Secure Multi-Party Differential Privacy

Private multi-party computation:

private multi-party computation

- parties exchange information to compute their functions
- central observer interested in computing a separate function. x_1, x_2, \cdots, x_5 are independent **binary** variables
- important setting in distributed in statistics and cloud computing

Interactive vs. non-interactive mechanisms:

interactive mechanisms

a more general representation:

non-interactive mechanisms

multi-party privatization mechanism $P_{x,\tilde{x}}$

 $P \in [0, 1]^{2^k \times |\mathcal{T}|}$, where \mathcal{T} is the space of all output transcripts $\blacksquare x = (x_1, x_2, \cdots, x_k)$

 τ -th column of P is a rank 1 tensor $\implies P(x|\tau)$

Local differential privacy:

• A mechanism P is $\{e^{\varepsilon_i}, \delta_i\}$ -differentially private if

$$\mathbb{P}(\tau|x_i, x_{-i}) \leq e^{\varepsilon_i} \mathbb{P}(\tau|x'_i, x_{-i}) + \delta_i \quad \forall i, x_i, x'_i, \ldots$$

 $x_{-i} = (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_k)$

Neural Information Processing Systems (NIPS), December 2015

$$\mathbf{n} f_0$$

$$=\prod_i P(x_i|\tau)$$

 X_{-i}, τ

The Fundamental Privacy-Utility Tradeoff

Function estimation:

au : transcript

- user *i* estimates f_i using τ and x_i
- the central observer estimates f_0 using τ

Average accuracy case:

$$\operatorname{ACC}_{\operatorname{ave}}(P, w_i, f_i, \hat{f}_i) \equiv \frac{1}{2^k} \sum_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}}[w_i(f_i(x), \hat{f}_i(\tau, x_i))]$$

If $w_i(y, y') = \mathbb{I}_{(y=y')}$ then ACC_{ave} = probability of correct estimation • for a fixed $P_{\chi,\tau}$, the optimal estimation rule is

$$\hat{f}_{i,\text{opt}}(\tau, x_i) = \arg\max_{y}$$

Fundamental Privacy-Utility Tradeoff:

- maximize accuracy subject to privacy constraints
- maximize $ACC_{ave}(P, w_i, f_i, f_i)$, P,f_i
- subject to *P* and \hat{f}_i are row-stochastic matrices, rank $(P^{(\tau)}) = 1 \quad \forall \tau$ $P_{(x_i,x_{-i}),\tau} \leq e^{\varepsilon_i} P_{(x'_i,x_{-i}),\tau} + \delta_i \quad \forall i, x_i, x'_i, x_{-i}, \tau$
- \blacksquare $P^{(\tau)}$ is the k-th order tensor of the τ -th column of P

The randomized response mechanism:

The Optimality of the Randomized Response Mechanism

For any pair $(e^{\varepsilon_i}, \delta_i)$, any function f_i , and any accuracy measure w_i , the randomized response, along with its corresponding optimal estimation rule, achieves the maximum accuracy for the *i*-th party, among all $\{e^{\varepsilon_i}, \delta_i\}$ -differentially private interactive protocols and all estimation rules.

interaction is not needed!

Randomized response is also optimal for the worst case accuracy

Secure Multi-Party Differential Privacy

Peter Kairouz, Sewoong Oh, and Pramod Viswanath E-mails: {kairouz2, swoh, pramodv}@illinois.edu

University of Illinois at Urbana Champaign, USA

$$\sum_{i \in \{0,1\}^{k-1}} P_{x,\tau} w_i(f_i(x), y)$$

Multi-Party XOR

Multi-Party XOR

optimal estimation rule: XOR all the received privatized bits when $\varepsilon \simeq 0$, ACC_{ave} = $0.5 + 2^{-(k+1)}\varepsilon^k + O(\varepsilon^{k+1})$

Generalization to Multiple Bits

• one party with one bit x and the second party has two bits y_1 and y_2

- $y_1 \oplus y_2$ if $\tilde{x} = 0$
- $y_1 \wedge y_2$ if $\tilde{x} = 1$

Going Forward

"The Composition Theorem in Differential Privacy", ICML 2015 "Extremal Mechanisms for Local Differential Privacy", NIPS 2014

Consider *k*-party computation for $f_0(x) = x_1 \oplus \cdots \oplus x_k$, and the estimation accuracy measure is one if correct and zero if not, i.e. $w_0(0,0) = w_0(1,1) = 1$ and $w_0(0,1) = w_0(1,0) = 0$. For any $\{e^{\varepsilon}, 0\}$ -differentially private protocol P and any decision rule \hat{f} , the average case accuracy is bounded by

$$\operatorname{ACC}_{\operatorname{ave}}(P, w_0, f_0, \hat{f}_0) \leq \frac{\sum_{i=0}^{\lfloor k/2 \rfloor} {k \choose 2i} e^{\varepsilon(k-2i)}}{(1+e^{\varepsilon})^k},$$

where equality is achieved by the randomized response

 $f(x, y_1, y_2) = \begin{cases} y_1 \oplus y_2 & \text{if } x = 0 \\ y_1 \wedge y_2 & \text{if } x = 1 \end{cases}$

randomized response: publish privatized versions of x, y_1 , and y_2 interactive mechanism: party 2 observes \tilde{x} and privatizes

estimation accuracy is measured by the Hamming distance Average accuracy

