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Abstract

We study the problem of multi-party computation under approximate (ε, δ) differ-
ential privacy. We assume an interactive setting with k parties, each possessing a
private bit. Each party wants to compute a function defined on all the parties’ bits.
Differential privacy ensures that there remains uncertainty in any party’s bit even
when given the transcript of interactions and all the other parties’ bits. This paper
is a follow up to our work in [9], where we studied multi-party computation under
(ε, 0) differential privacy. We generalize the results in [9] and prove that a simple
non-interactive randomized response mechanism is optimal. Our optimality result
holds for all privacy levels (all values of ε and δ), heterogenous privacy levels
across parties, all types of functions to be computed, all types of cost metrics, and
both average and worst-case (over the inputs) measures of accuracy.

1 Introduction

Multi-party computation (MPC) is a general framework where multiple parties exchange information
over a broadcast channel towards the goal of computing a function over their inputs while keeping
those inputs private [12, 2, 6, 3]. In this paper, we study the problem of multi-party computation under
differential privacy [1, 5, 10, 7]. Each party possesses a single bit of information; the information
bits are statistically independent. Each party is interested in computing a function, which could
differ from party to party, and there could be a central observer (observing the entire transcript of
the interactive communication protocol) that is interested in computing a separate function. The
interactive communication is achieved via a broadcast channel that all parties and central observer
can hear. It is useful to distinguish between two types of communication protocols: interactive and
non-interactive. We say that a communication protocol is non-interactive if a message broadcasted
by one party does not depend on the messages broadcasted by any other party. In contrast, interactive
protocols allow the messages at any stage of the communication to depend on all the previous
messages that were communicated over the broadcast channel.

Our contributions. Our main result is the exact optimality of a simple non-interactive protocol in
terms of maximizing accuracy for any given privacy levels: each party randomizes (sufficiently) its
own bit and broadcasts the noisy version. Each party and the central observer then separately compute
their respective decision functions to maximize the appropriate notion of their accuracy measure.
The optimality is general: it holds for all types of functions, heterogeneous privacy conditions on
the parties, all types of cost metrics, and both average and worst-case (over the inputs) measures of
accuracy. Finally, the optimality result is simultaneous, in terms of maximizing accuracy at each of
the parties and the central observer. Each party only needs to know its own desired level of privacy,
its own function to be computed, and its measure of accuracy. Optimal data release and optimal
decision making are naturally separated.
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Related work. Private MPC was first addressed in [5]. The study of accuracy-privacy tradeoffs
in the MPC context was first initiated by [1], which studies a paradigm where differential privacy
and secure function evaluation (SFE) co-exist. Specific functions, such as the SUM function, were
studied under this setting, but no exact optimality results were provided. In the context of two parties,
privacy-accuracy tradeoffs have been studied in [10, 7] where a single function is computed by a
“third-party" observing the transcript of an interactive protocol. [7] showed that every non-trivial
privacy setting incurs loss on any non-trivial boolean function. Further, focusing on the specific
scenario where each one of the two parties has a single bit of information, [7] characterized the exact
accuracy-privacy tradeoff for AND and XOR functions; the corresponding optimal protocol turns out
to be non-interactive. However, this result was derived under some assumptions: only two parties are
involved, the central observer is the only entity that computes a function, the function has to be either
XOR or AND, symmetric privacy conditions are used for both parties, and accuracy is measured only
as worst-case over the four possible inputs. Further, their analysis technique does not generalize to
the case when there are more than two parties.

The proof of our result critically relies on an operational interpretation of differential privacy in [9].
Precisely, we show that a simple non-interactive randomized response protocol dominates all (ε, δ)-
differentially private multi-party protocols. This powerful technique bypasses the previous results
on the same setting, where weaker results were proved using more sophisticated proof techniques.
Specifically, our work generalizes the results in [9], which only addressed (ε, 0)-differential privacy.

2 Problem Statement

Consider the setting where there are k parties, each with its own private binary data xi ∈ {0, 1}
generated independently. The independence assumption here is necessary because without it each
party can learn something about others, which violates differential privacy, even without revealing any
information. Differential privacy implicitly imposes independence in a multi-party setting. The goal
of each party i ∈ [k] is to compute an arbitrary function fi : {0, 1}k → Y of interest by interactively
broadcasting messages. There might be a central observer who listens to all the messages being
broadcasted, and wants to compute another arbitrary function f0 : {0, 1} → Y . The k parties are
honest in the sense that once they agree on what protocol to follow, every party follows the rules. At
the same time, they can be curious, and each party needs to ensure that other parties cannot learn its
bit with sufficient confidence. This is done by imposing local differential privacy constraints. This
setting is similar to the one studied in [4, 8] in the sense that there are multiple privacy barriers, each
one separating an individual party from the rest of the world. However, the main difference is that we
consider multi-party computation, where there are multiple functions to be computed, and each node
might possess a different function to be computed.

Let x = [x1, . . . , xk] ∈ {0, 1}k denote the vector of k bits, and x−i =
[x1, . . . , xi−1, xi+1, . . . , xk] ∈ {0, 1}k−1 is the vector of bits except for the ith bit. The parties
agree on an interactive protocol P to achieve the goal of multi-party computation. A ‘transcript’ τ is
the output of P , and is it contains the the sequence of messages exchanged between the parties. Let
the probability that a transcript τ is broadcasted (via a series of interactive communications) when
the data is x be denoted by Px,τ = P(τ |x) for x ∈ {0, 1}k and for τ ∈ T . Then, a protocol can be
represented as a matrix denoting the probability distribution over a set of transcripts T conditioned
on x: P = [Px,τ ] ∈ [0, 1]2

k×|T |.

In the end, each party makes a decision on what the value of function fi is, based on its own bit xi
and the transcript τ that was broadcasted. A decision rule is a mapping from a transcript τ ∈ T and
private bit xi ∈ {0, 1} to a decision y ∈ Y represented by a function f̂i(τ, xi). We allow randomized
decision rules, in which case f̂i(τ, xi) can be a random variable. For the central observer, a decision
rule is a function of just the transcript, denoted by a function f̂0(τ).

We consider two notions of accuracy: the average accuracy and the worst-case accuracy. For the ith
party, consider an accuracy measure wi : Y × Y → R (or equivalently a negative cost function) such
that wi(fi(x), f̂i(τ, xi)) measures the accuracy when the function to be computed is fi(x) and the
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approximation is f̂i(τ, xi). Then the average accuracy for this ith party is defined as

ACCave(P,wi, fi, f̂i) ≡ (1)
1

2k

∑
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] ,

where the expectation is taken over the random transcript τ and any randomness in the decision
function f̂i. For example, if the accuracy measure is an indicator such that wi(y, y′) = I(y=y′), then
ACCave measures the average probability of getting the correct function output. For a given protocol
P , it takes (2k |T |) operations to compute the optimal decision rule:

f∗i,ave(τ, xi) = argmax
y∈Y

∑
x−i∈{0,1}k−1

Px,τ wi(fi(x), y) , (2)

for each i ∈ [k]. The computational cost of (2k |T |) for computing the optimal decision rule
is unavoidable in general, since that is the inherent complexity of the problem: describing the
distribution of the transcript requires the same cost. We will show that the optimal protocol requires
a set of transcripts of size |T | = 2k, and the computational complexity of the decision rule for a
general function is 22k. However, for a fixed protocol, this decision rule needs to be computed only
once before any message is transmitted. Further, it is also possible to find a closed form solution
for the decision rule when f has a simple structure. One example is the XOR function where the
optimal decision rule is as simple as evaluating the XOR of all the received bits, which requires O(k)
operations. When there are multiple maximizers y, we can choose either one of them arbitrarily, and
it follows that there is no gain in randomizing the decision rule for average accuracy.

Similarly, the worst-case accuracy is defined as

ACCwc(P,wi, fi, f̂i) ≡ (3)

min
x∈{0,1}k

Ef̂i,Px,τ [wi(fi(x), f̂i(τ, xi))] .

For worst-case accuracy, given a protocol P , the optimal decision rule of the ith party with a bit xi
can be computed by solving the following convex program:

Q(xi) = (4)

arg max
Q∈R|T |×|Y|

min
x−i∈{0,1}k−1

∑
τ∈T

∑
y∈Y

Px,τ wi(fi(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0

The optimal (random) decision rule f∗i,wc(τ, xi) is to output y given transcript τ according to

P(y|τ, xi) = Q
(xi)
τ,y . This can be formulated as a linear program with |T | × |Y| variables and

2k + |T | constraints. Again, it is possible to find a closed form solution for the decision rule when f
has a simple structure: for the XOR function, the optimal decision rule is again evaluating the XOR
of all the received bits requiring O(k) operations.

For a central observer, the accuracy measures are defined similarly, and the optimal decision rule is
now

f∗0,ave(τ) = argmax
y∈Y

∑
x∈{0,1}k

Px,τ w0(f0(x), y) , (5)

and for worst-case accuracy the optimal (random) decision rule f∗0,wc(τ) is to output y given transcript

τ according to P(y|τ) = Q
(0)
τ,y .

Q(0) = (6)

arg max
Q∈R|T |×|Y|

min
x∈{0,1}k

∑
τ∈T

∑
y∈Y

Px,τ w0(f0(x), y)Qτ,y

subject to
∑
y∈Y

Qτ,y = 1 , ∀τ ∈ T and Q ≥ 0
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where w0 : Y × Y → R is the measure of accuracy for the central observer.

Consider the following simple protocol known as the randomized response, which is a term first
coined by [11] and commonly used in many private communications including the multi-party setting
[10]. We will show in Section 3 that this is the optimal protocol that simultaneously maximizes the
accuracy for all the parties. Each party broadcasts a randomized version of its bit denoted by x̃i such
that

x̃i =



0 if xi = 0 with probability δi ,

1 if xi = 0 with probability
(1− δi)eεi
1 + eεi

,

2 if xi = 0 with probability
(1− δi)
1 + eεi

,

3 if xi = 0 with probability 0 ,

x̃i =



0 if xi = 1 with probability 0 ,

1 if xi = 1 with probability
(1− δi)
1 + eεi

,

2 if xi = 1 with probability
(1− δi)eεi
1 + eεi

,

3 if xi = 1 with probability δi .

(7)

The proof of optimality of this randomized response depends on an operational definition of differen-
tial privacy, and we refer to [9].

3 Main Result

We show, perhaps surprisingly, that the simple randomized response presented in (7) is the unique
optimal protocol in a very general sense.

Theorem 3.1 Let the optimal decision rule be defined as in (2) for the average accuracy and (5)
for the worst-case accuracy. Then, for any privacy levels (εi, δi), any function fi : {0, 1}k → Y ,
and any accuracy measure wi : Y × Y → R for i ∈ [k], together with the optimal decision rule,
the randomized response achieves the maximum accuracy for the ith party among all differentially
private interactive and non-interactive protocols. For the central observer, the randomized response
with the optimal decision rule defined in (5) and (7) achieves the maximum accuracy among all
{(εi, δi)}-differentially private interactive protocols and all decision rules for any arbitrary function
f0 and any measure of accuracy w0.

This is a strong optimality result. Every party and the central observer can simultaneously achieve
the optimal accuracy, using a universal randomized response. Each party only needs to know its own
desired level of privacy, its own function to be computed, and its measure of accuracy. Optimal data
release and optimal decision making are naturally separated. It is not immediate at all that such a
simple non-interactive randomized response mechanism would achieve the maximum accuracy. The
proof critically harnesses the data processing inequalities and is provided in [9].

4 Conclusion

In this paper, we studied the problem of differentially private multi-party computation. We showed
that a simple non-interactive randomized response is optimal for all privacy levels (all values of ε and
δ), heterogenous privacy levels across parties, all types of functions to be computed, all types of cost
metrics, and both average and worst-case (over the inputs) measures of accuracy. Though our results
are general, they only handle settings where each party possesses a single bit. In the more general
scenario where parities can have multiple bits, interaction might be critical to achieving the optimal
privacy-utility tradeoffs.
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