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Secure Multi-Party Differential Privacy

Private multi-party computation:
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private multi-party computation

parties exchange information to compute their functions
central observer interested in computing a separate function f0
x1, x2, · · · , x5 are independent binary variables
important setting in distributed in statistics and cloud computing

Interactive vs. non-interactive mechanisms:
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non-interactive mechanisms
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interactive mechanisms
a more general representation:

1x 2x kx
 , ( | )xP P x 

: transcript

multi-party privatization mechanism Px,x̃

P ∈ [0, 1]2
k×|T |, where T is the space of all output transcripts

x = (x1, x2, · · · , xk)

τ -th column of P is a rank 1 tensor =⇒ P(x|τ ) =
∏

i

P(xi|τ )

Local differential privacy:

A mechanism P is {eεi, δi}-differentially private if

P(τ |xi, x−i) ≤ eεi P(τ |x′i, x−i) + δi ∀i, xi, x′i, x−i, τ

x−i = (x1, · · · , xi−1, xi+1, · · · , xk)

The Fundamental Privacy-Utility Tradeoff

Function estimation:

: transcript
estimation

estimation
error

,ˆ )(i ixf  ( , )ˆi i iw f f

user i estimates fi using τ and xi

the central observer estimates f0 using τ

Average accuracy case:

ACCave(P,wi, fi, f̂i) ≡
1
2k

∑
x∈{0,1}k

Ef̂i,Px,τ
[wi(fi(x), f̂i(τ, xi))]

if wi(y, y′) = I(y=y′) then ACCave = probability of correct estimation
for a fixed Px,τ , the optimal estimation rule is

f̂i,opt(τ, xi) = arg max
y

∑
x−i∈{0,1}k−1

Px,τ wi(fi(x), y)

Fundamental Privacy-Utility Tradeoff:

maximize accuracy subject to privacy constraints

maximize
P,f̂i

ACCave(P,wi, fi, f̂i),

subject to P and f̂i are row-stochastic matrices, rank(P(τ )) = 1 ∀τ
P(xi,x−i),τ ≤ eεiP(x′i,x−i),τ + δi ∀i, xi, x′i, x−i, τ

P(τ ) is the k-th order tensor of the τ -th column of P

The randomized response mechanism:
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The Optimality of the Randomized Response Mechanism

For any pair (eεi, δi), any function fi, and any accuracy measure wi, the
randomized response, along with its corresponding optimal estimation rule,
achieves the maximum accuracy for the i-th party, among all
{eεi, δi}-differentially private interactive protocols and all estimation rules.

interaction is not needed!
Randomized response is also optimal for the worst case accuracy

Multi-Party XOR

Multi-Party XOR

Consider k-party computation for f0(x) = x1 ⊕ · · · ⊕ xk, and the estimation
accuracy measure is one if correct and zero if not, i.e. w0(0, 0) = w0(1, 1) = 1
and w0(0, 1) = w0(1, 0) = 0. For any {eε, 0}-differentially private protocol P and
any decision rule f̂ , the average case accuracy is bounded by

ACCave(P,w0, f0, f̂0) ≤
∑bk/2c

i=0

( k
2i

)
eε(k−2i)

(1 + eε)k ,

where equality is achieved by the randomized response

optimal estimation rule: XOR all the received privatized bits
when ε ' 0, ACCave = 0.5 + 2−(k+1)εk + O(εk+1)

Generalization to Multiple Bits

one party with one bit x and the second party has two bits y1 and y2

f (x, y1, y2) =

{
y1 ⊕ y2 if x = 0 ,
y1 ∧ y2 if x = 1 .

randomized response: publish privatized versions of x, y1, and y2
interactive mechanism: party 2 observes x̃ and privatizes

y1 ⊕ y2 if x̃ = 0
y1 ∧ y2 if x̃ = 1

estimation accuracy is measured by the Hamming distance
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