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Local Differential Privacy

Need for Privacy:
increasing tension between the need to share data and the need to protect personal information
with big data comes big responsibilities
individuals want plausible deniability

Local Privacy Model:
data providers do not trust data collectors (analysts)
privacy is achieved by randomizing the data before releasing it
this local privacy model dates back to Warner, 1965
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Local Differential Privacy:
there are n data providers: user i owns Xi ∈ X (input alphabet)
we study finite input alphabets |X | = k <∞
Q is a privatization mechanism that maps Xi stochastically to Yi ∈ Y (output alphabet)
we allow Y to be (possibly) larger than X
for a non-negative ε, we say that Q is ε-locally differentially private if

sup
S∈σ(Y),x ,x ′∈X

Q(S|Xi = x)

Q(S|Xi = x ′)
≤ eε

we cannot distinguish x from x ′ upon observing y ∈ Y

Information Theoretic Utility Functions

Statistical Data Model:
the Xi ’s are independently sampled from a distribution Pν parameterized by ν ∈ {0,1}
the data analyst is interested in the statistics of the data as opposed to individual samples
the power to discriminate data generated from P0 to data generated from P1 depends on the ‘distance’ between the
privatized marginals M0 and M1

Mν(S) ≡
∫

Q(S|x)dPν(x) ,

Information Theoretic Utility:

for some convex function f such that f (1) = 0, Csiszár’s f -divergence is defined as

Df (M0||M1) =

∫
f
( dM0

dM1

)
dM1 ,

KL divergence Dkl(M0||M1) and total variation ‖M0 −M1‖TV are special cases
f -divergences capture the quality of statistical inference: minimax rates and error exponents

Fundamental Limits of Privacy:
the more private you want to be, the less utility you get
there is a fundamental trade-off between privacy and utility
can we design Q to maximize utility subject to local differential privacy?
we solve the following problem

maximize
Q∈Dε

Df (M0||M1) ,

Dε is the set of all ε-locally differentially private mechanisms
this maximization problem is nonlinear, non-standard, and infinite dimensional

Binary Hypothesis Testing:
given {Yi}n

i=1, the data analyst would like to detect whether ν = 0 or ν = 1
Chernoff-Stein’s lemma: the best type II error probability scales as e−n Dkl(M0||M1)

we show that when ε is sufficiently small, the effective sample size is reduced from n to ε2n

Staircase Mechanisms

Definition of Staircase Mechanisms:
a privatization mechanism is a staircase mechanism if

Q(y |x)

Q(y |x ′)
∈
{

e−ε,1,eε
}

examples of staircase mechanisms: binary and randomized response mechanisms
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Main Result 1: Optimality of Staircase Mechanisms

For any ε, any P0 and P1, and any f -divergence, there exists an optimal mechanism Q∗ maximizing the f -divergence over
all ε-locally differentially private mechanisms, such that Q∗ is a staircase mechanism. Moreover, the output alphabet size
is at most equal to the input alphabet size: |Y| ≤ |X |.

Combinatorial Representation of Staircase Mechanisms:
S(k) ∈ {1,eε}k×2k is called a staircase pattern matrix if its j-th column S(k)

j = (eε − 1) bj−1 + 1

bj be the k -dimensional vector corresponding to the binary representation of the integer j .

S(3) =

1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε

 .

if Q is a staircase mechanism, then Q is ‘equivalent’ to Q̃ = S(k)Θ for some diagonal matrix Θ ∈ R2k×2k

Main Result 2: Linear Program Formulation

For any ε, any P0 and P1, and any f -divergence, maximizing f -divergence subject to local differential privacy is equivalent
to solving the following linear program

maximize
Θ∈R2k×2k

2k∑
i=1

µiΘii

subject to S(k)Θ 1 = 1 ,

Θ is a diagonal matrix ,
Θ ≥ 0 ,

where µi = (
∑

x∈X P1(x)S(k)
xi )f

(∑
x∈X P0(x)S(k)

xi /
∑

x∈X P1(x)S(k)
xi

)
and Df (M0||M1) =

∑2k

i=1 µiΘii.

the original maximization problem is now reduced to a finite dimensional linear program
however, solving this linear program might be computationally expensive if k is large

Binary Mechanisms

Definition of Binary Mechanisms:

Q(0|x) =

{ eε
1+eε if P0(x) ≥ P1(x) ,

1
1+eε if P0(x) < P1(x) .

Q(1|x) =

{ eε
1+eε if P0(x) < P1(x) ,

1
1+eε if P0(x) ≥ P1(x) .

Optimality of Binary Mechanisms in the High Privacy Regime

For any P0 and P1, there exists a positive ε∗ that depends on P0 and P1 such that for any f -divergences and all positive
ε ≤ ε∗, the binary mechanism maximizes Df (M0||M1) over all ε-local differentially private mechanisms.

Binary Mechanisms Cnt’d

Optimality of Binary Mechanisms in the High Privacy Regime:
the binary mechanism is universally optimal in the high privacy regime
what about the other regimes?

Optimality of Binary Mechanisms for Total Variation Distances

For any P0 and P1, and any ε ≥ 0, the binary mechanism maximizes total variation between the induced marginals M0
and M1 among all ε-locally differentially private mechanisms.

Near Optimality of Binary Mechanisms in the Moderate Privacy Regime

For any ε and any P0 and P1, the binary mechanism is an 1/(2(eε + 1)2) approximation of the maximum KL-divergence
between the induced marginals M0 and M1 among all ε-locally differentially private mechanisms.

for ε ≤ 1, 2(eε + 1)2 ≤ 32

Randomized Response Mechanism

Definition of the Randomized Response Mechanism:

Q(y |x) =


eε

|X |−1+eε if y = x ,
1

|X |−1+eε if y 6= x .

can be viewed as a multiple choice generalization to Warner’s randomized response
observe that Q is independent of P0 and P1

Optimality of the Randomized Response Mechanism in the Low Privacy Regime

There exists a positive ε∗ that depends on P0 and P1 such that for any P0 and P1, and all ε ≥ ε∗, the randomized response
mechanism maximizes the KL-divergence between the induced marginals over all ε-locally differentially private
mechanisms.

Big Picture

Global Differential Privacy:
preserve the identity of participating individuals and not their data
global differential privacy is used in data release applications
most research in this area focuses on the high privacy regime
in the high privacy regime, adding Laplace noise to data is order optimal
exact optimality results are known only in few cases

Our Approach:
local differential privacy is recent
the local privacy model is particulary important in data collection applications
we consider a broad class of information theoretic utilities
we provide explicit constructions of optimal mechanisms

Our Methods Generalize:
similar optimality results hold for a large class of convex utility functions
our techniques can be generalized to find optimal privatization mechanisms in a setting where different individuals can
collaborate interactively and each individual can be an analyst
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Future Directions:
what if the Xi ’s are correlated?
what if P0 and P1 are not known?
what about m-ary hypothesis testing?
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