|
Ts0 − Ts

]
11: `s ← v ∈ P(s, s0) : δH(s, `s) = hs,`s
12: ks ← v ∈ P(s, s0) : δH(s, ks) = hs,`s − 1
13: L← L ∪ {`s} {Add pivot}
14: K ← K ∪ {ks} {Add pivot neighbor}
15: end for
16: Find the lowest-level pivot: `min ← argmin`∈Lm`

17: U ← ∅ {Candidate sources}
18: for all v ∈ Ṽ where v is a leaf in F (Ṽ , Ẽ) do
19: if P(v, `min) ∩K = ∅ then
20: U ← U ∪ {v}
21: end if
22: end for
23: return v̂ML, drawn uniformly from U

ML estimate without requiring the presence of a spine spy;
the estimator described here uses a spine spy purely for ease
of exposition. This spine spy (along with its parent and level
metadata) allows the estimator to specify a feasible subtree
in which the true source must lie. In Figure 4, node 8 is
on the spine with level m8 = 4, so the feasible subtree is
rooted at node 5 and contains all the pictured nodes except
node 8 (9’s children and grandchildren also belong, but are not
pictured). Spies outside the feasible subtree do not influence
the estimator, because their information is independent of
the source conditioned on s0’s metadata. Only leaves of the
feasible subtree could have been the source—e.g., nodes 0, 3,
6, and 7, as well as 9’s grandchildren.

The estimator then uses spies within the feasible subtree

to prune out candidates. The goal is to identify nodes in the
feasible subtree that are on the spine and close to the source.
For each spy in the feasible subtree, there exists a unique path
to the spine spy s0, and at least one node on that path is on
the spine; the spies’ metadata reveals the identity and level of
the spine node on that path with the lowest level—we call this
node a pivot.

To identify pivot nodes, consider the first spine spy s0 and
all spies in the feasible subtree. For each spy s in the feasible
subtree (none of which lies on the spine), there exists a unique
path between s and s0. There exists a unique node on this path
that is both part on the spine and closer to the true source than
any other node in the path—this is precisely the pivot node.
The estimator uses the observed metadata to infer the pivot,
as well as its level in the infected subtree, for each spy in the
feasible subtree. This inference proceeds by solving a system
of equations:

hs,`s + h`s,s0 = |P(s, so)|
h`s,s0 − hs,`s = Ts0 − Ts

where P(s, so) denotes the path between s and so, hs,`s =
δH(s, `s) denotes the distance from spy si to the pivot node
`s, and h`s,s0 is equal to δH(`s, so) by construction. This
system of equations always has a unique solution; hence the
uniqueness of `s given s and s0. The first equation holds by
construction. The second equation holds because conditioned
on the time at which the pivot receives the message T`s , s0
receives the message at time T`s + h`s,s0 , and s receives it at
T`s + hs,`s .

For instance, in Figure 4 (right), we can use spies 7 and 8 to
learn that node 2 is a pivot with level m2 = 2. After identifying
all the pivot nodes, the estimator chooses the minimum-level
pivot across all spy nodes, `min. In the example, `min = 1,
since spies 3 and 8 identify node 1 as a pivot with level m1 =
1. The true source must lie in a subtree that is rooted at a
neighbor of `min, and contains no spies (in our example, this
leaves only node 0, the true source).

We now explain why timing information enables the esti-
mator to disregard any subtree neighboring `min that contains
at least one spy. Let L denote the set of pivots corresponding
to each spy in the feasible subtree; in the example in Figure
4, L = {1, 2}. Define `min = argmin`∈Lm`. That is, `min
denotes the pivot closest to the true source in hop distance,
i.e., whose level is lowest. Now consider the subtrees of
depth m`min − 1 rooted at the neighbors of `min. The subtree
including s0 cannot contain the true source because we know
the message traveled from `min to s0. The source must
therefore lie in one of the remaining d− 1 neighbor subtrees,
which we refer to as candidate subtrees.

We now argue that the estimator can rule out any candidate
subtree of `min that contains at least one spy node. Suppose
otherwise: there is a candidate subtree containing a spy s,
and the source v∗ is contained in that subtree. Then the path
P(v∗, s) cannot pass through `min because `min does not
belong to any of its own neighboring subtrees by construction.
Then there must exist some node `′ on the spine such that
|P(`′, s)| < |P(`min, s)|. But this is a contradiction because
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`min is chosen as the minimum-level pivot across all spies,
and each spy has a unique pivot on the spine.

Since we can now rule out candidate subtrees with at least
one spy, let X+1, X ∈ N be the number of candidate subtrees
containing no spies. We use this notation because there will
always be at least one candidate subtree with no spies (the one
containing the true source). In Figure 4, X = 0. Thus, the ML
estimator chooses one of the leaves in the remaining X + 1
candidate subtrees uniformly at random. All remaining nodes
in V \U have likelihood 0, where U is the set of all candidate
source nodes.

Anonymity properties of adaptive diffusion. Using the
previously-described ML estimation procedure, we can exactly
compute the probability of detection when adaptive diffusion
is run over a d-regular tree.

Theorem 1. Suppose the contact network is a regular tree
with degree d > 2. There is a source node v∗, and each node
other than the source is chosen to be a spy node i.i.d. with
probability p as described in the spy model. Against colluding
spies attempting to detect the location of the source, adaptive
diffusion achieves the following:

(a) The probability of detection is

P(v̂ML = v∗) = p+
1

d− 2
−
∞∑
k=1

qk
(d− 1)k

,

where

qk ≡ (1− (1− p)((d−1)
k−1)/(d−2))d−1

+ (1− p)((d−1)
k+1−1)/(d−2).

(b) The expected distance between the source and the
estimate is bounded by

E[δH(v̂ML, v
∗)] ≥ 2

∞∑
k=1

k · rk, (1)

where |Td,k| = (d−1)k−1
d−2 , and

rk ≡ 1

d− 1

(
(1− (1− p)|Td,k|)d−1 + (d− 1)(1− p)|Td,k|

− (d− 2)(1− p)|Td,k|(d−1) − 1
)
.

The proof is included in Section VI-B1. Briefly, it computes
the probability of detection by conditioning on the lowest-level
pivot node, `min. Given a pivot, the probability of detection
depends on the number of subtrees rooted at the neighbors of
`min containing no spies. Figure 3 illustrates the theoretical
probability of detection and lower bound on expected distance
from the true source as a function of the spy probability. We
make two key observations:

Asymptotically optimal probability of detection: As tree
degree d increases, the probability of detection converges
to the degree-independent fundamental limit in Proposition
III.1, i.e., P(V ∗ = v̂ML) = p. This is in contrast to diffusion,
whose probability of detection tends to 1 asymptotically in
d. The median Facebook user has 200 friends [32], so these
asymptotics have practical implications, as we will see in
Section IV.

Expected hop distance asymptotically increasing: We ob-
serve empirically that for regular diffusion, E[δH(v̂ML, v

∗)]
approaches 0 as d increases. On the other hand, for
adaptive diffusion with a fixed p > 0, as d → ∞,
lim supE[δH(v̂ML, v

∗)] = 2(1 − p). This holds because with
probability (1 − p), the first node is not a spy, but with
probability approaching 1 for d large enough, the first node
on the spine will be a pivot node. Since the source is always
a leaf, the distance from the estimate to the source will be
at most 2 with probability approaching (1 − p). Figure 3
includes the line 2(1− p) for reference, and we observe that
as d → ∞, E[δH(v̂ML, v

∗)] appears to converge precisely to
this line. However, for a fixed d, Theorem 1 implies that as
p→ 0, E[δH(v̂ML, v

∗)]→∞.

IV. GENERALIZATIONS

Graphs. Here, we consider irregular, cyclic, and finite
graphs that arise in real contact networks. Regardless of
whether the graph has cycles, the message always propagates
over a tree superimposed on the underlying contact network.
This is because we do not allow nodes to be ‘infected’ more
than once.1

Given that messages always propagate over a tree, the prob-
ability of detection over irregular trees is tied to performance
over general graphs. ML estimation over irregular trees is
more straightforward than in [1], primarily because we use
the specialized tree protocol that places the source at a leaf
node.
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Fig. 5. Probability of detection over the Facebook dataset [33], with standard
error.

Proposition IV.1. Suppose the underlying contact network
G(V,E) is an irregular tree with the degree of each node

1In practice, we can satisfy this condition without leaking information by
asking nodes to send hashed IDs of their received messages over each active
neighboring connection. A node that wants to transmit a message (and its
associated metadata) only transmits if the message’s hash is not included in
the recipient’s list of previously-received packets. This achieves two goals:
recipients will not be infected more than once, and the recipient does not
learn which message the sender wanted to transmit. This prevents the recipient
from learning metadata for any given message after the first time it receives
that message. Notice that this mechanism assumes an honest-but-curious
adversarial model (as is the case throughout this work).
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larger than one. One node v∗ ∈ V starts spreading a message
at time T = 0 according to Protocol 1. Each node v ∈ V ,
v 6= v∗ is a spy with probability p. Let U denote the set of
feasible candidate sources obtained by estimation Algorithm
2. Then the maximum likelihood estimate of v∗ given U
is v̂ML = argmaxu∈U

1
deg(u)

∏
v∈P(u,`min)\{u,`min}

1
deg(v)−1 ,

where `min is the lowest-level pivot node, P(u, `min) is the
unique shortest path between u and `min, and deg(u) denotes
the degree of node u (Proof in Section VI-C).

This ML estimator allows us to evaluate adaptive diffusion
over real dataset (social graph connections among 10,000
Facebook users [33]) against a spy-based adversary. We simu-
late adaptive diffusion and regular diffusion for q ∈ {0.1, 0.5}.
We evaluated diffusion with the first-spy estimator, and adap-
tive diffusion with a slightly modified version of the ML
estimator in Proposition IV.1, that accounts for cycles in the
underlying graph. Figure 5 lists the probability of detection
averaged over 200 trials, for p up to 0.15. Not only does
adaptive diffusion hide the source better than diffusion, its
probability of detection in practice is close to the fundamental
lower bound of p. This is likely because the mean node degree
in the dataset is 25, so high-degree asymptotics are significant.
While adaptive diffusion can never reach all nodes in a tree,
cycles in the Facebook graph allow it to reach 81% of nodes
within 20 timesteps.

Adversaries. The spy-based and snapshot adversarial mod-
els capture very different behavior. The spy-snapshot model
considers a natural combination of both: at a certain time
T , the adversary collects both types of metadata and infers
the source. Notably, this stronger model does not significantly
impact the probability of detection as time increases. The
snapshot helps detection when there are few spies by revealing
which nodes are true leaves. This effect is most pronounced for
small T and/or small p. The exact analysis of the probability
of detection at T is given in Equation (15) in Section VI-C,
and Figure 6 illustrates the tradeoff between snapshots and spy
nodes.

V. CONCLUSION

In this paper, we demonstrate that adaptive diffusion has
asymptotically optimal anonymity properties over regular
trees; we also observe in simulation that in real social net-
works, adaptive diffusion hides the source of a message
against computationally-unbounded adversaries that can ob-
serve message metadata at a fraction of corrupted nodes. This
is in contrast with regular diffusion, under which message
sources are reliably caught by a number of different adversarial
models.

We emphasize that these guarantees are statistical rather
than cryptographic; this introduces interesting questions for fu-
ture work. For instance, how does the probability of detection
change if an adversary chooses the placement of “spy nodes”
adversarially (e.g. by trying to corrupt more popular nodes)?
What happens if spy nodes choose not to follow protocol in
order to try to boost their probability of detection?

VI. PROOFS

A. Line Analysis

1) Proof of Proposition II.1: The control packet at spy node
s1 includes the amount of delay at s1 = 0 and all descendants
of s1, which is the set of nodes {−1,−2, . . .}. The control
packet at spy node s2 includes the amount of delay at s2 =
n + 1 and all descendants of s2, which is the set of nodes
{n + 2, n + 3, . . .}. Given this, it is easy to figure out the
whole trajectory of the virtual source for time t ≥ T1. Since
the virtual source follows i.i.d. Bernoulli trials with probability
q, one can exactly figure out q from the infinite Bernoulli trials.
Also the direction D is trivially revealed.

To lighten the notation, suppose that T1 ≤ T2 (or equiva-
lently Ts1 ≤ Ts2 ). Now using the difference of the observed
time stamps Ts2 − Ts1 and the trajectory of the virtual source
between Ts1 and Ts2 , the adversary can also learn the time
stamp T1 with respect to the start of the infection. Further, once
the adversary learns T1 and the location of the virtual source
vT1 , the timestamp T2 does not provide any more information.
Hence, the adversary performs ML estimate using T1, D and
q. Let B(k, n, q) =

(
n
k

)
qk(1 − q)n−k denote the pmf of the

binomial distribution. Then, the likelihood can be computed
for T1 as

P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣v∗, q, `) ={

qB(v∗ − t1
2 − 2, t12 − 2, q)I(v∗∈[2+ t1

2 ,t1])
if t1 even

B(v∗ − t1+3
2 , t1−32 , q) I

(v∗∈[ t1+3
2 ,t1])

if t1 odd
(2)

P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣ v∗, q, r) ={

0 if t1 even
(1− q)B( t1−12 − v∗, t1−32 , q)I

(v∗∈[1, t1−1
2 ])

if t1 odd.

(3)

This follows from the construction of the adaptive diffusion.
The protocol follows a binomial distribution with parameter q
until (T1 − 1). At time T1, one of the following can happen:
the virtual source can only be passed (the first equation in (2)),
it can only stay (the second equation in (3)), or both cases are
possible (the second equation in (2)).

Given T1, Q and D, which are revealed under the ad-
versarial model we consider, the above formula implies that
the posterior distribution of the source also follows a bino-
mial distribution. Hence, the ML estimate is the mode of a
binomial distribution with a shift, for example when t1 is
even, ML estimate is the mode of 2 + (t1/2) + Z where
Z ∼ Binom((t1/2) − 2, q). The adversary can compute the
ML estimate:

v̂ML =


T1+2

2 +
⌊
q
(
T1−2

2

)⌋
if T1 even & D = ` ,

T1+3
2 +

⌊
q
(
T1−1

2

)⌋
if T1 odd & D = ` ,

1 +
⌊
(1− q)

(
T1−1

2

)⌋
if T1 odd & D = r .

(4)
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Together with the likelihoods in Eqs. (2) and (3), this gives

P(adaptive)
T1,D|V ∗,Q

(
t1, r, v̂ML = v∗

∣∣v∗, q) =
1

2
(1− q)B

( t1 − 1

2
− v∗, t1 − 3

2
, q
)
I(v̂ML=v∗) I(t1 is odd) (5)

P(adaptive)
T1,D|Q

(
t1, r, V

∗ = v̂ML

∣∣q) =
1

2n
(1− q)B

( t1 − 1

2
− v̂ML,

t1 − 3

2
, q
)
I(t1 is odd) (6)

≤ (1− q)
2n

(√2 I(t1 is odd and t1 > 3)√
t1−3
2 q(1− q)

+ I(t1=3)

)
(7)

where v̂ML = v̂ML(t1, q, r) is provided in (4), and the
bound on B(·) follows from Gaussian approximation (which
gives an upper bound 1/

√
2πkq(1− q)) and Berry-Esseen

theorem (which gives an approximation guarantee of 2 ×
0.4748/

√
kq(1− q)), for k = (t1 − 3)/2. Marginalizing out

T1 ∈ {3, 5, . . . , 2b(n−1)/2c+1} and applying an upper bound∑k
i=1 1/

√
i ≤ 2

√
k + 1 − 2 ≤ 2

√
k − 1 +

√
1/(2(k − 1)) −

2 ≤
√
4(k − 1), we get

P
(
D = r, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

(1− q)
√
2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1− q
2n

. (8)

Similarly, we can show that

P
(
D = `, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

√
2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1

n
, (9)

P
(
V ∗ = v̂ML, T1 is even

∣∣Q = q
)
≤

q
√
2

2n
√
q(1− q)

√
8
⌊n
2

⌋
+

1 + q

2n
, (10)

Summing up,

P(V ∗ = v̂ML|Q = q) ≤

√
8

n q (1− q)
+

2

n
. (11)

Recall Q is uniformly drawn from [0, 1]. Taking expectation
over Q gives

P(V ∗ = v̂ML) ≤ π

√
8

n
+

2

n
, (12)

where we used
∫ 1

0
1/
√
x(1− x)dx = arcsin(1) −

arcsin(−1) = π.

B. Regular Tree Analysis

1) Proof of Theorem 1: Probability of Detection: We con-
dition on the lowest-level pivot node, `min, giving P(v̂ML =
v∗) =

∑
`min

P(v̂ML = v∗|`min)P(`min). Since `min lies on
the spine, this is equivalent to conditioning on the distance of
`min from the true source.

P(v̂ML = v∗) =

∞∑
k=1

(1− p)(|Td,k|−1) p

|∂Td,k|︸ ︷︷ ︸
`min (kth spine node) is a spy

+ (1− p)|Td,k|EX
[ I(X 6= d− 2)

(X + 1) |∂Td,k|

]
︸ ︷︷ ︸

`min (kth spine node) not a spy

(13)

where X ∼ Binom(d− 2, (1− p)|Td,k|), |Td,k| = (d−1)k−1
d−2 is

the number of nodes in each candidate subtree for a pivot at
level k, and |∂Td,k| = (d− 1)k−1 is the number of leaf nodes
in each candidate subtree. Let w = (1− p). We have that

EX
[ I(X 6= d− 2)

(X + 1) |∂Td,k|

]
=

1

|∂Td,k|

(
EX
[ 1

X + 1

]
−

1

d− 1
w|Td,k|·(d−2)

)
=

1

|∂Td,k|

( 1

(d− 1)w|Td,k|
(1− (1− w|Td,k|)d−1)−

1

d− 1
w|Td,k|·(d−2)

)
where the last line results from the expression for the expecta-
tion of 1/(1 +X) when X is binomially-distributed. Namely
if X ∼ Binom(ñ, p̃), then E[1/(X + 1)] = 1

(ñ+1)p̃ (1 − (1 −
p̃)ñ+1). Simplifying gives

PD =

∞∑
k=1

1

(d− 1)k

[
(d− 1)pw|Td,k|−1 + 1− w|Td,k|·(d−1)

−(1− w|Td,k|)d−1
]

= p+
1

d− 2
+

∞∑
k=1

1

(d− 1)k

[
pw|Td,k+1|−1 −

w|Td,k|·(d−1) − (1− w|Td,k|)d−1
]

= p+
1

d− 2
−
∞∑
k=1

1

(d− 1)k

[
w|Td,k+1| +

(1− w|Td,k|)d−1
]
.

where the last line holds because |Td,k+1|−1 = |Td,k|·(d−1).
Expected hop distance: In the main paper, we lower

bounded the expected hop distance by assuming that the
estimator guesses the source exactly whenever (a) the pivot
`min is a spy node or (b) the estimator chooses the correct
candidate subtree. Therefore, if the pivot `min is at level k,
we only consider estimates that are exactly 2k hops away.
The estimator chooses an incorrect candidate subtree with
probability X/(X + 1).

E[δH(v̂ML, v
∗)] ≥

∞∑
k=1

2k(1− p)|Td,k|EXk

[Xk · I(Xk 6= d− 2)

(Xk + 1)

]
. (14)
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If Xk ∼ Binom(ñ, p̃), where ñ and p̃ depend on d and k, we
have

EXk

[Xk · I(Xk 6= ñ)

(Xk + 1)

]
=

1

(ñ+ 1)p̃

[
(1− p̃)ñ + p̃(1− (1− p̃)ñ + ñ)− 1− ñp̃ñ+1

]
Simplifying and substituting p̃ = (1− p)|Td,k| and ñ = d− 2
gives the expression in the theorem.

Note that this bound is trivially 0 for d = 3, since we ignore
all nodes in the correct candidate subtree; when d = 3, the
source’s candidate subtree is the only valid option if `min is
not a spy. However, for a fixed p with d → ∞, this lower
bound approaches the upper bound of 2(1− p).

Obtaining a tighter bound is straightforward, but increases
the complexity of the expression. These tighter bounds were
used for the plots in the main paper. A tighter bound results
from considering the cases when (a) the pivot `min is a spy
node or (b) the estimator chooses the correct candidate subtree.
In both cases, we ignore all but the most distant estimates. For
instance, if `min is on the spine at level k, then the estimate
will be at most 2(k − 1) hops away. Using this rule for both
cases (a), we compute the probability of selecting one of the
most distant options:

ak ≡
d− 2

d− 1
(1− p)|Td,k|(d−1)

and for case (b):

bk ≡ p
d− 2

d− 1
(1− p)|Td,k|−1

Overall, we get a lower bound of

E[δH(v̂ML, v
∗)] ≥

∞∑
k=1

2(krk + (k − 1)(ak + bk))

C. Irregular Tree Analysis

1) Proof of Proposition IV.1: All nodes in V \U have
likelihood zero, as discussed in the proof of Theorem 1 (recall
that V denotes the set of all nodes, and U denotes the set of
candidate nodes). The only randomness in adaptive diffusion
spreading occurs when a spine node with uninfected neighbors
decides which of its neighbors will be added to the spine next.
Thus, the (log) likelihood of a candidate source is the sum
of the (log) likelihoods of all candidate spine nodes starting
at the candidate source. Regardless of which node u ∈ U
is the true source, the spine must pass through `min; since
there is a unique path between u and `min over trees, the
only feasible sequence of candidate spine nodes starting at
candidate u must traverse P(u, `min). By the Markov property
of the adaptive diffusion spreading mechanism, we only need
to consider the likelihood of a candidate spine prior to reaching
`min. The propagation of the spine thereafter is conditionally
independent of the true source, and therefore equally-likely
for all candidates. The maximum likelihood estimator must
therefore compute the likelihood of each such candidate sub-
spine P(u, `min). Since each spine node v chooses one
of its uninfected neighbors uniformly at random to be the

next spine node, the choice of next spine node is simply
1/(deg(v)− 1). Similarly, the likelihood of candidate source
u sending the spine in a particular direction is 1/ deg(u). The
overall likelihood of a candidate is therefore proportional to
the product of these degree terms.
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Fig. 6. Probability of detection under the spies+snapshot adversarial model.
As estimation time and tree degree increase, the effect of the snapshot on
detection probability vanishes.

2) Analysis of spy+snapshot adversarial model: We follow
closely the proof of Theorem 1 in Appendix VI-B1. Given a
snapshot at a certain even time T , if there are at least two
spy nodes infected at time T , then the adversary can perform
the exact same estimation as he did with only spy nodes with
T → ∞. We only need to carefully analyze what happens
when there are only one spy infected or no spies are infected.

We condition on the lowest-level pivot node, `min, giving
P(v̂ML = v∗) =

∑
`min

P(v̂ML = v∗|`min)P(`min). Since
`min lies on the spine, this is equivalent to conditioning on the
distance of `min from the true source. We first define |Sd,T | =
1+d((d−1)T/2−1)/(d−2) as the number of nodes infected
at time T , and |∂Sd,T | = d(d − 1)(T/2)−1 as the number of
leaves in the infected subtree. Then,
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P(v̂ML = v∗) =
(1− p)|Sd,T |−1

|∂Sd,T |︸ ︷︷ ︸
no spy

+

T/2∑
k=1

{ (1− p)(|Td,k|−1) p

|∂Td,k|︸ ︷︷ ︸
`min (kth spine node) is a spy

+

(1− p)|Td,k|(1− (1− p)|Sd,T |−|Td,k+1|)EX
[ I(X 6= d− 2)

(X + 1) |∂Td,k|

]
︸ ︷︷ ︸

`min (kth spine node) not a spy

+

(1− p)|Sd,T |−(|Td,k+1|−|Td,k|)EX
[ I(X 6= d− 2)

|∂Sd,T | − (d− 2−X)|∂Td,k|

]
︸ ︷︷ ︸

all spy descendants of k-th spine node

}
,

(15)

where X ∼ Binom(d− 2, (1− p)|Td,k|), |Td,k| = (d−1)k−1
d−2 is

the number of nodes in each candidate subtree for a pivot at
level k, and |∂Td,k| = (d− 1)k−1 is the number of leaf nodes
in each candidate subtree.
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