Local Differential Privacy

Need for Privacy:

increasing tension between the need to share data and the need to protect personal information with big data comes big responsibilities

individuals want *plausible deniability*

Local Privacy Model:

- data providers do not trust data collectors (analysts)
- privacy is achieved by *randomizing* the data before releasing it
- this local privacy model dates back to Warner, 1965

Local Differential Privacy:

- there are *n* data providers: user *i* owns $X_i \in \mathcal{X}$ (input alphabet)
- we study finite input alphabets $|\mathcal{X}| = k < \infty$
- $\square Q$ is a privatization mechanism that maps X_i stochastically to $Y_i \in \mathcal{Y}$ (output alphabet)
- we allow \mathcal{Y} to be (possibly) larger than \mathcal{X}
- for a non-negative ε , we say that Q is ε -locally differentially private if

$$\sup_{S \in \sigma(\mathcal{Y}), x, x' \in \mathcal{X}} rac{Q(S|X_i = x)}{Q(S|X_i = x')} \leq e$$

we cannot distinguish x from x' upon observing $y \in \mathcal{Y}$

Information Theoretic Utility Functions

Statistical Data Model:

- the X_i's are independently sampled from a distribution P_{ν} parameterized by $\nu \in \{0, 1\}$
- the data analyst is interested in the statistics of the data as opposed to individual samples the power to discriminate data generated from P_0 to data generated from P_1 depends on the 'distance' between the
- privatized marginals M_0 and M_1

$$M_{
u}(S) \equiv \int Q(S|x) dP_{
u}(x) \; ,$$

Information Theoretic Utility:

for some convex function f such that f(1) = 0, Csiszár's f-divergence is defined as

$$D_f(M_0||M_1) = \int f\left(\frac{dM_0}{dM_1}\right) dM_1 ,$$

• KL divergence $D_{kl}(M_0||M_1)$ and total variation $||M_0 - M_1||_{TV}$ are special cases f-divergences capture the quality of statistical inference: minimax rates and error exponents

Fundamental Limits of Privacy:

- the more private you want to be, the less utility you get
- there is a fundamental trade-off between privacy and utility
- \square can we design Q to maximize utility subject to local differential privacy?

we solve the following problem

maximize $D_f(M_0||M_1)$,

 \mathbf{D}_{ε} is the set of all ε -locally differentially private mechanisms

this maximization problem is nonlinear, non-standard, and infinite dimensional

Binary Hypothesis Testing:

given $\{Y_i\}_{i=1}^n$, the data analyst would like to detect whether $\nu = 0$ or $\nu = 1$ Chernoff-Stein's lemma: the best type II error probability scales as $e^{-n D_{kl}(M_0||M_1)}$ we show that when ε is sufficiently small, the effective sample size is reduced from n to $\varepsilon^2 n$

Staircase Mechanisms

Definition of Staircase Mechanisms:

a privatization mechanism is a staircase mechanism if

$$\frac{Q(y|x)}{Q(y|x')} \in \cdot$$

examples of staircase mechanisms: binary and randomized response mechanisms

Main Result 1: Optimality of Staircase Mechanisms

For any ε , any P_0 and P_1 , and any f-divergence, there exists an optimal mechanism Q^* maximizing the f-divergence over all ε -locally differentially private mechanisms, such that Q^* is a staircase mechanism. Moreover, the output alphabet size is at most equal to the input alphabet size: $|\mathcal{Y}| \leq |\mathcal{X}|$.

Combinatorial Representation of Staircase Mechanisms:

- $S^{(k)} \in \{1, e^{\varepsilon}\}^{k \times 2^k}$ is called a staircase pattern matrix if its j-th column $S^{(k)}_i = (e^{\varepsilon} 1)b_{i-1} + 1$ \mathbf{D}_i be the k-dimensional vector corresponding to the binary representation of the integer j.
 - $S^{(3)} = ig| 1 \ 1 \ e^{arepsilon} \ e^{arepsilon} \ 1 \ 1 \ e^{arepsilon} \ e^{arepsilon} ig|$
- If Q is a staircase mechanism, then Q is 'equivalent' to $\tilde{Q} = S^{(k)}\Theta$ for some diagonal matrix $\Theta \in \mathbb{R}^{2^k \times 2^k}$

Main Result 2: Linear Program Formulation

For any ε , any P_0 and P_1 , and any f-divergence, maximizing f-divergence subject to local differential privacy is equivalent to solving the following linear program

> $\underset{\Theta \in \mathbb{R}^{2^{k} \times 2^{k}}}{\text{maximize}} \sum_{i=1}^{k} \mu_{i} \Theta_{ii}$ subject to $S^{(k)}\Theta \mathbb{1} = \mathbb{1}$, $\Theta \geq 0$,

where $\mu_i = (\sum_{x \in \mathcal{X}} P_1(x) S_{xi}^{(k)}) f(\sum_{x \in \mathcal{X}} P_0(x) S_{xi}^{(k)} / \sum_{x \in \mathcal{X}} P_1(x) S_{xi}^{(k)})$

the original maximization problem is now reduced to a *finite dimensional linear program* however, solving this linear program might be computationally expensive if k is large

Binary Mechanisms

Definition of Binary Mechanisms:

$$(0|x) = \begin{cases} rac{e^{arepsilon}}{1+e^{arepsilon}} & ext{if } P_0(x) \ge P_1(x) \ rac{1}{1+e^{arepsilon}} & ext{if } P_0(x) < P_1(x) \ . \end{cases}$$

Optimality of Binary Mechanisms in the High Privacy Regime

For any P_0 and P_1 , there exists a positive ε^* that depends on P_0 and P_1 such that for any f-divergences and all positive $\varepsilon \leq \varepsilon^*$, the binary mechanism maximizes $D_f(M_0||M_1)$ over all ε -local differentially private mechanisms.

Extremal Mechanisms for Local Differential Privacy

$\left\{ oldsymbol{e}^{-arepsilon},oldsymbol{1},oldsymbol{e}^{arepsilon} ight\}$

 $\begin{bmatrix} 1 & 1 & 1 & 1 & e^{\varepsilon} & e^{\varepsilon} & e^{\varepsilon} \end{bmatrix}$ $1 e^{\varepsilon} 1 e^{\varepsilon} 1 e^{\varepsilon} 1 e^{\varepsilon}$

 Θ is a diagonal matrix,

$$D_{xi}^{(k)}$$
) and $D_f(M_0||M_1) = \sum_{i=1}^{2^k} \mu_i \Theta_{ii}$.

$$Q(1|x) = \begin{cases} \frac{e^{\varepsilon}}{1+e^{\varepsilon}} & \text{if } P_0(x) < P_1(x) \\ \frac{1}{1+e^{\varepsilon}} & \text{if } P_0(x) \ge P_1(x) \end{cases}$$

Binary Mechanisms Cnt'd

Optimality of Binary Mechanisms in the High Privacy Regime:

the binary mechanism is universally optimal in the high privacy regime what about the other regimes?

Optimality of Binary Mechanisms for Total Variation Distances

Near Optimality of Binary Mechanisms in the Moderate Privacy Regime

for $\varepsilon \leq 1$, $2(e^{\varepsilon} + 1)^2 \leq 32$

Randomized Response Mechanism

Definition of the Randomized Response Mechanism:

• observe that Q is independent of P_0 and P_1

Optimality of the Randomized Response Mechanism in the Low Privacy Regime

There exists a positive ε^* that depends on P_0 and P_1 such that for any P_0 and P_1 , and all $\varepsilon \geq \varepsilon^*$, the randomized response mechanism maximizes the KL-divergence between the induced marginals over all ε -locally differentially private mechanisms.

Big Picture

Global Differential Privacy:

- global differential privacy is used in *data release* applications
- most research in this area focuses on the high privacy regime
- in the high privacy regime, adding Laplace noise to data is order optimal
- exact optimality results are known only in few cases

Our Approach:

- Iocal differential privacy is recent

Our Methods Generalize:

- preprint available on arXiv

"Differentially Private Multi-party Computation: Optimality of Non-Interactive Randomized Response Peter Kairouz, Sewoong Oh, and Pramod Viswanath, 2014"

Future Directions:

- what if the X_i 's are correlated? what if P_0 and P_1 are not known?
- what about *m*-ary hypothesis testing?

Peter Kairouz, Sewoong Oh, and Pramod Viswanath E-mails: {kairouz2, swoh, pramodv}@illinois.edu

University of Illinois at Urbana Champaign, USA

For any P_0 and P_1 , and any $\varepsilon \ge 0$, the binary mechanism maximizes total variation between the induced marginals M_0 and M_1 among all ε -locally differentially private mechanisms.

For any ε and any P_0 and P_1 , the binary mechanism is an $1/(2(e^{\varepsilon}+1)^2)$ approximation of the maximum KL-divergence between the induced marginals M_0 and M_1 among all ε -locally differentially private mechanisms.

$$(y|x) = \begin{cases} rac{e^{arepsilon}}{|\mathcal{X}| - 1 + e^{arepsilon}} & ext{if } y = x \ rac{1}{|\mathcal{X}| - 1 + e^{arepsilon}} & ext{if } y
eq x \ . \end{cases}$$

can be viewed as a multiple choice generalization to Warner's randomized response

preserve the identity of participating individuals and not their data

the local privacy model is particulary important in data collection applications we consider a broad class of information theoretic utilities we provide *explicit constructions* of *optimal mechanisms*

similar optimality results hold for a large class of convex utility functions our techniques can be generalized to find optimal privatization mechanisms in a setting where different individuals can collaborate interactively and each individual can be an analyst