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Abstract

Local differential privacy has recently surfaced as a strong measure of privacy
in contexts where personal information remains private even from data analysts.
Working in a setting where the data providers and data analysts want to maximize
the utility of statistical inferences performed on the released data, we study the
fundamental tradeoff between local differential privacy and information theoretic
utility functions. We introduce a family of extremal privatization mechanisms,
which we call staircase mechanisms, and prove that it contains the optimal privati-
zation mechanism that maximizes utility. We further show that for all information
theoretic utility functions studied in this paper, maximizing utility is equivalent
to solving a linear program, the outcome of which is the optimal staircase mech-
anism. However, solving this linear program can be computationally expensive
since it has a number of variables that is exponential in the data size. To account
for this, we show that two simple staircase mechanisms, the binary and random-
ized response mechanisms, are universally optimal in the high and low privacy
regimes, respectively, and well approximate the intermediate regime.

1 Introduction

In statistical analyses involving data from individuals, there is an increasing tension between the
need to share the data and the need to protect sensitive information about the individuals. For
example, users of social networking sites are increasingly cautious about their privacy, but still find
it inevitable to agree to share their personal information in order to benefit from customized services
such as recommendations and personalized search [1, 2]. There is a certain utility in sharing data for
both data providers and data analysts, but at the same time, individuals want plausible deniability
when it comes to sensitive information.

For such systems, there is a natural core optimization problem to be solved. Assuming both the
data providers and analysts want to maximize the utility of the released data, how can they do so
while preserving the privacy of participating individuals? The formulation and study of an optimal
framework addressing this tradeoff is the focus of this paper.

Local differential privacy. The need for data privacy appears in two different contexts: the local
privacy context, as in when individuals disclose their personal information (e.g., voluntarily on
social network sites), and the global privacy context, as in when institutions release databases of
information of several people or answer queries on such databases (e.g., US Government releases
census data, companies like Netflix release proprietary data for others to test state of the art data
analytics). In both contexts, privacy is achieved by randomizing the data before releasing it. We
study the setting of local privacy, in which data providers do not trust the data collector (analyst).
Local privacy dates back to Warner [29], who proposed the randomized response method to provide
plausible deniability for individuals responding to sensitive surveys.
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A natural notion of privacy protection is making inference of information beyond what is released
hard. Differential privacy has been proposed in the global privacy context to formally capture this
notion of privacy [11, 13, 12]. In a nutshell, differential privacy ensures that an adversary should
not be able to reliably infer whether or not a particular individual is participating in the database
query, even with unbounded computational power and access to every entry in the database except
for that particular individual’s data. Recently, the notion of differential privacy has been extended
to the local privacy context [10]. Formally, consider a setting where there are n data providers each
owning a data Xi defined on an input alphabet X . In this paper, we shall deal, almost exclusively,
with finite alphabets. The Xi’s are independently sampled from some distribution Pν parameterized
by ν ∈ {0, 1}. A statistical privatization mechanism Qi is a conditional distribution that maps
Xi ∈ X stochastically to Yi ∈ Y , where Y is an output alphabet possibly larger than X . The
Yi’s are referred to as the privatized (sanitized) views of Xi’s. In a non-interactive setting where
the individuals do not communicate with each other and the Xi’s are independent and identically
distributed, the same privatization mechanism Q is used by all individuals. For a non-negative ε, we
follow the definition of [10] and say that a mechanism Q is ε-locally differentially private if

sup
S∈σ(Y),x,x′∈X

Q(S|Xi = x)

Q(S|Xi = x′)
≤ eε , (1)

where σ(Y) denotes an appropriate σ-field on Y .

Information theoretic utilities for statistical analyses. The data analyst is interested in the statis-
tics of the data as opposed to individual samples. Naturally, the utility should also be measured in
terms of the distribution rather than sample quantities. Concretely, consider a client-server setting,
where each client with data Xi sends a privatized version of the data Yi, via an ε-locally differen-
tially private privatization mechanismQ. Given the privatized views {Yi}ni=1, the data analyst wants
to make inferences based on the induced marginal distribution

Mν(S) ≡
∫
Q(S|x)dPν(x) , (2)

for S ∈ σ(Y) and ν ∈ {0, 1}. The power to discriminate data generated from P0 to data generated
from P1 depends on the ‘distance’ between the marginals M0 and M1. To measure the ability of
such statistical discrimination, our choice of utility of a particular privatization mechanism Q is an
information theoretic quantity called Csiszár’s f -divergence defined as

Df (M0||M1) =

∫
f
( dM0

dM1

)
dM1 , (3)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL) divergence
Dkl(M0||M1) is a special case with f(x) = x log x, and so is the total variation ‖M0 −M1‖TV

with f(x) = (1/2)|x − 1|. Such f -divergences capture the quality of statistical inference, such as
minimax rates of statistical estimation or error exponents in hypothesis testing [28]. As a motivating
example, suppose a data analyst wants to test whether the data is generated from P0 or P1 based on
privatized views Y1, . . . , Yn. According to Chernoff-Stein’s lemma, for a bounded type I error prob-
ability, the best type II error probability scales as e−nDkl(M0||M1). Naturally, we are interested in
finding a privatization mechanismQ that minimizes the probability of error by solving the following
constraint maximization problem

maximize
Q∈Dε

Dkl(M0||M1) , (4)

where Dε is the set of all ε-locally differentially private mechanisms satisfying (1). Motivated by
such applications in statistical inference, our goal is to provide a general framework for finding
optimal privatization mechanisms that maximize the f -divergence between the induced marginals
under local differential privacy.

Contributions. We study the fundamental tradeoff between local differential privacy and f -
divergence utility functions. The privacy-utility tradeoff is posed as a constrained maximization
problem: maximize f -divergence utility functions subject to local differential privacy constraints.
This maximization problem is (a) nonlinear: f -divergences are convex in Q; (b) non-standard: we
are maximizing instead of minimizing a convex function; and (c) infinite dimensional: the space
of all differentially private mechanisms is uncountable. We show, in Theorem 2.1, that for all f -
divergences, any ε, and any pair of distributions P0 and P1, a finite family of extremal mechanisms
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(a subset of the corner points of the space of privatization mechanisms), which we call staircase
mechanisms, contains the optimal privatization mechanism. We further prove, in Theorem 2.2, that
solving the original problem is equivalent to solving a linear program, the outcome of which is the
optimal staircase mechanism. However, solving this linear program can be computationally expen-
sive since it has 2|X | variables. To account for this, we show that two simple staircase mechanisms
(the binary and randomized response mechanisms) are optimal in the high and low privacy regimes,
respectively, and well approximate the intermediate regime. This contributes an important progress
in the differential privacy area, where the privatization mechanisms have been few and almost no ex-
act optimality results are known. As an application, we show that the effective sample size reduces
from n to ε2n under local differential privacy in the context of hypothesis testing.

Related work. Our work is closely related to the recent work of [10] where an upper bound on
Dkl(M0||M1) was derived under the same local differential privacy setting. Precisely, Duchi et. al.
proved that the KL-divergence maximization problem in (4) is at most 4(eε − 1)2‖P1 − P2‖2TV .
This bound was further used to provide a minimax bound on statistical estimation using information
theoretic converse techniques such as Fano’s and Le Cam’s inequalities.

In a similar spirit, we are also interested in maximizing information theoretic quantities of the
marginals under local differential privacy. We generalize the results of [10], and provide stronger
results in the sense that we (a) consider a broader class of information theoretic utilities; (b) pro-
vide explicit constructions of the optimal mechanisms; and (c) recover the existing result of [10,
Theorem 1] (with a stronger condition on ε).

While there is a vast literature on differential privacy, exact optimality results are only known for a
few cases. The typical recipe is to propose a differentially private mechanism inspired by [11, 13,
26, 20], and then establish its near-optimality by comparing the achievable utility to a converse, for
example in principal component analysis [8, 5, 19, 24], linear queries [21, 18], logistic regression [7]
and histogram release [25]. In this paper, we take a different route and solve the utility maximization
problem exactly.

Optimal differentially private mechanisms are known only in a few cases. Ghosh et. al. showed
that the geometric noise adding mechanism is optimal (under a Bayesian setting) for monotone
utility functions under count queries (sensitivity one) [17]. This was generalized by Geng et. al.
(for a worst-case input setting) who proposed a family of mechanisms and proved its optimality
for monotone utility functions under queries with arbitrary sensitivity [14, 16, 15]. The family of
optimal mechanisms was called staircase mechanisms because for any y and any neighboring x and
x′, the ratio of Q(y|x) to Q(y|x′) takes one of three possible values eε, e−ε, or 1. Since the optimal
mechanisms we develop also have an identical property, we retain the same nomenclature.

2 Main results

In this section, we give a formal definition for staircase mechanisms and show that they are the
optimal solutions to maximization problems of the form (5). Using the structure of staircase mech-
anisms, we propose a combinatorial representation for this family of mechanisms. This allows us
to reduce the nonlinear program of (5) to a linear program with 2|X | variables. Potentially, for
any instance of the problem, one can solve this linear program to obtain the optimal privatization
mechanism, albeit with significant computational challenges since the number of variables scales
exponentially in the alphabet size. To address this, we prove that two simple staircase mechanisms,
which we call the binary mechanism and the randomized response mechanism, are optimal in high
and low privacy regimes, respectively. We also show how our results can be used to derive upper
bounds on f -divergences under privacy. Finally, we give a concrete example illustrating the exact
tradeoff between privacy and statistical inference in the context of hypothesis testing.

2.1 Optimality of staircase mechanisms

Consider a random variable X ∈ X generated according to Pν , ν ∈ {0, 1}. The distribution of the
privatized output Y , whenever X is distributed according to Pν , is represented by Mν and given by
(2). We are interested in characterizing the optimal solution of

maximize
Q∈Dε

Df (M0||M1) , (5)
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whereDε is the set of all ε-differentially private mechanisms satisfying, for all x, x′ ∈ X and y ∈ Y ,

0 ≤
∣∣∣ ln

( Q(y|x)

Q(y|x′)

) ∣∣∣ ≤ ε . (6)

This includes maximization over information theoretic quantities of interest in statistical estimation
and hypothesis testing such as total variation, KL-divergence, and χ2-divergence [28]. In general
this is a complicated nonlinear program: we are maximizing a convex function in Q; further, the
dimension of Q might be unbounded: the optimal privatization mechanism Q∗ might produce an
infinite output alphabet Y . The following theorem proves that one never needs an output alphabet
larger than the input alphabet in order to achieve the maximum divergence, and provides a combi-
natorial representation of the optimal solution.
Theorem 2.1. For any ε, any pair of distributions P0 and P1, and any f -divergence, there exists an
optimal mechanism Q∗ maximizing the f -divergence in (5) over all ε-locally differentially private
mechanisms, such that ∣∣∣ ln( Q∗(y|x)

Q∗(y|x′)

)∣∣∣ ∈ {0, ε} , (7)

for all y ∈ Y, x, x′ ∈ X and the output alphabet size is at most equal to the input alphabet size:
|Y| ≤ |X |.

The optimal solution is an extremal mechanism, since the absolute value of the log-likelihood ratios
can only take one of the two extremal values (see Figure 1). We refer to such a mechanism as a
staircase mechanism, and define the family of staircase mechanisms as

Sε ≡ {Q | satisfying (7)} .

This family includes all the optimal mechanisms (for all choices of ε ≥ 0, P0, P1 and f ), and since
(7) implies (6), staircase mechanisms are locally differentially private.

y = 1

2

x = 1 2 3 4 5

eε

1+eε

1
1+eε

y = 1

2

3

4

x = 1 2 3 4

eε

3+eε

1
3+eε

Figure 1: Examples of staircase mechanisms: the binary and randomized response mechanisms.

For global differential privacy, we can generalize the definition of staircase mechanisms to hold
for all neighboring database queries x, x′ (or equivalently within some sensitivity), and recover all
known existing optimal mechanisms. Precisely, the geometric mechanism shown to be optimal in
[17], and the mechanisms shown to be optimal in [14, 16] (also called staircase mechanisms) are
special cases of the staircase mechanisms defined above. We believe that the characterization of
these extremal mechanisms and the analysis techniques developed in this paper can be of indepen-
dent interest to researchers interested in optimal mechanisms for global privacy and more general
utilities.

Combinatorial representation of the staircase mechanisms. Now that we know staircase mech-
anisms are optimal, we can try to combinatorially search for the best staircase mechanism for any
fixed ε, P0, P1, and f . To this end, we give a simple representation of all staircase mechanisms,
exploiting the fact that they are scaled copies of a finite number of patterns.

Let Q ∈ R|X |×|Y| be a staircase mechanism and k = |X | denote the input alphabet size. Then,
using the definition of staircase mechanisms, Q(y|x)/Q(y|x′) ∈ {e−ε, 1, eε} and each column
Q(y|·) must be proportional to one of the canonical staircase patterns. For example, when k = 3,
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there are 2k = 8 canonical patterns. Define a staircase pattern matrix S(k) ∈ {1, eε}k×(2k) taking
values either 1 or eε, such that the i-th column of S(k) has a staircase pattern corresponding to the
binary representation of i − 1 ∈ {0, . . . , 2k − 1}. We order the columns of S(k) in this fashion for
notational convenience. For example,

S(3) =

[
1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε

]
.

For all values of k, there are exactly 2k such patterns, and any column of Q(y|·) is a scaled version
of one of the columns of S(k). Using this “pattern” matrix, we will show that we can represent (an
equivalence class of) any staircase mechanism Q as

Q = S(k)Θ , (8)

where Θ ∈ R2k×2k is a diagonal matrix representing the scaling of the columns of S(k). We can
now formulate the problem of maximizing the divergence between the induced marginals as a linear
program and prove that it is equivalent the original nonlinear program.
Theorem 2.2. For any ε, any pair of distributions P0 and P1, and any f -divergence, the nonlinear
program of (5) and the following linear program have the same optimal value

maximize
Θ∈R2k×2k

2k∑
i=1

µ(S
(k)
i )Θii (9)

subject to S(k)Θ 1 = 1 ,

Θ is a diagonal matrix ,
Θ ≥ 0 ,

where µ(S
(k)
i ) = (

∑
x∈X P1(x)S

(k)
xi )f(

∑
x∈X P0(x)S

(k)
xi /

∑
x∈X P1(x)S

(k)
xi ) and S(k)

i is the i-th

column of S(k), such that Df (M0||M1) =
∑2k

i=1 µ(S
(k)
i )Θii. The solutions of (5) and (9) are

related by (8).

The infinite dimensional nonlinear program of (5) is now reduced to a finite dimensional linear
program. The first constraint ensures that we get a valid probability transition matrix Q = S(k)Θ
with a row sum of one. One could potentially solve this LP with 2k variables but its computational
complexity scales exponentially in the alphabet size k = |X |. For practical values of k this might
not always be possible. However, in the following section, we give a precise description for the
optimal mechanisms in the high privacy and low privacy regimes.

In order to understand the above theorem, observe that both the f -divergences and the differential
privacy constraints are invariant under permutation (or relabelling) of the columns of a privatization
mechanism Q. For example, the KL-divergence Dkl(M0||M1) does not change if we permute the
columns ofQ. Similarly, both the f -divergences and the differential privacy constraints are invariant
under merging/splitting of outputs with the same pattern. To be specific, consider a privatization
mechanism Q and suppose there exist two outputs y and y′ that have the same pattern, i.e. Q(y|·) =
C Q(y′|·) for some positive constant C. Then, we can consider a new mechanismQ′ by merging the
two columns corresponding to y and y′. Let y′′ denote this new output. It follows that Q′ satisfies
the differential privacy constraints and the resulting f -divergence is also preserved. Precisely, using
the fact that Q(y|·) = C Q(y′|·), it follows that

M ′0(y′′)

M ′1(y′′)
=

∑
x(Q(y|x) +Q(y′|x))P0(x)∑
x(Q(y|x) +Q(y′|x))P1(x)

=
(1 + C)

∑
xQ(y|x)P0(x)

(1 + C)
∑
xQ(y|x)P1(x)

=
M0(y)

M1(y)
=
M0(y′)

M1(y′)
,

and thus the corresponding f -divergence is invariant:

f
(M0(y)

M1(y)

)
M1(y) + f

(M0(y′)

M1(y′)

)
M1(y′) = f

(M ′0(y′′)

M ′1(y′′)

)
M ′1(y′′) .

We can naturally define equivalence classes for staircase mechanisms that are equivalent up to a
permutation of columns and merging/splitting of columns with the same pattern:

[Q] = {Q′ ∈ Sε | exists a sequence of permutations and merge/split of columns from Q′ to Q} . (10)
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To represent an equivalence class, we use a mechanism in [Q] that is ordered and merged to match
the patterns of the pattern matrix S(k). For any staircase mechanism Q, there exists a possibly
different staircase mechanism Q′ ∈ [Q] such that Q′ = S(k)Θ for some diagonal matrix Θ with
nonnegative entries. Therefore, to solve optimization problems of the form (5), we can restrict our
attention to such representatives of equivalent classes. Further, for privatization mechanisms of the
form Q = S(k)Θ, the f -divergences take the form given in (9), a simple linear function of Θ.

2.2 Optimal mechanisms in high and low privacy regimes

For a given P0 and P1, the binary mechanism is defined as a staircase mechanism with only two
outputs y ∈ {0, 1} satisfying (see Figure 1)

Q(0|x) =

{
eε

1+eε if P0(x) ≥ P1(x) ,
1

1+eε if P0(x) < P1(x) .
Q(1|x) =

{
eε

1+eε if P0(x) < P1(x) ,
1

1+eε if P0(x) ≥ P1(x) .
(11)

Although this mechanism is extremely simple, perhaps surprisingly, we will establish that this is the
optimal mechanism when high level of privacy is required. Intuitively, the output is very noisy in the
high privacy regime, and we are better off sending just one bit of information that tells you whether
your data is more likely to have come from P0 or P1.
Theorem 2.3. For any pair of distributions P0 and P1, there exists a positive ε∗ that depends on P0

and P1 such that for any f -divergences and any positive ε ≤ ε∗, the binary mechanism maximizes
the f -divergence between the induced marginals over all ε-local differentially private mechanisms.

This implies that in the high privacy regime, which is a typical setting studied in much of differential
privacy literature, the binary mechanism is a universally optimal solution for all f -divergences in (5).
In particular this threshold ε∗ is universal, in that it does not depend on the particular choice of which
f -divergence we are maximizing. This is established by proving a very strong statistical dominance
using Blackwell’s celebrated result on comparisons of statistical experiments [4]. In a nutshell, we
prove that for sufficiently small ε, the output of any ε-locally differentially private mechanism can be
simulated from the output of the binary mechanism. Hence, the binary mechanism dominates over
all other mechanisms and at the same time achieves the maximum divergence. A similar idea has
been used previously in [27] to exactly characterize how much privacy degrades under composition.

The optimality of binary mechanisms is not just for high privacy regimes. The next theorem shows
that it is the optimal solution of (5) for all ε, when the objective function is the total variation
Df (M0||M1) = ‖M0 −M1‖TV.
Theorem 2.4. For any pair of distributions P0 and P1, and any ε ≥ 0, the binary mechanism max-
imizes total variation between the induced marginals M0 and M1 among all ε-local differentially
private mechanisms.

When maximizing the KL-divergence between the induced marginals, we show that the binary
mechanism still achieves a good performance for all ε ≤ C where C ≥ ε∗ now does not depend on
P0 and P1. For the special case of KL-divergence, let OPT denote the maximum value of (5) and
BIN denote the KL-divergence when the binary mechanism is used. The next theorem shows that

BIN ≥ 1

2(eε + 1)2
OPT .

Theorem 2.5. For any ε and for any pair of distributions P0 and P1, the binary mechanism is an
1/(2(eε + 1)2) approximation of the maximum KL-divergence between the induced marginals M0

and M1 among all ε-locally differentially private mechanisms.

Note that 2(eε + 1)2 ≤ 32 for ε ≤ 1, and ε ≤ 1 is a common regime of interest in differential
privacy. Therefore, we can always use the simple binary mechanism in this regime and the resulting
divergence is at most a constant factor away from the optimal one.

The randomized response mechanism is defined as a staircase mechanism with the same set of
outputs as the input, Y = X , satisfying (see Figure 1)

Q(y|x) =

{
eε

|X |−1+eε if y = x ,
1

|X |−1+eε if y 6= x .
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It is a randomization over the same alphabet where we are more likely to give an honest response.
We view it as a multiple choice generalization of the randomized response proposed by Warner [29],
assuming equal privacy level for all choices. We establish that this is the optimal mechanism when
low level of privacy is required. Intuitively, the noise is small in the low privacy regime, and we
want to send as much information about our current data as allowed, but no more. For a special case
of maximizing KL-divergence, we show that the randomized response mechanism is the optimal
solution of (5) in the low privacy regime (ε ≥ ε∗).
Theorem 2.6. There exists a positive ε∗ that depends on P0 and P1 such that for any P0 and P1, and
all ε ≥ ε∗, the randomized response mechanism maximizes the KL-divergence between the induced
marginals over all ε-locally differentially private mechanisms.

2.3 Lower bounds in differential privacy

In this section, we provide converse results on the fundamental limit of differentially private mech-
anisms. These results follow from our main theorems and are of independent interest in other ap-
plications where lower bounds in statistical analysis are studied [3, 21, 6, 9]. For example, a bound
similar to (12) was used to provide converse results on the sample complexity for statistical estima-
tion with differentially private data in [10].
Corollary 2.7. For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local differ-
ential privacy. Then, for any pair of distributions P0 and P1, and any positive δ > 0, there exists a
positive ε∗ that depends on P0, P1, and δ such that for any ε ≤ ε∗, the induced marginals M0 and
M1 satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 2(1 + δ)(eε − 1)2

(eε + 1)

∥∥P0 − P1

∥∥2

TV
. (12)

This follows from Theorem 2.3 and the fact that under the binary mechanism, Dkl

(
M0||M1

)
=∥∥P0 − P1

∥∥2

TV
(eε − 1)2/(eε + 1) +O(ε3) . Compared to [10, Theorem 1], we recover their bound

of 4(eε − 1)2‖P0 −P1‖2TV with a smaller constant. We want to note that Duchi et al.’s bound holds
for all values of ε and uses different techniques. However no achievable mechanism is provided. We
instead provide an explicit mechanism that is optimal in high privacy regime.

Similarly, in the high privacy regime, we can show the following converse result.
Corollary 2.8. For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local differ-
ential privacy. Then, for any pair of distributions P0 and P1, and any positive δ > 0, there exists a
positive ε∗ that depends on P0, P1, and δ such that for any ε ≥ ε∗, the induced marginals M0 and
M1 satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ Dkl(P0||P1)− (1− δ)G(P0, P1)e−ε .

where G(P0, P1) =
∑
x∈X (1− P0(x)) log(P1(x)/P0(x)).

This follows directly from Theorem 2.6 and the fact that under the randomized response mechanism,
Dkl(M0||M1) = Dkl(P0||P1)−G(P0, P1)e−ε +O(e−2ε) .

Similarly for total variation, we can get the following converse result. This follows from Theorem
2.4 and explicitly computing the total variation achieved by the binary mechanism.
Corollary 2.9. For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local differ-
ential privacy. Then, for any pair of distributions P0 and P1, the induced marginals M0 and M1

satisfy the bound
∥∥M0 −M1

∥∥
TV
≤ ((eε − 1)/(eε + 1))

∥∥P0 − P1

∥∥
TV

, and equality is achieved
by the binary mechanism.

2.4 Connections to hypothesis testing

Under the data collection scenario, there are n individuals each with data Xi sampled from a distri-
bution Pν for a fixed ν ∈ {0, 1}. Let Q be a non-interactive privatization mechanism guaranteeing
ε-local differential privacy. The privatized views {Yi}ni=1, are independently distributed according
to one of the induced marginals M0 or M1 defined in (2).
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Given the privatized views {Yi}ni=1, the data analyst wants to test whether they were generated from
M0 or M1. Let the null hypothesis be H0 : Yi’s are generated from M0, and the alternative hypoth-
esis H1 : Yi’s are generated from M1. For a choice of rejection region R ⊆ Yn, the probability
of false alarm (type I error) is α = Mn

0 (R) and the probability of miss detection (type II error) is
β = Mn

1 (Yn \ R). Let βδ = minR⊆Yn,α<α∗ β denote the minimum type II error achievable while
keeping type I error rate at most α∗. According to Chernoff-Stein lemma, we know that

lim
n→∞

1

n
log βα

∗
= −Dkl(M0||M1) .

Suppose the analyst knows P0, P1, and Q. Then, in order to achieve optimal asymptotic error rate,
one would want to maximize the KL-divergence between the induced marginals over all ε-locally
differentially private mechanisms Q. Theorems 2.3 and 2.6 provide an explicit construction of the
optimal mechanisms in high and low privacy regimes. Further, our converse results in Section 2.3
provides a fundamental limit on the achievable error rates under differential privacy. Precisely,
with data collected from an ε-locally differentially privatization mechanism, one cannot achieve an
asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗
≥ − (1 + δ)(eε − 1)2

(eε + 1)
‖P0 − P1‖2TV ≥ −

(1 + δ)(eε − 1)2

2(eε + 1)
Dkl(P0||P1) ,

whenever ε ≤ ε∗, where ε∗ is dictated by Theorem 2.3. In the equation above, the second inequality
follows from Pinsker’s inequality. Since (eε − 1)2 = O(ε2) for small ε, the effective sample size is
now reduced from n to ε2n. This is the price of privacy. In the low privacy regime where ε ≥ ε∗,
for ε∗ dictated by Theorem 2.6, one cannot achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗
≥ −Dkl(P0||P1) + (1− δ)G(P0, P1)e−ε .

3 Discussion

In this paper, we have considered f -divergence utility functions and assumed a setting where individ-
uals cannot collaborate (communicate with each other) before releasing their data. It turns out that
the optimality results presented in Section 2 are general and hold for a large class of convex utility
function [22]. In addition, the techniques developed in this work can be generalized to find optimal
privatization mechanisms in a setting where different individuals can collaborate interactively and
each individual can be an analyst [23].

Binary hypothesis testing is a canonical statistical inference problem with a wide range of applica-
tions. However, there are a number of nontrivial and interesting extensions to our work. Firstly,
in some scenarios the Xi’s could be correlated (e.g., when different individuals observe differ-
ent functions of the same random variable). In this case, the data analyst is interested in infer-
ring whether the data was generated from Pn0 or Pn1 , where Pnν is one of two possible joint pri-
ors on X1, ..., Xn. This is a challenging problem because knowing Xi reveals information about
Xj , j 6= i. Therefore, the utility maximization problems for different individuals are coupled in
this setting. Secondly, in some cases the data analyst need not have access to P0 and P1, but
rather two classes of prior distribution Pθ0 and Pθ1 for θ0 ∈ Λ0 and θ1 ∈ Λ1. Such problems
are studied under the rubric of universal hypothesis testing and robust hypothesis testing. One
possible direction is to select the privatization mechanism that maximizes the worst case utility:
Q∗ = arg maxQ∈Dε minθ0∈Λ0,θ1∈Λ1

Df (Mθ0 ||Mθ1), where Mθν is the induced marginal under
Pθν . Finally, the more general problem of private m-ary hypothesis testing is also an interesting but
challenging one. In this setting, the Xi’s can follow one of m distributions P0, P1, ..., Pm−1, and
therefore the Yi’s can follow one of m distributions M0, M1, ..., Mm−1. The utility can be defined
as the average f -divergence between any two distributions: 1/(m(m − 1))

∑
i 6=j Df (Mi||Mj), or

the worst case one: mini 6=j Df (Mi||Mj).
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