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Abstract—Anonymous social media platforms like Secret, Yik
Yak, and Whisper have emerged as important tools for sharing
ideas without the fear of judgment. Such anonymous platforms
are also important in nations under authoritarian rule, where
freedom of expression and the personal safety of message authors
may depend on anonymity. Whether for fear of judgment or
retribution, it is sometimes crucial to hide the identities of users
who post sensitive messages. In this paper, we consider a global
adversary who wishes to identify the author of a message; it
observes either a snapshot of the spread of a message at a certain
time, sampled timestamp metadata, or both. Recent advances in
rumor source detection show that existing messaging protocols
are vulnerable against such an adversary. We introduce a novel
messaging protocol, which we call adaptive diffusion, and show
that under the snapshot adversarial model, adaptive diffusion
spreads content fast and achieves perfect obfuscation of the
source when the underlying contact network is an infinite regular
tree. That is, all users with the message are nearly equally
likely to have been the origin of the message. When the contact
network is an irregular tree, we characterize the probability of
maximum likelihood detection by proving a concentration result
over Galton-Watson trees. Experiments on a sampled Facebook
network demonstrate that adaptive diffusion effectively hides the
location of the source even when the graph is finite, irregular,
and has cycles.

Index Terms—privacy, diffusion, anonymous social media.

I. INTRODUCTION

Microblogging platforms are central to the fabric of the
present Internet; popular examples include Twitter and Face-
book. In such platforms, users propagate short messages (texts,
images, videos) over a contact graph, which represents a
social network in most cases. Message forwarding often occurs
through built-in mechanisms that rely on user input, such as
clicking “like" or “share" on a particular post. Brevity of
message, fluidity of user interface, and trusted party commu-
nication combine to make these microblogging platforms a
major communication mode of modern times.

However, the popularity of microblogging services also
makes them a prime target for invasive user monitoring by
employers, service providers, or government agencies. This
monitoring typically exploits metadata: non-content data that
characterizes content, like timestamps. Metadata can often be
as sensitive as data itself [1], [2]; this reality was publicized
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by Michael Hayden, former Director of the CIA, with his
observation that “We kill people based on metadata" [3].

The alarming privacy implications of microblogging plat-
forms have spurred the growth of anonymous microblogging
platforms, like Whisper [4], Yik Yak [5], and the now-defunct
Secret [6]. These platforms enable users to share messages
with their friends without revealing authorship metadata. Al-
though anonymous messaging platforms are often used for
social privacy (i.e., hiding authorship from from one’s peers),
they can also be useful in states with authoritarian govern-
ments, where the right to free expression, and sometimes the
personal safety of message authors, depend on anonymity. In
such scenarios, it is often crucial to hide the identity of the
user who initially posted the message.

Whether for fear of judgment or personal endangerment,
protecting of the identity of content sources is becoming
increasingly important. However, existing anonymous mes-
saging services store both messages and authorship informa-
tion on centralized servers, which makes them vulnerable to
government subpoenas, hacking, or direct company access.
An alternative solution would be to store this information
in a distributed fashion; each node would know only its
own friends, and message authorship information would never
be transmitted to any party. Distributed systems are more
robust to monitoring due to lack of central points of failure.
However, even under distributed architectures, simple anony-
mous messaging protocols (such as those used by commercial
anonymous microblogging apps) are still vulnerable against an
adversary with side information, as proved in recent advances
in rumor source detection [7], [8]. In this work, we study
a basic building block of the messaging protocol that would
underpin truly anonymous microblogging platform – how
to anonymously broadcast a single message on a contact
network, even in the face of a strong deanonymizing adversary
with access to metadata. Specifically, we focus on anonymous
microblogging built atop an underlying social network, such
as a network of phone contacts or Facebook friends.

Adversaries. We consider three adversarial models, which
capture different approaches to collecting metadata. In each
case, the underlying contact network is modeled as a graph
that is known to the adversary. Beyond that, the adversary
could proceed in a few different ways.

The adversary might use side channels to infer whether
a node is infected, i.e., whether it received the message. If
an adversary collects only infection metadata for all network
users, we call it a snapshot adversary. This could represent a
state-level adversary that attends a Twitter-organized protest;
it implicitly learns who received the protest advertisement by
observing which individuals are physically present, but not the
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associated metadata. The snapshot adversary is well-studied
in the literature, primarily in the related problem of source
identification [7], [9], [10], [11], [12]. We focus primarily on
the snapshot adversarial model in this paper.

Alternatively, the adversary might explicitly corrupt some
fraction of nodes by bribery or coercion; these corrupted spy
nodes could pass along metadata like message timestamps and
relay IDs. If an adversary only collects information from spies,
we call it a spy-based adversary. A spy-based adversary could
represent a government agency participating in social media to
study users, for instance. The adversary’s reach may be limited
by factors like account creation, contact network structure [13],
or the cost of corrupting participants. This adversarial model
is discussed in detail in [14], but we include the relevant
theoretical results in this paper for the sake of completeness.

Finally, an adversary could combine the spy-based and
snapshot adversarial models by using both forms of metadata.
If an adversary uses spies and a snapshot, we call it a
spy+snapshot adversary. This adversarial model allows us
to study the capabilities of both snapshot and spy metadata
types, combining the results on snapshot adversary capabilities
derived here with those of spy adversary capabilities derived
in [14].

Spreading models. In social networks, messages are typically
propagated based on users’ approval, which is expressed via
liking, sharing or retweeting. This mechanism, which enables
social filtering and reduces spam, has inherent random delays
associated with each user’s time of impression and decision
to “like" the message (or not). Standard models of rumor
spreading in networks explicitly model such random delays via
a diffusion process: messages are spread independently over
different edges with a fixed probability of spreading (discrete
time model) or an exponential spreading time (continuous time
model). The designer can partially control the spreading rate
by introducing artificial delays on top of the usual random
delays due to users’ approval of the messages.

We model this physical setup as a discrete-time system.
At time t = 0, a single user v∗ ∈ V starts to spread a
message over the contact network G = (V,E) where users
and contacts are represented by nodes and edges, respectively.
Upon receiving the message, nodes approve it immediately.
The assumption that all nodes are willing to approve and pass
the message is common in rumor spreading analysis [7], [15],
[16]. However, by assuming message approval is immediate,
we abstract away the natural random delays typically modeled
by diffusion. At the following timestep, the protocol decides
which neighbors will receive the message, and how much
propagation delay to introduce. Given this control, the system
designer wishes to design a spreading protocol that makes
message source inference difficult.

Specifically, after T timesteps, let VT ⊆ V , GT , and
NT , |VT | denote the set of infected nodes, the subgraph
of G containing only VT , and the number of infected nodes,
respectively. At a given time T , the adversary uses all available
metadata to estimate the source. We assume no prior knowl-
edge of the source, so the adversary computes a maximum-
likelihood (ML) estimate of the source v̂ML. We desire a

Fig. 1: Illustration of a spread of infection when spreading
immediately (left) and under adaptive diffusion (right).

spreading protocol that minimizes the probability of detection
PD = P(v̂ML = v∗).

Current state-of-the-art: Diffusion is commonly used to
model epidemic propagation over contact networks. While
simplistic (it ignores factors like individual user preferences),
diffusion is a commonly-studied and useful model due to its
simplicity and first-order approximation of actual propagation
dynamics. Critically, it captures the symmetric spreading used
by most social media platforms.

However, diffusion has been shown to exhibit poor
anonymity properties; under the adversarial models we con-
sider, the source can be identified reliably [7], [8]. We therefore
seek a different spreading model with strong anonymity guar-
antees. We wish to achieve the following performance metrics:

(a) We say a protocol has an order-optimal rate of spread if
the expected time for the message to reach n nodes scales
linearly compared to the time required by the fastest
spreading protocol.

(b) We say a protocol achieves a perfect obfuscation if
the probability of source detection for the maximum
likelihood estimator is order-optimal. The definition of
optimality differs for different adversarial models, so we
define this metric separately for each adversarial model.

Contributions. We introduce adaptive diffusion, a novel mes-
saging protocol with provable author anonymity guarantees
against all of the discussed adversarial models. Whereas
diffusion spreads the message symmetrically in all directions,
adaptive diffusion breaks that symmetry (Figure 1). This
has different implications for different adversarial models,
but it consistently yields stronger anonymity guarantees than
diffusion. Adaptive diffusion is also inherently distributed and
spreads messages fast, i.e., the time it takes adaptive diffusion
to reach n users is at most twice the time it takes the fastest
spreading scheme which immediately passes the message to
all its neighbors.

We prove that over d-regular trees, adaptive diffusion pro-
vides perfect obfuscation of the source under the snapshot
adversarial model. That is, the likelihood of an infected
user being the source of the infection is equal among all
infected users. We derive exact expressions for the probability
of detection, and show that this expression is optimal for
the snapshot adversary by providing a matching fundamental
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lower bound.
In practice, the contact networks are not regular infinite

trees. For a general class of graphs which can be finite,
irregular and have cycles, we provide results of numerical
experiments on real-world social networks and synthetic net-
works showing that the protocol hides the source at nearly
the best possible level of obfuscation under the snapshot
adversarial model. The same is true for spy-based adversaries;
such simulation results for that adversarial model are discussed
in [14]. Further, for a specific family of random irregular
infinite trees, known as Galton-Watson trees, we characterize
the probability of detection under adaptive diffusion and a
snapshot adversary. In the process, we prove a strong con-
centration for the extreme paths in the Galton-Watson tree
that consists of nodes with large degrees, which might be of
independent interest.

Finally, we characterize the probability of maximum like-
lihood detection of adaptive diffusion in various edge cases,
such as when the adversary can take multiple snapshots, and
when the underlying graph contains regular cycles, as in an
infinite lattice graph.

Related work. Anonymous communication has been a popular
research topic for decades. For instance, anonymous point-to-
point communication allows a sender to communicate with a
receiver without the receiver learning the sender’s identity. A
great deal of work has emerged in this area, including Tor [17],
Freenet [18], Free Haven [19], and Tarzan [20]. In contrast to
this body of work, we address the problem of anonymously
broadcasting a message over an underlying contact network
(e.g., a network of Facebook friendships or phone contacts).

Anonymous broadcast communication has been most stud-
ied in context of the dining cryptographers’ (DC) problem.
We diverge from the literature on this topic [21], [22], [23],
[24], [25] in approach and formulation. We consider statistical
spreading models rather than cryptographic encodings, accom-
modate computationally unbounded adversaries, and consider
domain-specific contact networks rather than a fully connected
communication network.

Recently, Riposte addressed a similar problem of anony-
mously writing to a public message board [26]. It uses
techniques from private information retrieval to store mul-
tiple, corrupted copies of messages on distributed servers.
This corruption is designed so that no subset of colluding
servers can determine the author. However, Riposte places
no restrictions on communication with the servers, thereby
facilitating spam. Differences in the communication model and
adversarial model prevent Riposte from effectively solving our
problem of interest.

Within the realm of statistical message spreading models,
the problem of detecting the origin of an epidemic or the
source of a rumor has been studied under the diffusion model.
Recent advances in [7], [27], [9], [10], [11], [12], [16], [28]
show that it is possible to identify the source within a few
hops with high probability. Consider an adversary who has
access to the underlying contact network of friendship links
and the snapshot of infected nodes at a certain time. The
problem of locating a rumor source, first posed in [7], naturally

corresponds to graph-centrality-based inference algorithms: for
a continuous time model, [7], [27] used the rumor centrality
measure to correctly identify the source after time T (with
probability converging to a positive number for large d-regular
and random trees, and with probability proportional to 1/

√
T

for lines). The probability of identifying the source increases
even further when multiple infections from the same source
are observed [9]. With multiple sources of infections, spectral
methods have been proposed for estimating the number of
sources and the set of source nodes in [10], [11]. When
infected nodes are allowed to recover as in the susceptible-
infected-recovered (SIR) model, Jordan centrality was pro-
posed in [12], [16] to estimate the source. In [16], it is shown
that the Jordan center is still within a bounded hop distance
from the true source with high probability, independent of the
number of infected nodes. When the adversary collects times-
tamps (and other metadata) from spy nodes, standard diffusion
reveals the location of the source [8], [16], [29]. However, ML
estimation is known to be NP-hard [30], and analyzing the
probability of detection is also challenging. Finally, there has
been work on related problems of characterizing the generative
spreading model for an observed infection [31], [32], [33] as
well the underlying network [34], [35].

In summary, under natural, diffusion-based message
spreading—as seen in almost every content-sharing platform
today—an adversary with some side information can identify
the rumor source with high confidence. We overcome this
vulnerability by asking the reverse question: can we design
messaging protocols that spread fast while protecting the
anonymity of the source? Related challenges include (a) iden-
tifying the best algorithm that the adversary might use to infer
the location of the source; (b) providing analytical guarantees
for the proposed spreading model; and (c) identifying the
fundamental limit on what any spreading model can achieve.
We address all of these challenges for snapshot adversarial
model (Section IV), spy-based adversarial model (Section V),
and finally the spy+snapshot model (Section VI). In this paper,
our primarily focus is on the snapshot adversarial model; the
spy-based and spy+snapshot adversaries are discussed in detail
in [14].

Our work fits into a larger ecosystem that enables anony-
mous messaging; we implicitly assume that the ecosystem
is healthy. For instance, we assume that nodes communicate
securely in a distributed fashion, but anonymity-preserving,
peer-to-peer (P2P) address lookup is still an active research
area [36], as is privacy-preserving distributed data storage in
P2P systems [37]. We do not consider adversaries that operate
below the application layer (e.g., by monitoring the network or
even physical layer) [38], [39]. Lower-level solutions may be
more appropriate against such an opponent, harnessing factors
like physical proximity of users [40]. In that space, physical
layer security and privacy attacks pose a very real threat, as has
been documented extensively in prior work [41], [42], [43].

Organization. The remainder of this paper is organized as
follows: To begin, we provide a brief summary of our results in
Section II, which provides some intuition regarding the scope
of the paper. We then introduce the general adaptive diffusion
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TABLE I: Summary of results on the anonymity of adaptive diffusion. Here ‘optimality’ means adaptive diffusion has a
probability of detection equal (in an order sense) to a fundamental lower bound. Shaded cells are not addressed in this work.

Snapshot Spy-Based Spy + Snapshot

d-Regular Trees Optimal
(Theorem 4.1)

Asymptotically optimal in d
(Theorem 5.3)

Exact probability of detection
(Equation (17))

Lattice Graphs Optimal
(Proposition 4.9)

Irregular Trees Nearly-optimal
(Theorem 4.5)

ML Estimator
(Proposition 4.1 in [14])

Social Networks Strong anonymity
(Simulations in Section IV-C2)

Strong anonymity
(Simulations from Section 4 in [14])

protocol in Section III. In Section IV, we describe how
to specialize adaptive diffusion under a snapshot adversarial
model. In Section V, we describe how to apply adaptive
diffusion under a spy-based adversarial model. Combining the
key insights of these two approaches, we introduce results
from the spy+snapshot adversarial model in Section VI. For
each adversarial model, we first describe the precise version
of adaptive diffusion that applies to infinite d-regular trees,
and show that it achieves perfect obfuscation of the source.
We then provide extensions to irregular trees. We conclude by
presenting simulated results over real graphs: finite, irregular,
and containing cycles. In Section VII, we make a connection
between adaptive diffusion on a line and Pólya’s urn processes.
This connection, while interesting in itself, provides a novel
analysis technique for precisely capturing the price of control
packets that are passed along with the messages in order to
coordinate the spread of messages as per adaptive diffusion.

II. SUMMARY

The take-home message of this paper is simple: when
broadcasting a message over a fixed graph, adaptive diffusion
gives strong theoretical and practical anonymity guarantees
without significantly sacrificing spreading rate. We develop
this thesis through a number of theorems and simulations
tailored to different classes of graphs and adversarial models.
The purpose of this section is to provide a high-level summary
of those results, along with some intuition as to why they hold.
The roadmap for this paper is subdivided by adversarial model
and graph topology. Table I contains a summary of results,
with links to the corresponding theorems or simulations. Note
that we do not present the details of adaptive diffusion until
Section III; this section makes use of only two key attributes
of adaptive diffusion: (1) it breaks the symmetry of diffusion,
and (2) it spreads content exponentially fast in time.

As indicated by Table I, the bulk of this paper focuses on the
snapshot adversary. Mathematically, the snapshot adversary
tends to be more straightforward to analyze, because it enables
random spreading processes to be considered in aggregate.
That is, the likelihood of a particular observed snapshot given
a candidate source depends only on the spreading process’
final state at the time of observation. This is in contrast
with more complex adversarial models like the spy-based
adversary, which provides timestamp metadata for individual
nodes. Under such models, the likelihood of an observation
depends on the state of the process at intermediate time steps
prior to the estimation cutoff time. This causes the state space

to grow combinatorially, and can complicate both estimation
and analysis.

In this paper, we show that on tree-structured graphs, the
likelihood of an adaptive diffusion snapshot (given a candidate
source) can be computed by analyzing a random walk over
the underlying graph. The length of this walk is equal to the
estimation time, so its likelihood can be efficiently computed.
This key observation enables a precise analysis of the ML
probability of detection for adaptive diffusion on regular and
irregular trees, as seen in Theorems 4.1 and 4.5, respectively.
For example, on regular trees, all random walks of a fixed
length are equally likely; this implies that all candidate sources
are also equally likely (in reality, the proof is more nuanced,
but this is a key piece of the intuition). These results can be
modified to other regular graph structures, like lattices (Propo-
sition 4.9). However, on irregular trees, different random walks
have different likelihoods, which causes some nodes to be
more likely sources than others. Operationally, this means
that adaptive diffusion has suboptimal anonymity properties
on irregular random trees; we quantify this suboptimality
and propose a small modification to adaptive diffusion that
empirically improves (lowers) its ML probability of detection.
We validate our results on trees through simulation over a
Facebook social graph dataset [44], and find empirically that
our theoretical predictions extend to realistic social graphs as
well (Section IV-C).

Next, we provide a brief overview of our prior results for
the spy-based adversary. For general spreading models, the
spy-based adversary can be difficult to analyze. However, due
to the structured symmetry-breaking of adaptive diffusion,
we can exactly analyze its performance against a spy-based
adversary on a regular tree. This analysis is presented in
[14], so we include results without proof in this paper. [14]
showed that on d-regular trees, as d→∞, the ML probability
of detection for adaptive diffusion approaches a fundamental
lower bound. Intuitively, this occurs because adaptive diffusion
is asymmetrical; by spreading messages only in some direc-
tions, the adversary loses the ability to collect independent
metadata measurements from different nodes. This, in turn,
lowers the adversary’s ML probability of detection. The higher
the degree of the underlying graph, the more pronounced
this asymmetry becomes—hence, the asymptotic optimality
result. Again, we confirmed our theoretical predictions for
trees through simulation on a real social network; we found
that the empirical performance of adaptive diffusion was very
close to our fundamental lower bounds.

Finally, we consider a combination of the spy-based ad-
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versary and the snapshot adversary. Although we lack fun-
damental bounds on the ML probability of detection for
this spy+snapshot adversary, we can precisely characterize its
probability of detection, as presented in equation (17). This
expression interpolates the results from the snapshot and spy-
based adversaries. It shows that when the number of spies
is small, a snapshot can improve the probability of detection
compared to just timestamp metadata. Similarly, when the
snapshot occurs at a very large estimation time, the spies’
timestamp metadata can improve the probability of detection
of the snapshot adversary.

In conjunction, this body of results implies that adaptive
diffusion has strong theoretical and practical anonymity prop-
erties over a range of classes of graphs and adversarial models.
Before exploring those properties, we begin by presenting the
adaptive diffusion spreading protocol.

III. ADAPTIVE DIFFUSION

In this section, we describe adaptive diffusion in its most
general form, and leave for later sections the specific choice of
parameters involved. For the purpose of introducing adaptive
diffusion, we focus specifically on an infinite d-regular tree as
the underlying contact network.

We step through the intuition of the adaptive diffusion
spreading model with an example, partially illustrated in Fig-
ure 2. The precise algorithm description is provided in Protocol
1. Adaptive diffusion ensures that the infected subgraph Gt
at any even timestep t ∈ {2, 4, . . .} is a balanced tree of
depth t/2, i.e. the hop distance from any leaf to the root
(or the center of the graph) is t/2. We call the root node
of Gt the “virtual source” at time t, and denote it by vt.
We use v0 = v∗ to denote the true source. To keep the
regular structure at even timesteps, we use the odd timesteps
to transition from one regular subtree Gt to another one Gt+2

with depth incremented by one.
More concretely, the first three steps are always the same. At

time t = 0, the rumor source v∗ selects, uniformly at random,
one of its neighbors to be the virtual source v2; at time t = 1,
v∗ passes the message to v2. Next at t = 2, the new virtual
source v2 infects all its uninfected neighbors forming G2 (see
Figure 2). Then node v2 chooses to either keep the virtual
source token or to pass it along.

If v2 chooses to remain the virtual source i.e., v4 = v2,
it passes ‘infection messages’ to all the leaf nodes in the
infected subtree, telling each leaf to infect all its uninfected
neighbors. Since the virtual source is not connected to the
leaf nodes in the infected subtree, these infection messages
get relayed by the interior nodes of the subtree. This leads to
Nt messages getting passed in total (we assume this happens
instantaneously). These messages cause the rumor to spread
symmetrically in all directions at t = 3. At t = 4, no spreading
occurs (Figure 2, right panel).

If v2 does not choose to remain the virtual source, it passes
the virtual source token to a randomly chosen neighbor v4,
excluding the previous virtual source (in this example, v0).
Thus, if the virtual source moves, it moves away from the true
source by one hop. Once v4 receives the virtual source token, it

sends out infection messages. However, these messages do not
get passed back in the direction of the previous virtual source.
This causes the infection to spread asymmetrically over only
one subtree of the infected graph (G3 in Figure 2, left panel).
In the subsequent timestep (t = 4), the virtual source remains
fixed and passes the same infection messages again. After this
second round of asymmetric spreading, the infected graph is
once again symmetric about the virtual source v4 (G4 in Figure
2, left panel).

This process continues at each timestep: the virtual source
vt chooses whether to keep or pass the virtual source token.
Conditioned on this decision, the infected subgraph grows
deterministically as needed to ensure symmetry about the new
virtual source, vt+2.

As we will see momentarily, adaptive diffusion uses varying
amounts of control information to coordinate the spread of
messages. In some adversarial models (snapshot), this control
information does not hurt anonymity; in others (spy-based),
it can be problematic. We therefore introduce different im-
plementations of adaptive diffusion as needed, using different
amounts of control information. In each implementation, the
resulting distribution of the random infection process is the
same (if the same parameters are used).

This random infection process can be defined as a time-
inhomogeneous (time-dependent) Markov chain over the
state defined by the location of the current virtual source
{vt}t∈{0,2,4,...}. By the symmetry of the underlying contact
network, which we assume is an infinite d-regular tree, and
the fact that the next virtual source is chosen uniformly at
random among the neighbors of the current virtual source, it
is sufficient to consider a Markov chain over the hop distance
between the true source v∗ and vt, the virtual source at time
t. Therefore, we design a Markov chain over the state

ht = δH(v∗, vt) ,

for even t, where δH(v∗, vt) denotes the hop distance between
nodes v∗ (the true source) and vt (the virtual source). Figure
2 shows an example with (h2, h4) = (1, 2) on the left and
(h2, h4) = (1, 1) on the right.
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Fig. 2: Adaptive diffusion over regular trees. Yellow nodes
indicate the set of virtual sources (past and present), and for
T = 4, the virtual source node is outlined in red.
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Algorithm 1 Adaptive Diffusion

Input: contact network G = (V,E), source v∗, time T ,
degree d

Output: set of infected nodes VT
1: V0 ← {v∗}, h← 0, v0 ← v∗

2: v∗ selects one of its neighbors u at random
3: V1 ← V0 ∪ {u}, h← 1, v1 ← u
4: let N(u) represent u’s neighbors
5: V2 ← V1 ∪N(u) \ {v∗}, v2 ← v1

6: t← 3
7: for t ≤ T do
8: vt−1 selects a random variable X ∼ U(0, 1)
9: if X ≤ αd(t− 1, h) then

10: for all v ∈ N(vt−1) do
11: Infection Message(G,vt−1,v,Gt)
12: else
13: vt−1 randomly selects u ∈ N(vt−1) \ {vt−2}
14: h← h+ 1
15: vt ← u
16: for all v ∈ N(vt) \ {vt−1} do
17: Infection Message(G,vt,v,Vt)
18: if t+ 1 > T then
19: break
20: Infection Message(G,vt,v,Vt)
21: t← t+ 2

22: procedure INFECTION MESSAGE(G,u,v,Vt)
23: if v ∈ Vt then
24: for all w ∈ N(v) \ {u} do
25: Infection Message(G,v,w,Gt)
26: else
27: Vt ← Vt−2 ∪ {v}

At every even timestep, the protocol randomly determines
whether to keep the virtual source token (ht+2 = ht) or
to pass it (ht+2 = ht + 1). We specify the resulting time-
inhomogeneous Markov chain over {ht}t∈{2,4,6,...} by choos-
ing appropriate transition probabilities as a function of time t
and current state ht. For even t, we denote this probability by

αd(t, h) , P
(
ht+2 = ht|ht = h

)
,

where the subscript d denotes the degree of the underlying
contact network. In Figure 2, at t = 2, the virtual source
remains at the current node (right) with probability α3(2, 1),
or passes the virtual source to a neighbor with probability
1−α3(2, 1) (left). The parameters αd(t, h) fully describe the
transition probability of the Markov chain defined over ht ∈
{1, 2, . . . , t/2}. For example, if we choose αd(t, h) = 1 for
all t and h, then the virtual source never moves for t > 1.
The message spreads almost symmetrically, so the source can
be caught with high probability, much like diffusion. If we
instead choose αd(t, h) = 0 for all t and h, the virtual source
always moves. This ensures that the source is always at one of
the leaves of the infected subgraph. We return to this special
case when addressing spy-based adversaries in Section V.

The real challenge, then, is choosing the parameters
αd(t, h), which fully specify the virtual source transition

probabilities. These parameters can significantly alter the
anonymity and spreading properties of adaptive diffusion. In
this work, we explain how to choose this parameter αd to
achieve desired source obfuscation.

IV. SNAPSHOT-BASED ADVERSARIAL MODEL

Under the snapshot adversarial model, an adversary ob-
serves the infected subgraph GT at a certain time T and
produces an estimate v̂ of the source v∗ of the message. Since
the adversary is assumed to not have any prior information
on which node is likely to be the source, we analyze the
performance of the maximum likelihood estimator

v̂ML = arg max
v∈GT

P(GT |v).

We show that adaptive diffusion with appropriate parameters
can achieve perfect obfuscation, i.e. the probability of detec-
tion for the ML estimator when n nodes are infected is close
to 1/n:

P
(
v̂ML = v∗|NT = n

)
=

1

n
+ o
( 1

n

)
.

This is the best source obfuscation that can be achieved by
any protocol, since there are only n candidates for the source
and they are all equally likely.

A. Main Result (Snapshot Model)

In this section, we show that for appropriate choice of
parameters αd(t, h), we can achieve both fast spreading and
perfect obfuscation over d-regular trees. We start by giving
baseline spreading rates for deterministic spreading and diffu-
sion.

Given a contact network of an infinite d-regular tree, d >
2, consider the following deterministic spreading protocol. At
time t = 1, the source node infects all its neighbors. At t ≥ 2,
the nodes at the boundary of the infection spread the message
to their uninfected neighbors. Thus, the message spreads one
hop in every direction at each timestep. This approach is the
fastest-possible spreading, infecting NT = 1 + d((d − 1)T −
1)/(d−2) nodes at time T , but the source is trivially identified
as the center of the infected subtree. In this case, the infected
subtree is a balanced regular tree where all leaves are at equal
depth from the source.

Now consider a random diffusion model. At each timestep,
each uninfected neighbor of an infected node is independently
infected with probability q. In this case, E[NT ] = 1+qd((d−
1)T − 1)/(d− 2), and it was shown in [7] that the probability
of correct detection for the maximum likelihood estimator of
the rumor source is P(v̂ML = v∗) ≥ Cd for some positive
constant Cd that only depends on the degree d. Hence, the
source is only hidden in a constant number of nodes close to
the center, even when the total number of infected nodes is
arbitrarily large.

Now we consider the spreading and anonymity properties
of adaptive diffusion. Let p(t) = [p

(t)
h ]h∈{1,...,t/2} denote the

distribution of the state of the Markov chain at time t, i.e.
p

(t)
h = P(ht = h). The state transition can be represented as
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the following ((t/2)+1)×(t/2) dimensional column stochastic
matrices:

p(t+2) =


αd(t, 1)

1− αd(t, 1) αd(t, 2)

1− αd(t, 2)
. . .
. . . αd(t, t/2)

1− αd(t, t/2)

 p
(t).

We treat ht as strictly positive, because at time t = 0, when
h0 = 0, the virtual source is always passed. Thus, ht ≥ 1
afterwards. At all even t, we desire p(t) to be

p(t) =
d− 2

(d− 1)t/2 − 1


1

(d− 1)
...

(d− 1)t/2−1

 ∈ Rt/2 , (1)

for d > 2 and for d = 2, p(t) = (2/t)1t/2 where 1t/2 is all
ones vector in Rt/2. There are d(d− 1)h−1 nodes at distance
h from the virtual source, and by symmetry all of them are
equally likely to have been the source:

P(GT |v∗, δH(v∗, vt) = h) =
1

d(d− 1)h−1
p

(t)
h

=
d− 2

d((d− 1)t/2 − 1)
,

for d > 2, which is independent of h. Hence, all the infected
nodes (except for the virtual source) are equally likely to have
been the source of the origin. This statement is made precise
in equation (4).

Together with the desired probability distribution in equa-
tion (1), this gives a recursion over t and h for computing the
appropriate αd(t, h)’s. After some algebra and an initial state
p(2) = 1, we get that the following choice ensures the desired
equation (1):

αd(t, h) =

{
(d−1)t/2−h+1−1

(d−1)t/2+1−1
if d > 2

t−2h+2
t+2 if d = 2

(2)

With this choice of parameters, we show that adaptive diffu-
sion spreads fast, infecting Nt = O((d− 1)t/2) nodes at time
t and each of the nodes except for the virtual source is equally
likely to have been the source.

Theorem 4.1: Suppose the contact network is a d-regular
tree with d ≥ 2, and one node v∗ in G starts to spread a
message according to Protocol 1 at time t = 0, with αd(t, h)
chosen according to equation (2). At a certain time T ≥ 0
an adversary estimates the location of the source v∗ using the
maximum likelihood estimator v̂ML. The following properties
hold for Protocol 1:
(a) the number of infected nodes at time T is

NT ≥

{
2(d−1)(T+1)/2−d

(d−2) + 1 if d > 2

T + 1 if d = 2
(3)

(b) the probability of source detection for the maximum
likelihood estimator at time T is

P (v̂ML = v∗) ≤
{ d−2

2(d−1)(T+1)/2−d if d > 2

(1/T ) if d = 2
(4)

(c) the expected hop-distance between the true source v∗ and
its estimate v̂ML under maximum likelihood estimation is
lower bounded by

E[d(v̂ML, v
∗)] ≥ d− 1

d

T

2
.

(Proof in Section IX-A)
Although this choice of parameters achieves perfect ob-

fuscation, the spreading rate is slower than the deterministic
spreading model, which infects O((d− 1)T ) nodes at time T .
However, this type of constant-factor loss in the spreading rate
is inevitable: the only way to deviate from the deterministic
spreading model is to introduce appropriate delays.

In order to spread according to adaptive diffusion with the
prescribed αd(h, t), the system needs to know the degree d
of the underlying contact network. However, performance is
insensitive to knowledge of d for certain parameter settings,
as shown in the following proposition. Specifically, one can
choose αd(h, t) = 0 for all d, h, and t and still achieve
performance comparable to the optimal choice. The main idea
is that there are as many nodes in the boundary of the snapshot
(leaf nodes) as there are in the interior, so it is sufficient to
hide among the leaves. One caveat is that if the underlying
contact network is a line (i.e. d = 2) then this approach fails
since there are only two leaf nodes at any given time, and the
probability of detection is trivially 1/2.

Proposition 4.2: Suppose that the underlying contact net-
work G is an infinite d-regular tree with d > 2, and one node
v∗ in G starts to spread a message at time t = 0 according to
Protocol 1 with αd(h, t) = 0 for all d, h, and t. At a certain
time T ≥ 1 an adversary estimates the location of the source
v∗ using the maximum likelihood estimator v̂ML. Then the
following properties hold:
(a) the number of infected nodes at time T ≥ 1 is at least

NT ≥
(d− 1)(T+1)/2

d− 2
; (5)

(b) the probability of source detection for the maximum
likelihood estimator at time T is

P
(
v̂ML = v∗

)
=

d− 1

2 + (d− 2)NT
; and

(c) the expected hop-distance between the true source v∗ and
its estimate v̂ is lower bounded by

E[δH(v∗, v̂ML)] ≥ T

2
.

(Proof in Section IX-B).

Multiple snapshots. The results in Theorem 4.1 and Propo-
sition 4.2 hold for a single snapshot. However, an adver-
sary could in principle take multiple snapshots of the same
message’s spread, at different points in time. We show that
doing so increases the probability of detection at most by a
logarithmic factor, compared to what it learns from the first
snapshot (on average).

Proposition 4.3: Suppose that the underlying contact net-
work G is an infinite d-regular tree with d > 2, and one node
v∗ in G starts to spread a message at time t = 0 according
to Protocol 1, with αd(t, h) chosen according to equation (2).
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At a certain time T ≥ 0 an adversary observes a snapshot
GT with NT nodes. In timesteps {T1, T2, . . . , Tm}, where
Ti > T for all i ∈ {1, 2, . . .m}, the adversary again observes
snapshots GTi . The adversary then estimates the location of
the source v∗ using a maximum likelihood estimator v̂ML,
based on knowledge of all observed snapshots. Then the
probability of source detection for the maximum likelihood
estimator at time T is upper bounded as follows:

P
(
v̂ML = v∗

)
≤ C

logd−1NT

NT − 1
+ o

(
logd−1NT

NT

)
(6)

where the constant C depends only only on the tree degree d.
(Proof in Section IX-C).
This result suggests that an adversary cannot learn much

more than the information it learns from the first snapshot; i.e.,
the probability of detection increases at most from O(1/NT )
to O(logNT /NT ). Moving forward, we will assume that the
snapshot adversary observes only one snapshot, at time T .

B. Irregular Trees

In this section, we study adaptive diffusion on irregu-
lar trees, with potentially different degrees at the vertices.
Although the degrees are irregular, we still apply adaptive
diffusion with αd0(t, h)’s chosen for a specific d0 that might
be mismatched with the graph due to degree irregularities.
There are a few challenges in this degree-mismatched adaptive
diffusion. First, finding the maximum likelihood estimate of
the source is not immediate, due to degree irregularities.
Second, it is not clear a priori which choice of d0 is good.
We first show an efficient message-passing algorithm for
computing the maximum likelihood source estimate. Using
this estimate, we illustrate through simulations how adaptive
diffusion performs and show that the detection probability is
not too sensitive to the choice of d0 as long as d0 is above a
threshold that depends on the degree distribution.

Then, for the special choice of d0 = ∞, we precisely
characterize the maximum likelihood probability of detection
and demonstrate that adaptive diffusion does not provide
perfect obfuscation. Doing so requires proving a concentra-
tion result for an extreme value defined over Galton-Watson
branching processes, which may be of independent interest.
We use the associated analysis to propose a modification
of adaptive diffusion called preferential-attachment adaptive
diffusion (PAAD), which empirically improves the probability
of detection over irregular trees, compared to standard adaptive
diffusion.

Efficient ML estimation. To keep the discussion simple,
we assume that T is even. The same approach can be
naturally extended to odd T . Since the spreading pattern in
adaptive diffusion is entirely deterministic given the sequence
of virtual sources at each timestep, computing the likelihood
P(GT |v∗ = v) is equivalent to computing the probability of
the virtual source moving from v to vT over T timesteps.
On trees, there is only one path from v to vT and since we
do not allow the virtual source to “backtrack", we only need
to compute the probability of every virtual source sequence
(v0, v2, . . . , vT ) that meets the constraint v0 = v. Due to
the Markov property exhibited by adaptive diffusion, we
have P(GT |{(vt, ht)}t∈{2,4,...,T}) =

∏
t<T−1
t even

P(vt+2|vt, ht),

where ht = δH(v0, vt). For t even, P(vt+2|vt, ht) = αd(t, ht)

if vt = vt+2 and 1−αd(t,ht)
dvt−1 otherwise. Here dvt denotes the

degree of node vt in G. Given a virtual source trajectory
P = (v0, v2, . . . , vT ), let JP = (j1, . . . , jδH(v0,vT )) denote
the timesteps at which a new virtual source is introduced, with
1 ≤ ji ≤ T . It always holds that j1 = 2 because after t = 0,
the true source chooses a new virtual source and v2 6= v0. If
the virtual source at t = 2 were to keep the token exactly once
after receiving it (so v2 = v4), then j2 = 6, and so forth. To
find the likelihood of a node being the true source, we sum
over all such trajectories

P(GT |v0) =
∑

JP :P∈S(v0,vT ,T )

1

dv0

δH (v0,vT )−1∏
k=1

1

dvjk − 1︸ ︷︷ ︸
Av0

×

∏
t<T
t even

(
1{t+2/∈JP}αd(t, ht) + 1{t+2∈JP}(1− αd(t, ht))

)
,

︸ ︷︷ ︸
Bv0

(7)

where 1 is the indicator function
and S(v0, vT , T ) = {P : P =
(v0, v2, . . . , vT ) is a valid trajectory of the virtual source}.
Intuitively, part Av0 of the above expression is the probability
of choosing the set of virtual sources specified by P , and
part Bv0 is the probability of keeping or passing the virtual
source token at the specified timesteps. Equation (7) holds for
both regular and irregular trees. Since the path between two
nodes in a tree is unique, and part Av0 is (approximately) the
product of node degrees in that path, Av0 is identical for all
trajectories P . Pulling Av0 out of the summation, we wish to
compute the summation over all valid paths P of part Bv0
(for ease of exposition, we will use Bv0 to refer to this whole
summation). Although there are combinatorially many valid
paths, we can simplify the formula in equation (7) for the
particular choice of αd(t, h)’s defined in equation (2).

Proposition 4.4: Suppose that the underlying contact net-
work G̃ is an infinite tree with degree of each node larger
than one. One node ṽ∗ in G̃ starts to spread a message at time
t = 0 according to Protocol 1 with the choice of d = d0. At
a certain even time T ≥ 0, the maximum likelihood estimate
of ṽ∗ given a snapshot of the infected subtree G̃T is

arg max
v∈G̃T \ṽT

d0

dv

∏
v′∈P (ṽT ,v)\{ṽT ,v}

d0 − 1

dv′ − 1
(8)

where ṽT is the (Jordan) center of the infected subtree G̃T ,
P (ṽT , v) is the unique shortest path from ṽT to v, and dv′ is
the degree of node v′.

To understand this proposition, consider Figure 3, which
was spread using adaptive diffusion (Protocol 1) with a
choice of d0 = 2. Then equation (8) can be computed
easily for each node, giving [1/2, 1, 0, 1, 2/3, 1/2, 1/2, 1/4]
for nodes [1, 2, 3, 4, 5, 6, 7, 8], respectively. Hence, nodes 2
and 4 are most likely. Intuitively, nodes whose path to the
center have small degrees are more likely. However, if we
repeat this estimation assuming d0 = 4, then equation (8)
gives [3, 2, 0, 2, 4/3, 3, 3, 3/2]. In this case, nodes 1, 6, and 7
are most likely. When d0 is large, adaptive diffusion tends to
place the source closer to the leaves of the infected subtree,
so leaf nodes are more likely to have been the source.
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Fig. 3: Irregular tree G̃4 with virtual source ṽ4.

Proof of Proposition 4.4: We first make two observations:
(a) Over regular trees, P(GT |u) = P(GT |w) for any u 6= w ∈
GT , even if they are at different distances from the virtual
souce. (b) Part Bv0 is identical for regular and irregular graphs,
as long as the distance from the candidate source node to
vT is the same in both, and the same d0 is used to compute
αd0(t, h). That is, let G̃T denote an infected subtree over an
irregular tree network, with virtual source ṽT , and GT will
denote a regular infected subtree with virtual source vT . For
candidate sources ṽ0 ∈ G̃T and v0 ∈ GT , if δH(ṽT , ṽ0) =
δH(vT , v0) = h, then Bv0 = Bṽ0 . So to find the likelihood
of ṽ0 ∈ G̃T , we can solve for Bṽ0 using the likelihood of
v0 ∈ GT , and compute Aṽ0 using the degree information of
every node in the infected, irregular subgraph.

To solve for Bṽ0 , note that over regular graphs, Av =
1/(d0 (d0 − 1)δH(v,vT )−1), where d0 is the degree of the
regular graph. If G is a regular tree, equation (7) still applies.
Critically, for regular trees, the αd0(t, h)’s are designed such
that the likelihood of each node being the true source is equal.
Hence,

P(GT |v0) =
1

d0(d0 − 1)δH(v0,vT )−1︸ ︷︷ ︸
Av0

×Bv0 ,

is a constant that does not depend on v0. This gives Bv0 ∝
(d0 − 1)δH(vT ,v0). From observation (b), we have that Bṽ0 =
Bv0 . Thus we get that for a ṽ0 ∈ G̃T \ {ṽT },

P(G̃T |ṽ0) = Aṽ0 Bṽ0

∝ (d0 − 1)δH(ṽT ,ṽ0)

dṽ0
∏
ṽ′∈P (ṽT ,ṽ0)\{ṽ0,ṽT }(dṽ′ − 1)

After scaling appropriately and noting that |P (ṽT , ṽ0)| =
δH(ṽT , ṽ0) + 1, this gives the formula in equation (8).

We provide an efficient message passing algorithm for
computing the ML estimate in equation (8), which is naturally
distributed. We then use this estimator to simulate message
spreading for random irregular trees and show that when d0

exceeds a threshold (determined by the degree distribution),
obfuscation is not too sensitive to the choice of d0.
Aṽ0 can be computed efficiently for irregular graphs with

a simple message-passing algorithm. In this algorithm, each
node ṽ multiplies its degree information by a cumulative like-
lihood that gets passed from the virtual source to the leaves.
Thus if there are ÑT infected nodes in G̃T , then Aṽ0 for every
ṽ0 ∈ G̃T can be computed by passing O(ÑT ) messages. This
message-passing is outlined in procedure ‘Degree Message’
of Algorithm 2. For example, consider computing A5 for the
graph in Figure 3. The virtual source ṽT = 3 starts by setting

Algorithm 2 Implementation of ML estimator in equation (8)

Input: infected network G̃T = (ṼT , ẼT ), virtual source ṽT ,
time T , the spreading model parameter d0

Output: argmaxṽ∈ṼT P(G̃T |ṽ∗ = ṽ)

1: Pṽ , P(G̃T |ṽ∗ = ṽ).
2: PṽT ← 0
3: Aṽ ← 1 for ṽ ∈ ṼT \ {ṽT }
4: AṽT ← 0
5: A← Degree Message(GT , ṽT , ṽT , A)
6: P(GT |vleaf )← 1

d0(d0−1)T/2−1

∏
t<T
t even

(1− αd0(t, t2 ))}
7: for all ṽ ∈ ṼT \ {ṽT } do
8: h← δH(ṽ, ṽT )
9: Bṽ ← P(GT |vleaf ) · d0 · (d0 − 1)h−1

10: Pṽ ← Aṽ ·Bṽ
return argmaxṽ∈ṼTPṽ

11: procedure DEGREE MESSAGE(G̃T , ũ, ṽ, A)
12: for all w̃ ∈ N(ṽ) \ {ũ} do
13: if ṽ = ũ then
14: Aw̃ ← Aṽ/dw̃
15: Degree Message(G̃T , ṽ, w̃, A)
16: else
17: if ṽ is not a leaf then
18: Aw̃ ← Aṽ · dṽ/(dw̃ · (dṽ − 1))
19: Degree Message(G̃T , ṽ, w̃, A)

return A

A2 = 1
2 , A4 = 1

2 , and A5 = 1
3 . This gives A5, but to

compute other values of Aw̃, the message passing continues.
Each of the nodes ṽ ∈ N(3) in turn sets Aw̃ for their children
w̃ ∈ N(ṽ); this is done by dividing Aṽ by dw̃ and replacing
the factor of 1

dṽ
in Aṽ with 1

dṽ−1 . For example, node 5 would
set A7 = A5

2 ·
3
2 . This step is applied recursively until reaching

the leaves.
As discussed earlier, Bṽ0 only depends on d0 and

δH(ṽT , ṽ0). If vleaf ∈ GT is a leaf node and G is a regular
tree, we get

P(GT |vleaf) =
1

d0(d0 − 1)T/2−1︸ ︷︷ ︸
Avleaf

∏
t<T
t even

(1− αd0(t,
t

2
))

︸ ︷︷ ︸
Bvleaf

.

If ṽ0 is h < T/2 hops from ṽT , then for node v0 with
δH(v0, vT ) = h < T/2 over a regular tree,

P(GT |v0) = P(GT |vleaf) =
1

d0 · (d0 − 1)h−1
Bv0 .

Finally, Bṽ0 = Bv0 . So to solve for B5 in our example, we
compute P(GT |vleaf ) for a 3-regular graph at time T = 4.
This gives P(G4|vleaf ) = Avleaf ·Bvleaf = 1

6 ·(1−α3(2, 1)) =
1
9 . Thus B5 = P(G4|vleaf ) · d0 · (d0 − 1)h−1 = P(G4|vleaf ) ·
3 · (2)0 = 1

3 . This gives P(G̃4|5) = A5 · B5 = 1
9 . The same

can be done for other nodes in the graph to find the maximum
likelihood source estimate.

Simulation studies. We tested adaptive diffusion over random
trees in which each node’s degree was drawn i.i.d. from a
fixed distribution. Figure 4 illustrates simulation results for
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Fig. 4: The probability of detection by the maximum likelihood
estimator depends on the assumed degree d0; the source cannot
hide well below a threshold value of d0.

random trees in which each node has degree 3 or 4 with
equal probability, averaged over 100,000 trials. By the law
of large numbers, the number of nodes infected scales as
NT ∼ E[D − 1]T/2 = 2.5T/2, where D represents the
degree distribution of the underlying random irregular tree.
The value of d0 corresponds to a regular tree with size scaling
as (d0 − 1)T/2. Hence, one can expect that for d0 − 1 < 2.5,
the source is likely to be in the center of the infection, and
for d0 > 2.45 the source is likely to be at the boundary of
the infection. Since the number of nodes in the boundary is
exponentially larger than the number of nodes in the center,
the detection probability is lower for d0 − 1 > 2.5. This
is illustrated in Figure 4, which matches our prediction. In
general, choosing d0 = 1 + dE[D − 1]e provides the best
obfuscation, and it is robust for values above that. In this plot,
data points represent successive even timesteps; their uniform
spacing on the (log-scale) horizontal axis implies the message
is spreading exponentially quickly.

Figure 5 illustrates the probability of detection as a function
of infection size while varying the degree distribution of the
underlying tree. The notation (3, 5) => (0.5, 0.5) in the leg-
end indicates that each node in the tree has degree 3 or 5, each
with probability 0.5. For each distribution tested, we chose
d0 to be the maximum degree of each degree distribution.
The average size of infection scales as NT ∼ E[D − 1]T

as expected, whereas the probability of detection scales as
(dmin − 1)−T = 2−T , which is independent of the degree
distribution. This suggests that adaptive diffusion fails to
provide near-perfect obfuscation when the underlying graph
is irregular, and the gap increases with the irregularity of the
graph. In the next section, we quantify this gap, and gain
intuition about how to reduce it.

Probability of detection. In this section, we provide the
probability of detection for adaptive diffusion over trees whose
node degrees are drawn i.i.d. from some distribution D, for
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Fig. 5: Adaptive diffusion no longer provides perfect obfusca-
tion for highly irregular graphs.

d0 = ∞. However, we cannot exactly use the ML estimator
from Equation 8, which assumes the infinite irregular tree G
is given, and the source v∗ is chosen randomly from the nodes
of G. Equation 8 is the correct ML estimator in any practical
scenario, but analyzing the probability of detection under this
model requires a prior on the (infinitely many) nodes of G. We
therefore consider a closely-related random process, in which
we fix a source v∗ and generate G (and consequently, GT )
on-the-fly. Specifically, at time t = 0, v∗ draws a degree dv∗
from D, and generates dv∗ child nodes. The source picks one
of these neighbors uniformly at random to be the new virtual
source. Each time a node v is infected according to Protocol
1, v draws its degree dv from D, then generates dv − 1 child
nodes. For example, as soon as v2, neighbor of v∗, receives the
virtual source token, it draws its degree from D and generates
dv2 − 1 children. The structure of the underlying, infinite
contact network G is independent of GT conditioned on the
uninfected neighbors of the leaves of GT , and need not be
considered. The adversary observes GT , which is an unlabeled
snapshot including GT and its uninfected neighbors. We have
that P(v̂MAP = v∗|T ) =

∑
GT P(GT |T )P(v̂MAP = v∗|GT ).

We first consider P(v̂ML = v∗|GT ).
1) Probability of Detection Given a Snapshot: The adver-

sary observes this random process at time T (i.e., it observes
GT , knowing that the interior GT are the infected nodes),
and estimates one of the leaf node as an estimate of the
true source which started the random process. The following
theorem analyzes the probability of detecting the true source
for any estimate v̂, given a snapshot GT .

Theorem 4.5: Under the above described random process of
adaptive diffusion, an adversary observes the snapshot GT at
an even time T > 0 and estimates v̂ ∈ ∂GT . For any estimator
v̂, the conditional probability of detection is

P(v̂ = v∗|GT ) =
1

dvT

∏
w∈φ(v̂,vT )
\{vT ,v̂}

1

(dw − 1)
, (9)
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where vT is the center of GT , φ(v̂, vT ) is the (unique) path
from v̂ to vT , GT is the interior of GT which is the infected
sub-tree, and ∂GT is the set of leaves of GT .

A proof is provided in Section IX-D. Intuitively, equation
(9) is the probability that the virtual source starting from v̂
ends up at vT (up to some constant factor for normalization).
This gives a simple rule for the adversary to achieve the best
detection probability by computing the MAP estimate:

v̂
(T )
MAP ∈ arg max

v̂
P(v̂(T ) = v∗|GT ) . (10)

Corollary 4.6: Under the hypotheses of Theorem 4.5, the
MAP estimator in equation (10) can be computed as

v̂
(T )
MAP = arg min

v∈∂GT

∏
w∈φ(v,vT )
\{vT ,v}

(dw − 1) , (11)

achieving a conditional probability of detection

P(v̂
(T )
MAP = v∗|GT ) = max

v∈∂GT

1

dvT
∏

w∈φ(v,vT )
\{vT ,v}

(dw − 1)
.(12)

When applied to regular trees, this recovers known re-
sults of [45], which confirms that adaptive diffusion provides
strong anonymity guarantees under d-regular trees. But more
importantly, Corollary 4.6 characterizes how the anonymity
guarantee depends on the general topology of the snapshot.
We illustrate this in two extreme examples: a regular tree and
an extreme example in Figure 6.

For a d-regular tree, where all nodes have the same degree,
the size of infection at even time T is the number of nodes in
a d-regular tree of depth T/2:

NT =
d(d− 1)T/2

d− 2
+

2

d− 2
.

To achieve a perfect obfuscation, we want the probability of
detection to decay as 1/NT . We can apply Corollary 4.6 to this
d-regular tree and show the probability of detection is ((d −
1)/d)(d − 1)−T/2), which recovers one of the known results
in [45, Proposition 2.2]. This confirms that adaptive diffusion
achieves near-perfect obfuscation, up to a small factor of (d−
1)/(d− 2).

On the other hand, when there exists a path to a leaf
node consisting of low-degree nodes, adaptive diffusion can
be sub-optimal, and the gap to optimality can be made
arbitrarily large. Figure 6 illustrates such an example. This
is a tree where all nodes have the same degree d = 5,
except for those nodes along the path from the center vT
to a leaf node v, including vT and excluding v. The center
vT has degree two and the nodes in the path have degree
three. Hence, the shaded triangles indicate d-regular sub-
trees of appropriate heights. The size of this infection is
NT = ((d− 1)T/2+1/(d− 2)2)(1 + o(1)). Ideally, one might
hope to achieve a probability of detection that scales as
1/(d− 1)T/2. However, Corollary 4.6 shows that the adaptive
diffusion achieves probability of detection 1/2T/2, with the
leaf node v achieving this maximum in equation (12). Hence,
there is a multiplicative gap of ((d− 1)/2)T/2. By increasing
d, the gap can be made arbitrarily large. On the other hand,
such an extreme topology is rare under the i.i.d tree model.

vT
GT

v

Fig. 6: An example of a snapshot emphasizing the sub-
optimality of adaptive diffusion.

2) Concentration of Probability of Detection: Depending
on the topology, adaptive diffusion can be significantly sub-
optimal. A natural question is “what is the typical topology
of a graph resulting from the random tree model?” Under
the model introduced previously, we give a concrete answer.
Perhaps surprisingly, this typical topology can be characterized
by solving a simple convex optimization.

We are interested in the following extremal value

ΛGT ≡ dvT min
v∈∂GT

∏
w∈φ(v,vT )
\{vT ,v}

(dw − 1) ,

which captures the topology of the snapshot. We want to
characterize the typical value of this function over random
tree GT resulting from the adaptive diffusion process.

Observe that the distribution of the balanced tree GT follows
a simple branching process known as Galton-Watson process.
This is because GT resulting from adaptive diffusion has the
same distribution, independent of the location of the source
v∗. We consider a given degree distribution D. We use D
to denote both a random variable and its distribution—the
distinction should be clear from context. The random variable
D has support f = (f1, . . . , fη) associated with probability
p = (p1, . . . , pη) such that the degree of node v is i.i.d. with

dv =


f1 with probability p1 ,

...
...

fη with probability pη ,

(13)

where 2 < f1 < f2 < · · · < fη are integers and the positive
pi’s sum to one. We also assume D’s support set has at least
two elements, i.e., η ≥ 2.

Note that the adaptive diffusion always passes the virtual
source token to a uniformly-chosen neighbor. It is straight-
forward to show that adaptive diffusion starting from a leaf
node v∗ has the same distribution over graphs as the following
branching process, denoted GT : at time T = 0 a root node,
which we denote as the virtual source vT , creates D offspring.
At each subsequent even time step, each leaf node in GT
creates new offspring independently according to D−1 (where
we subtract one because each leaf is already connected to
its parent). This process is repeated until time step T , which
generates a random tree GT . More precisely, the two branching
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processes are equal in distribution: GT
D
=GT . This can be seen

by observing that conditioned on the path of nodes φ(v∗, vT ),
the branching processes are identical. Since the node degrees
in this path are drawn independently, the path is equally
distributed whether it starts from the virtual source vT or the
leaf node v∗.

The following theorem provides a concentration inequality
on the extremal quantity ΛGT , which in turn determines the
probability of detection as provided by Corollary 4.6:

P(v̂
(T )
MAP = v∗|GT ) =

1

ΛGT
. (14)

Theorem 4.7: For an even T > 0, suppose a random tree
GT is generated from the root vT according to the Galton-
Watson process with i.i.d. degree distribution D, where f and
p are defined as in equation (13), then the following results
hold:
(a) If p1(f1 − 1) > 1, for any positive δ > 0, there exists

positive constants CD,δ and C ′D,δ that depend only on
the degree distribution and the choice of δ such that

P
(∣∣∣∣ log(ΛGT )

T/2
− log(f1 − 1)

∣∣∣∣ > δ

)
≤ e−CD,δT ,

for an even time T ≥ C ′D,δ .
(b) If p1(f1 − 1) < 1, define the mean number of children:

µD ≡
η∑
i=1

pi(fi − 1) ,

and the set

RD =
{
r ∈ Sη | log(µD) ≥ DKL(r‖β)

}
,

where Sη denotes the η-dimensional probability simplex,
DKL(·‖·) denotes Kullback-Leibler divergence, and β is a
length-η probability vector in which βi = pi(fi−1)/µD.
Further, define r∗ as follows:

r∗ = arg min
r∈RD

〈
r , log(f − 1)

〉
, (15)

where 〈r, log(f − 1)〉 =
∑η
i=1 ri log (fi − 1). Then for

any δ > 0, there exists positive constants CD,δ and C ′D,δ
that only depend on the degree distribution D and the
choice of δ > 0 such that

P
(∣∣∣∣ log(ΛGT )

T/2
− 〈r∗, log(f − 1)〉

∣∣∣∣ > δ

)
≤ e−CD′,δT

for an even time T ≥ C ′D,δ .
The results in parts (a) and (b) can be merged, in the sense
that the solution of equation (15) is r∗ = [1, 0, . . . , 0] when
p1(f1−1) > 1. A proof of this theorem is provided in Section
IX-E. Putting it together with equation (14), it follows that the
probability of detection concentrates around

− 2

T
log
(
P(v̂

(T )
MAP = v∗)

)
' 〈r∗ , log(f − 1)〉 ,

in case (b) and around log(f1−1) in case (a). Here ' indicates
concentration for large enough T . We want to emphasize that
r∗ can be computed using off-the-shelf optimization tools,
since the program in equation (15) is a convex program of
dimension η. This follows from the fact that the objective

is linear in r and the feasible region is convex since KL
divergence is convex in r.

For example, if D is 3 w.p. 0.7 or 4 w.p. 0.3, then this
falls under case (a). The theorem predicts the probability of
detection to decay as (3− 1)−T/2. On the other hand, if

D =

{
2 with probability 0.3
3 with probability 0.7

,

then this falls under case (b) with µD = 1.7, β1 = 0.3/1.7,
and β2 = 1.4/1.7. In this case, the exponent is a solution of
the following optimization for r = [r, 1− r]:

minimize
r∈R

r log 1 + (1− r) log 2

subject to r log
1.7r

0.3
+ (1− r) log

1.7(1− r)
1.4

≤ log(1.7)

r ∈ [0, 1]

It follows that the optimal solution is r∗ ' [0.64, 0.36] and
the probability of detection decays as 2−0.36(T/2). Figure 7
confirms this prediction with simulations for these examples.

Theorem 4.7 provides a simple convex program that com-
putes the probability of detection for any degree distribution.
For random trees, this quantifies the gap between what adap-
tive diffusion can guarantee and the perfect obfuscation one
desires. We define the rescaled log-multiplicative gap as

∆D ≡ 2

T
log

P(v
(T )
MAP = v∗)

1/E[|∂GT |]
,

where |∂GT | is the total number of candidates in a snapshot.
It is not difficult to show that E[|∂GT |] = µ

T/2
D , and it follows

that ∆D ' logµD − 〈r∗, log(f − 1)〉. For example, ∆D = 0
for regular trees, and ∆D = log2 2.3 − log2 2 = 0.20 for the
first example under case (a) and ∆D = log2 1.7−0.36 = 0.41
for the second example under case (b).

0 5 10 15

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
(2,3)=>(0.3,0.7), observed
(2,3)=>(0.3,0.7), theoretical
(3,4)=>(0.7,0.3), observed
(3,4)=>(0.7,0.3), theoretical

Radius of the infected sub-tree, T/2

−
(2
/T

)
lo

g
2
(P

(v̂
=
v
∗ )

)

Fig. 7: Empirical verification of Theorems 4.5 and 4.7. We
observe that the probability of detection converges in time to
the predicted values, which depend only on the underlying
degree distribution.

Simulation studies. Figure 7 empirically checks the predic-
tions in Theorems 4.5 and 4.7. The distribution with support
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f = (3, 4) with probabilities p = (0.5, 0.5) addresses case 1
from the theorem, where p1(f1 − 1) > 1. The distribution
with support f = (2, 3) with probabilities p = (0.3, 0.7)
addresses case 2, where p1(f1−1) < 1. In both examples, we
observe that the empirical log(P(v̂ = v∗))/(T/2) converges
to the theoretical value predicted in Figure 7. However, this
convergence may be slow, and the timestep duration of these
experiments was limited by computational considerations since
the graph size grows exponentially in time.

3) Preferential Attachment : Our analysis reveals that adap-
tive diffusion can be significantly sub-optimal, when the under-
lying graph degrees are highly irregular. To bridge this gap, we
introduce a family of protocols we call Preferential Attachment
Adaptive Diffusion (PAAD). We analyze the performance of
PAAD and provide numerical simulations showing that PAAD
improves over adaptive diffusion when degrees are irregular.

The reason for this gap is that in typical random trees,
there are nodes that are significantly more likely to be the
source, compared to other typical candidate nodes. To achieve
near-perfect obfuscation, we want all candidate nodes to have
similar posterior probabilities of being the source. To balance
the posterior probabilities of leaf nodes, we suggest passing
the virtual source with higher probability to high-degree nodes.
We propose a family of protocols based on this idea, and make
this intuition precise in Theorem 4.8.

PAAD is based on adaptive diffusion, but we modify how
virtual sources are chosen. We parametrize this family of
protocols by a non-negative integer g. When a new virtual
source is to be chosen, instead of choosing uniformly among
its neighbors (except for the previous virtual source), the new
virtual source is selected with probability weighted by the size
of its g-hop neighborhood. Let Ng(v) denote the set of g-hop
neighbors of node v, and let Ng(v, w) denote the same set,
removing any nodes z for which w ∈ φ(z, v), where φ(z, v)
denotes the path between z and v. Then for instance, if g = 1,
then each time the virtual source is passed from vT to vT+2,
it is passed to a neighbor w ∈ N1(vT , vT−2) with probability
proportional to dw − 1:

P(vT+2 = w) =
dw − 1∑

w′∈N1(vT ,vT−2)(dw′ − 1)
.

For general g, the probability is proportional to the size of
the candidate w’s g-hop local neighborhood, excluding those
in the direction of the current virtual source vT . Each virtual
source vT chooses the next virtual source as follows: for any
node w ∈ N1(vT , vT−2),

P (vT+2 = w) =
|Ng(w, vT )|∑

w′∈N1(vT ,vT−2) |Ng(w′, vT )|
.

PAAD encourages the virtual source to traverse high-degree
nodes. This balances the posterior probabilities, by strength-
ening the probability of leaf nodes whose path contain high-
degree nodes, while weakening those with low-degree nodes.

This intuition is made precise in the following theorem,
which analyzes the probability of detection for a given snap-
shot. Define the probability that the sequence of decisions on
choosing the virtual sources results in the path from a source v
to the current virtual source vT as Q(GT , v) ≡

∏T/2
t=1 P(v2t =

wt) , where
φ(v, vT ) = (w0 = v, w1, w2, . . . , wT/2−1, wT/2 = vT ).
The specific probability depends on the choice of g and the
topology of the underlying tree. Note that the progression of
the virtual source now depends on g-hop neighborhood, and
we therefore define GT to include the current infected subgraph
GT and its (g + 1)-hop neighborhood.

Theorem 4.8: Suppose a node v∗ starts to spread a message
at time t = 0 according to PAAD, where the underlying
irregular tree is generated according to the random branching
process described in Section IV-B. At a certain even time
T ≥ 0, an adversary observes the snapshot of the infected
subtree GT and computes a MAP estimate of the source v∗.
Then, the following results hold:
(a) The MAP estimator is

v̂MAP = arg max
v∈∂GT

dv Q(GT , v)

where ∂GT denotes the leaves of GT .
(b) The conditional probability of detection achieved by the

MAP estimator is

P(v̂MAP = v∗|GT ) =
maxv∈∂GT dv Q(GT , v)∑

w∈∂GT dwQ(GT , w)

The proof relies on the techniques developed for Theorem
4.5, and is omitted due to space limitation. The example from
Figure 6 illustrates the power of PAAD. For this class of
snapshots, it is straightforward to show that under adaptive
diffusion, PADD = 2−T/2, whereas under 1-hop PAAD,

PPAADD ≤ 2

(d− 1)
T/2−1 − 1

.

Notice from these expressions that PPAADD scales as (d −
1)−T/2, which achieves perfect obfuscation, whereas regular
adaptive diffusion scales as 2−T/2.

This shows that there exist snapshots where PAAD sig-
nificantly improves over adaptive diffusion. However, such
examples are rare under the random tree model, and there
are also examples of snapshots where adaptive diffusion can
achieve a better obfuscation than PAAD. To complete the
analysis, we would like to show the analog of Theorem 4.7 for
PAAD. However, the observed snapshot is no longer generated
by a standard Galton-Watson branching process, due to the
preferential attachment. The analysis techniques developed for
Theorem 4.7 do not generalize, and new techniques seem to
be needed for a technical analysis. This is outside the scope
of this manuscript, but we show simulations suggesting that
PAAD improves over adaptive diffusion.

Simulation studies. PAAD requires each virtual source to
know some information about its local neighborhood on the
contact network; in exchange, we observe empirically that
it hides the source better than traditional adaptive diffusion.
Figure 8 shows the probability of detection over graphs with
a degree distribution of support f = (2, 5) with probability
p = (0.5, 0.5). The results are averaged over 10,000 realiza-
tions of the random graph and the spreading sequence. This
plot shows empirically that preferential attachment adaptive
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Fig. 8: Probability of detection of regular adaptive diffusion
compared to 1-, 2-, and 3-hop preferential attachment adaptive
diffusion (PAAD).
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Fig. 9: Ratio of observed probability of detection to lower-
bound probability of detection, for a range of degree distri-
butions. PAAD has better anonymity properties than regular
adaptive diffusion over random, irregular trees.

diffusion exhibits better hiding properties than regular adap-
tive diffusion, and that the benefit of preferential attachment
increases with the size of the neighborhood considered for
preferential attachment (e.g., one-hop vs. two-hop). Notice that
our lower bound on probability of detection is 1/|∂GT | rather
than 1/NT , as in [45]; this is because we constrain the source
to always be at one of the leaves of the graph, so 1/|∂GT |
lower bounds the probability of detection.

Figure 9 computes the ratio of the observed probability of
detection to a lower bound on the probability of detection
(i.e., 1/|∂GT |), for both adaptive diffusion (AD) and one-hop
PAAD. Empirically, we observe that the advantage of PAAD is
greater when the degree distribution is more imbalanced (i.e.,
when fmax − fmin is large).

C. General Graphs

In this section, we demonstrate how adaptive diffusion fares
over graphs that involve cycles, irregular degrees, and finite

graph size. We provide theoretical guarantees for the special
case of two-dimensional grid graphs, and we show simulated
results over a social graph dataset.

1) Grid graphs: Here, we derive the optimal parameters
α(t, h) for spreading with adaptive diffusion over an infinite
grid graph, defined as the graph Cartesian product of two
infinite line graphs. This example highlights challenges asso-
ciated with spreading over cyclic graphs, while still providing
a regular, symmetric structure. To spread over grids, we make
some changes to the adaptive diffusion protocol, outlined in
Protocol 5 (grid adaptive diffusion).

First, standard adaptive diffusion requires the virtual source
to know its distance from the true source. Over trees, this
information was transmitted by passing a distance counter, ht,
that was incremented each time the virtual source changed;
since the network was a tree, this distance from the source
was non-decreasing as long as the virtual source was non-
backtracking. However, on a cyclic graph (e.g., a grid), the
virtual source’s non-backtracking random walk could actually
cause its distance from the true source to decrease with
time. We wish to avoid this to preserve adaptive diffusion’s
anonymity guarantees.

Therefore, instead of passing the raw hop distance ht to each
new virtual source, grid adaptive diffusion passes directional
coordinates (hHt , h

V
t ) detailing the virtual source’s horizontal

and vertical displacement from the source, respectively. For
example, in Figure 10, the virtual source v4 would receive
parameters (hHt , h

V
t ) = (−1, 1) because it is one hop west and

one hop north of the true source. This indexing assumes some
notion of directionality over the underlying contact network;
nodes should know whether they received a message from the
north, south, east, or west. If a virtual source chooses to move,
it always passes the token to a node that is further away from
the true source, i.e. |hHt+1|+ |hVt+1| ≥ |hHt |+ |hVt |.

To maintain symmetry about the virtual source, we also
modify the message-passing algorithm. Just as in adaptive
diffusion over trees, when a new virtual source sends out
branching messages, it sends them in every direction except
that of the old virtual source. However, unlike adaptive diffu-
sion over trees, each branch message has up to two “forbidden"
directions: the direction of the previous virtual source, and the
direction of the node that originated the branching message
(these might be the same). Thus, if a branch message is sent
west, and the previous virtual source was south of the current
virtual source, each node would only propagate the message
west and/or north. Whenever a node receives a branch message
and its neighbors are not all infected, it infects all uninfected
neighbors. As in adaptive diffusion over trees, two waves of
directional branching messages are sent each time the virtual
source moves, in every direction except that of the old virtual
source. If the virtual source instead chooses to stay fixed,
then the same rules hold, except the new virtual source only
sends one wave of branch messages, symmetrically in every
direction.

Given the spreading protocol, we can choose α(t, h) to give
optimal hiding:

α(t, h) =
t− 2(h− 1)

t+ 4
. (16)
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Fig. 10: Grid adaptive diffusion spreading pattern.

Under these conditions, the following result shows that we
achieve perfect obfuscation, i.e. P(v̂ML = v∗) = 1/NT +
o(1/NT ).

Proposition 4.9: Suppose the contact network is an infinite
grid, and one node v∗ in G starts to spread a message
according to Protocol 5 (grid adaptive diffusion) at time
t = 0, with α(t, h) chosen according to equation (16). At
a certain time T ≥ 0 an adversary estimates the location of
the source v∗ using the maximum likelihood estimator v̂ML.
The following properties hold for Protocol 5:
(a) the number of infected nodes at time T is

NT ≥
(T + 1)2

2

(b) the probability of source detection for the maximum
likelihood estimator at time T is

P (v̂ML = v∗) ≤ 2

(T + 3)(T − 1)
.

(Proof in Section IX-F)
The baseline infection rate for deterministic, symmetric

spreading is NT = T 2 + (T + 1)2. Grid adaptive diffusion
infection rate is within a constant factor of this maximum
possible rate, and it achieves perfect obfuscation over grid
graphs. The price to pay for this non-tree graph is that (a)
a significant amount of metadata needs to be transmitted
to coordinate the spread—particularly with respect to the
directionality of messages; and (b) the position of the nodes
w.r.t. a global reference needs to be known. Hence, the current
implementation of the grid adaptive diffusion has a limited
scope, and it remains an open question how to avoid such
requirements for grids and still achieve a perfect obfuscation.

2) Real-world social graphs: In this section, we provide
simulation results from running adaptive diffusion over an
underlying connectivity network of 10,000 Facebook users, as
described by the Facebook WOSN dataset [44]. We eliminated
all nodes with fewer than three friends (this approach is taken
by several existing anonymous applications so users cannot
guess which of their friends originated the message), which
left us with a network of 9,502 users.

Over this underlying network, we selected a node uniformly
at random as the rumor source, and spread the message using

adaptive diffusion for trees. We did not use grid adaptive
diffusion because Protocol 5 assumes the underlying graph has
a symmetric structure with a global notion of directionality,
whereas the tree-based adaptive diffusion makes no such
assumptions. We set d0 = ∞, which means that the virtual
source is always passed to a new node (i.e., αd(t, h) = 0).
This choice is to make the ML source estimation faster;
other choices of d0 may outperform this naive choice. To
preserve the symmetry of our constructed trees as much
as possible, we constrained each infected node to infect a
maximum of three other nodes in each timestep. We also give
the adversary access to the undirected infection subtree that
explicitly identifies all pairs of nodes for which one node
spread the infection to the other. This subtree is overlaid
on the underlying contact network, which is not necessarily
tree-structured. We demonstrate in simulation (Figure 11) that
even with this strong side information, the adversary can only
identify the true message source with low probability.

Using the naive method of enumerating every possible
message trajectory, it is computationally expensive to find
the exact ML source estimate since there are 2T possible
trajectories, depending on whether the virtual source stayed or
moved at each timestep. If the true source is one of the leaves,
we can closely approximate the ML estimate among all leaf
nodes, using the same procedure as described in IV-B, with one
small modification: in graphs with cycles, the term (dvjk − 1)
from equation (7) should be substituted with (duvjk

−1), where
duvjk

denotes the number of uninfected neighbors of vjk at time
jk. Loops in the graph cause this value to be time-varying, and
also dependent on the location of v0, the candidate source. This
approach is only an approximation of the ML estimate because
the virtual source could move in a loop over the social graph
(i.e., the same node could be the virtual source more than
once, in nonadjacent timesteps). We did not approximate the
ML estimate for non-leaves because the simplifications used
in Section IV-B to compute the likelihood no longer hold,
leading to an exponential increase in the problem dimension.
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Fig. 11: Near-ML probability of detection for the Facebook
graph with adaptive diffusion.
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Fig. 12: Hop distance between true source and estimated
source over infection subtree for adaptive diffusion over the
Facebook graph.

On average, adaptive diffusion reached 96 percent of the
network within 10 timesteps using d0 = 4. We also computed
the average distance of the true source from the estimated
source over the infected subtree (Figure 12). We see that as
time progresses, so does the hop distance of the estimated
source from the true source. In social networks, nearly every-
one is within a small number of hops (say, 6 hops [46]) from
everyone else, so this computation is not as informative in this
setting. However, it is relevant in location-based connectivity
graphs, which can induce large hop distances between nodes.

V. SPY-BASED ADVERSARIAL MODEL

The spy-based adversary collects more detailed information
than the snapshot adversary, but only for a subset of network
nodes. In this section, we provide some results stating that over
d-regular trees, choosing αd(t, h) = 0 gives asymptotically
optimal hiding in d. While the proofs for these results are not
included in this paper (all proofs can be found in [14]), the
results are included for completeness.

For the spy-based adversary, we model each node other than
the source as a spy with probability p. At some point in time,
the source node v∗ starts propagating its message over the
graph according to some spreading protocol (e.g., diffusion
or adaptive diffusion). Each spy node si ∈ V observes: (1)
the time Tsi (relative to an absolute reference) at which it
receives the message, (2) the parent node psi that relayed the
message, and (3) any other metadata used by the spreading
mechanism (such as control signaling in the message header).
At some time, spies aggregate their observations; using the
collected metadata and the structure of the underlying graph,
the adversary estimates the author of the message, v̂.

To define perfect obfuscation for this adversarial model, we
first observe the following:

Proposition 5.1 ([14]): Under a spy-based adversary, no
spreading protocol can have a probability of detection less
than p.

This results from considering the first-spy estimator, which
returns the parent of the first spy to observe the message.
Regardless of spreading, this estimator returns the true source
with probability at least p; with probability p, the first node
(other than the true source) to see the message is a spy.

We therefore say a protocol achieves perfect obfuscation
against a spy-based adversary if the ML probability of detec-
tion conditioned on the spy probability p is bounded by

P
(
v̂ML = v∗|p

)
= p+ o

(
p
)
.

However, when the underlying graph is a d-regular tree, the
probability of detection increases over time for standard diffu-
sion spreading, since the estimator receives more information.
Moreover, it is straightforward to show that the probability of
detection tends to 1 as degree of the underlying graph d→∞:

Proposition 5.2 ([14]): Suppose the contact network is a
regular tree with degree d. There is a source node v∗, and
each node other than the source is chosen to be a spy node
i.i.d. with probability p as described in the spy model. In each
timestep, each infected node infects each uninfected neighbor
independently with probability q. Then the probability of
detection P(v̂ML = v∗) ≥ 1− (1− qp)d.

This bound implies that as degree increases, the probability
of detecting the true source of diffusion approaches 1. The
proposition also results from analyzing the first-spy estima-
tor. These observations suggest that diffusion provides poor
anonymity guarantees in real networks; contact networks may
be high degree, and the adversary is not time-constrained.

A. Main result (Spy-based adversary)

In this section, we give results stating that over d-regular
trees, adaptive diffusion with αd(t, h) = 0 achieves asymp-
totically perfect obfuscation in d. We also show that adaptive
diffusion hides the source better than diffusion over d-regular
trees, d > 2. However, these results depend on a slightly
modified implementation of adaptive diffusion, in which some
additional metadata is passed around. This implementation,
which we call the Tree Protocol, facilitates analysis and is
also fully distributed, avoiding the explicit notion of a virtual
source.

Tree Protocol. The spreading protocol follows Algorithm 1
(Spreading on a tree) from [14]; the goal is to build an infected
subtree with the true source at one of the leaves. Whenever a
node v passes a message to node w, it includes three pieces of
metadata: (1) the parent node pw = v, (2) a binary direction
indicator uw ∈ {↑, ↓}, and (3) the node’s level in the infected
subtree mw ∈ N. The parent pw is the node that relayed the
message to w. The direction bit uw flags whether node w is a
spine node, responsible for increasing the depth of the infected
subtree. The level mw describes the hop distance from w to
the nearest leaf node in the final infected subtree, as t→∞.

At time t = 0, the source chooses a neighbor uniformly at
random (e.g., node 1) and passes the message and metadata
(p1 = 0, u1 =↑, m1 = 1). Figure 13 illustrates an exam-
ple spread, in which node 0 passes the message to node
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1. Yellow denotes spine nodes, which receive the message
with uw =↑, and gray denotes those that receive it with
uw =↓. Whenever a node w receives a message, there are
two cases. If uw =↑, node w chooses another neighbor z
uniformly at random and forwards the message with ‘up’ meta-
data: (pz = w, uz =↑, mz = mw + 1). All of w’s remaining
neighbors z′ receive the message with ‘down’ metadata:
(pz′ = w, uz′ =↓, mz′ = mw − 1). For instance, in Figure
13, node 1 passes the ‘up’ message to node 2 and the ‘down’
message to node 3. On the other hand, if uw =↓ and mw > 0,
node w forwards the message to all its remaining neighbors
with ‘down’ metadata: (pz = w, uz =↓, mz = mw − 1). If
a node receives mw = 0, it does not forward the message
further. Algorithm 3 describes this process more precisely.

Observe that adaptive diffusion ensures that the infected
subgraph is a balanced tree with the true source at one of
the leaves. Moreover, unlike regular diffusion, the message
does not reach all the nodes in the network under adaptive
diffusion (even when T = ∞). Even though this may seem
like a fundamental drawback for adaptive diffusion, it can be
shown that the infected subgraph has a size proportional to
(d−1)T/2 on regular trees (compared to (d−1)T under regular
diffusion). More critically, real social networks have cycles,
so neighbors of nodes with mw = 0 can still get the message
from other nodes in the network [14].

As before, this protocol ensures that the infected subgraph is
a symmetric tree with the true source at one of the leaves. The
key difference between Protocol 1 (naive adaptive diffusion)
with αd(t, h) = 0 and Protocol 3 (Tree Protocol) is that
the latter does not rely on message-passing from the virtual
source to control spreading. Instead, it passes enough control
information to realize the same spreading pattern in a fully-
distributed fashion.

Protocol 3 Tree Protocol
Input: contact network G = (V,E), source v∗, time T
Output: infected subgraph GT = (VT , ET )

1: V0 ← {v∗}
2: mv∗ ← 0 and uv∗ ←↑
3: v∗ selects one of its neighbors w at random
4: V1 ← V0 ∪ {w}
5: mw ← 1 and uw ←↑
6: t← 2
7: for t ≤ T do
8: for all v ∈ Vt−1 with uninfected neighbors and mv >

0 do
9: if uv =↑ then

10: v selects one of its uninfected neighbors w at
random

11: Vt ← Vt−1 ∪ {w}
12: mw ← mw + 1 and uw ←↑
13: for all uninfected neighboring nodes z of v do
14: Vt ← Vt−1 ∪ {z}
15: uz ←↓ and mz ← mv − 1

16: t← t+ 1

In the spy-based adversarial model, each spy si in the net-
work observes any received messages, the associated metadata,

and a timestamp Tsi . Figure 14 illustrates the information
observed by each spy node, where spies are outlined in red.
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Fig. 13: Message spread using the tree protocol from [14].

3

3

3

3

1

0

2

p

u

m

T











8

8

8

8

5

4

4

p

u

m

T











7

7

7

7

4

0

3

p

u

m

T











1

0

2

3
4

5

6

7

8 9

Fig. 14: The information observed by the spy nodes 3, 7, and
8 for the spread in Figure 13. Timestamps in this figure are
absolute, but they need not be.

Source Estimation. The ML source-estimation algorithm for
this spreading and adversarial model is described in [14]. The
ML estimation algorithm is not necessary to understand this
paper’s primary contributions. We include it in this section
for completeness, and because the probability of detection
for the spy+snapshot adversarial model in Section VI uses
terminology that is introduced in this estimator.

To a snapshot adversary, all leaves in the infected subgraph
have the same likelihood. Because adaptive diffusion has
deterministic timing, spies only help the estimator discard
candidate nodes. We assume the message spreads for infinite
time. There is at least one spy on the spine; consider the first
such spy to receive the message, s0. This spine spy (along
with its parent and level metadata) allows the estimator to
specify a feasible subtree in which the true source must lie. In
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Figure 13, node 8 is on the spine with level m8 = 4, so the
feasible subtree is rooted at node 5 and contains all the pictured
nodes except node 8 (9’s children and grandchildren also
belong, but are not pictured). Spies outside the feasible subtree
do not influence the estimator, because their information is
independent of the source conditioned on s0’s metadata. Only
leaves of the feasible subtree could have been the source—e.g.,
nodes 0, 3, 6, and 7, as well as 9’s grandchildren.

Protocol 4 ML Source Estimator for Algorithm 3

Input: contact network G = (V,E), spy nodes S =
{s0, s1 . . .} and metadata si : (psi ,msi , usi)

Output: ML source estimate v̂ML

1: Let s0 denote the lowest-level spine spy, with metadata
(ps0 ,ms0 , us0).

2: Ṽ ← {v ∈ V : δH(v, s0) ≤ ms0 and ps0 ∈ P(v, s0)}
3: Ẽ ← {(u, v) : (u, v) ∈ E and u, v ∈ Ṽ }
4: Define the feasible subgraph as F (Ṽ , Ẽ)
5: L← ∅ . Set of feasible pivots
6: K ← ∅ . Set of eliminated pivot neighbors
7: for all s ∈ S with s ∈ Ṽ do
8: Let

[
hs,`s
h`s,s0

]
= 1

2

[
1 −1
1 1

]
·
[
|P (s, s0)|
Ts0 − Ts

]
9: `s ← v ∈ P(s, s0) : δH(s, `s) = hs,`s

10: ks ← v ∈ P(s, s0) : δH(s, ks) = hs,`s − 1
11: L← L ∪ {`s} . Add pivot
12: K ← K ∪ {ks} . Add pivot neighbor
13: Find the lowest-level pivot: `min ← argmin`∈Lm`

14: U ← ∅ . Candidate sources
15: for all v ∈ Ṽ where v is a leaf in F (Ṽ , Ẽ) do
16: if P(v, `min) ∩K = ∅ then
17: U ← U ∪ {v}
18: return v̂ML, drawn uniformly from U

The estimator then uses spies within the feasible subtree
to prune out candidates. The goal is to identify nodes in the
feasible subtree that are on the spine and close to the source.
For each spy in the feasible subtree, there exists a unique path
to the spine spy s0, and at least one node on that path is on
the spine; the spies’ metadata reveals the identity and level of
the spine node on that path with the lowest level—we call this
node a pivot (details in Algorithm 4). For instance, in Figure
14, we can use spies 7 and 8 to learn that node 2 is a pivot with
level m2 = 2. Estimation hinges on the minimum-level pivot
across all spy nodes, `min. In the example, `min = 1, since
spies 3 and 8 identify node 1 as a pivot with level m1 = 1.
The true source must lie in a subtree rooted at a neighbor of
`min, with no spies. In our example, this leaves only node 0,
the true source.

Anonymity properties. This ML estimation procedure can be
analyzed to exactly compute the probability of detection for
adaptive diffusion on a d-regular tree:

Theorem 5.3 ([14]): Suppose the contact network is a
regular tree with degree d > 2. There is a source node v∗,
and each node other than the source is chosen to be a spy
node i.i.d. with probability p as described in the spy model.

Against colluding spies attempting to detect the location of
the source, adaptive diffusion achieves the following:

(a) The probability of detection is

P(v̂ML = v∗) = p+
1

d− 2
−
∞∑
k=1

qk
(d− 1)k

,

where qk ≡ (1 − (1 − p)((d−1)k−1)/(d−2))d−1 + (1 −
p)((d−1)k+1−1)/(d−2).

(b) The expected distance between the source and the
estimate is bounded by

E[δH(v̂ML, v
∗)] ≥ 2

∞∑
k=1

k · rk

where |Td,k| = (d−1)k−1
d−2 , and rk ≡ 1

d−1

(
(1 − (1 −

p)|Td,k|)d−1+(d−1)(1−p)|Td,k|−(d−2)(1−p)|Td,k|(d−1)−1
)

.

There are two main observations to note regarding this
result:

(1) Asymptotically optimal probability of detection: As tree
degree d increases, the probability of detection converges to
the degree-independent fundamental limit in Proposition 5.1,
i.e., P(V ∗ = v̂ML) = p. This is in contrast to diffusion, whose
probability of detection tends to 1 asymptotically in d.

(2) Expected hop distance asymptotically increasing: We
observe empirically that for regular diffusion, E[δH(v̂ML, v

∗)]
approaches 0 as d increases. On the other hand, for
adaptive diffusion with a fixed p > 0, as d → ∞,
lim supE[δH(v̂ML, v

∗)] = 2(1− p).

These observations suggest that adaptive diffusion exhibits
provably stronger anonymity properties than standard diffusion
on regular trees—a suggestion that is backed up by simulations
on irregular trees and the Facebook graph in [14].

VI. SPY+SNAPSHOT ADVERSARIAL MODEL

The spy+snapshot adversarial model considers a natural
combination of the snapshot and spy-based adversaries. At
a certain time T , the adversary collects a snapshot of the
infection pattern, GT . It also collects metadata from all spies
that have seen the message up to (and including) time T . Based
on these two sets of metadata, the adversary infers the source.

Notably, this stronger model does not significantly impact
the probability of detection as time increases. The snapshot
helps detection when there are few spies by revealing which
nodes are true leaves. This effect is most pronounced for small
T and/or small p. The exact probability of detection at time
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T is given below:

P(v̂ML = v∗) =

(1− p)|Sd,T |−1

|∂Sd,T |︸ ︷︷ ︸
no spy

+

T/2∑
k=1

{ (1− p)(|Td,k|−1) p

|∂Td,k|︸ ︷︷ ︸
`min (kth spine node) is a spy

+

(1− p)|Td,k|(1− (1− p)|Sd,T |−|Td,k+1|)EX
[ I(X 6= d− 2)

(X + 1) |∂Td,k|

]
︸ ︷︷ ︸

`min (kth spine node) not a spy

+

(1− p)|Sd,T |−(|Td,k+1|−|Td,k|)EX
[ I(X 6= d− 2)

|∂Sd,T | − (d− 2−X)|∂Td,k|

]
︸ ︷︷ ︸

all spy descendants of k-th spine node

}
,

(17)

where X ∼ Binom(d− 2, (1− p)|Td,k|), |Td,k| = (d−1)k−1
d−2 is

the number of nodes in each candidate subtree for a pivot at
level k, and |∂Td,k| = (d− 1)k−1 is the number of leaf nodes
in each candidate subtree. This expression can be evaluated
numerically, as shown in Figure 15, which illustrates the
tradeoff between the effect of a snapshot and spy nodes. The
derivation for this expression is included in [14].

VII. CONNECTIONS TO PÓLYA’S URN PROCESSES

In this section, we make a connection between adaptive
diffusion on a line and Pólya’s urn processes. In doing so, we
highlight a property of Pólya’s urn processes, which inherently
provides privacy. Further, we apply the Bayesian interpretation
of Pólya’s urn processes to design a new implementation of
adaptive diffusion and analyze the precise cost of revealing the
control packets to the spy nodes, in terms of leaked anonymity.

To separately characterize the price of timestamp metadata
and control packets, we focus on the concrete example of a
line graph. Consider a line graph in which nodes 0 and n+ 1
are spies. One of the n nodes between the spies is chosen
uniformly at random as a source, denoted by v∗ ∈ {1, . . . , n}.
We let t0 denote the time the source starts propagating
the message according to some global reference clock. Let
Ts1 = T1 + t0 and Ts2 = T2 + t0 denote the timestamps when
the two spy nodes receive the message, respectively. Knowing
the spreading protocol and the metadata, the adversary uses
the maximum likelihood estimator to optimally estimate the
source.

Standard diffusion. Consider a standard discrete-time random
diffusion with a parameter q ∈ (0, 1) where each uninfected
neighbor is infected with probability q. The adversary ob-
serves Ts1 and Ts2 . Knowing the value of q, it computes the
ML estimate v̂ML = arg maxv∈[n] PT1−T2|V ∗(Ts1 − Ts2 |v),
which is optimal assuming a uniform prior on v∗. Since
t0 is not known, the adversary can only use the difference
Ts1 − Ts2 = T1 − T2 to estimate the source. We can exactly
compute the corresponding probability of detection; Figure 16
(bottom panel) illustrates that the posterior (and the likelihood)
is concentrated around the ML estimate, and the source can
only hide among O(

√
n) nodes. The detection probability

correspondingly scales as 1/
√
n (top panel).
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Fig. 16: Comparisons of probability of detection as a function
of n (top) and the posterior distribution of the source for
an example with n = 101 and T2 − T1 = 25 (bottom).
The line with ‘control packet revealed’ uses the Pólya’s urn
implementation.

Adaptive diffusion on a line. First, recall the adaptive
diffusion (Protocol 1) with the choice of αd(h, t) = t−2h+2

t+2
(Equation (2)) on a line illustrated in Figure 17. At t = 0, the
message starts at node 0. The source passes the virtual source
to node 1, so v2 = 1. The next two timesteps (t = 1, 2)
are used to restore symmetry about v2. At t = 2, the virtual
source stays with probability α2(2, 1) = 1/2. Since the virtual
source remained fixed at t = 2, at t = 4 the virtual source
stays with probability α2(4, 1) = 2/3. The key property is that
if the virtual source chooses to remain fixed at the beginning
of this random process, it is more likely to remain fixed in the
future, and vice versa. This is closely related to the well-known
concept of Pòlya’s urn processes; we make this connection
more precise later in this section.

The protocol keeps the current virtual source with proba-
bility 2δH(vt,v

∗)
t+2 , where δH(vt, v

∗) denotes the hop distance
between the source and the virtual source, and passes it
otherwise. The control packet therefore contains two pieces
of information: δH(vt, v

∗) and t.
Suppose spy nodes only observed timestamps and par-

ent nodes but not control packets. The adversary could
then numerically compute the ML estimate v̂ML =
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Fig. 15: Probability of detection under the spy+snapshot adversarial model. As estimation time and tree degree increase, the
effect of the snapshot on detection probability vanishes.
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Fig. 17: Spreading on a line. The red node is the message
source. Yellow nodes denote nodes that have been, are, or
will be the center of the infected subtree.

arg maxv∈[n] PT1−T2|V ∗(Ts1 − Ts2 |v). We can compute the
corresponding detection probability exactly. Figure 16 shows
the posterior is close to uniform (top panel) and the probability
detection would scale as 1/n (bottom panel), which is the best
one can hope for. Of course, spies do observe control packets,
so they can learn δH(v∗, vT ) and identify the source with
probability 1. We therefore introduce a new adaptive diffusion
implementation that is robust to control packet information.

Adaptive diffusion via Pólya’s urn. The random process
governing the virtual source’s propagation under adaptive
diffusion is identical to a Pólya’s urn process [47]. We propose
the following alternative implementation of adaptive diffusion.
At t = 0 the protocol decides whether to pass the virtual
source left (D = `) or right (D = r) with probability half.
Let D denote this random choice. Then, a latent variable q is
drawn from the uniform distribution over [0, 1]. Thereafter, at
each even time t, the virtual source is passed with probability
q or kept with probability 1− q. It follows from the Bayesian
interpretation of Pólya’s urn processes that this process has
the same distribution as the adaptive diffusion process.

Further, in practice, the source could simulate the whole
process in advance. The control packet would simply reveal to

each node how long it should wait before further propagating
the message. Under this implementation, spy nodes only
observe timestamps Ts1 and Ts2 , parent nodes, and control
packets containing the infection delay for the spy and all its
descendants in the infection. Given this, the adversary can
exactly determine the timing of infection with respect to the
start of the infection T1 and T2, and also the latent variables D
and q. A proof of this statement and the following proposition
is provided in Section IX-G. The next proposition provides an
upper bound on the detection probability for such an adversary.

Proposition 7.1: When the source is uniformly chosen from
n nodes between two spy nodes, the message is spread accord-
ing to adaptive diffusion, and the adversary has a full access
to the time stamps, parent nodes, and the control packets that
is received by the spy nodes, observations T1, T2, q and D, the
adversary can compute the ML estimate:

v̂ML =


T1+2

2 +
⌊
q
(
T1−2

2

)⌋
, if T1 even and D = ` ,

T1+3
2 +

⌊
q
(
T1−1

2

)⌋
, if T1 odd and D = ` ,

1 +
⌊
(1− q)

(
T1−1

2

)⌋
, if T1 odd and D = r .

where T1 is the time since the start of the spread until s1

receives the message, and q is the hidden parameter of the
Pólya’s urn process, and D is the initial choice of direction
for the virtual source. This estimator achieves a detection
probability upper bounded by

P
(
V ∗ = v̂ML

)
≤ π
√

8√
n

+
2

n
. (18)

Equipped with an estimator, we can also simulate adaptive
diffusion on a line. Figure 16 (top) illustrates that even with
access to control packets, the adversary achieves probability
of detection scaling as 1/

√
n – similar to standard diffusion.

For a given value of T1, the posterior and the likelihood are
concentrated around the ML estimate, and the source can only
hide among O(

√
n) nodes, as shown in the bottom panel for

T1 = 58. In the realistic adversarial setting where control
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packets are revealed at spy nodes, adaptive diffusion can only
hide as well as standard diffusion over a line.

VIII. FUTURE DIRECTIONS AND CONNECTIONS TO GAME
THEORY

This work raises a number of interesting open questions.
One such question is how to give plausible deniability to users
that “approve” sensitive messages. Initial investigations exist
[48], but technical and algorithmic questions remain, such as
fundamental tradeoffs between privacy, spreading rate, and the
utility lost, measured by the increased amount of spam in the
network.

Another possible direction harnesses the recently-shown
idea that it is difficult to locate multiple diffusion sources [49].
It might be possible to spread the messages faster than adaptive
diffusion and still achieve perfect obfuscation by creating
multiple pseudo-sources. This approach sacrifices some social
relevance, since the message spreads from remote nodes that
may not necessarily like the message.

Finally, recent work explores how to identify the first
node in a randomly growing network [50], [51], [52], [53].
Unlike diffusion, the network itself is growing according to
some mechanism, e.g., preferential attachment. [50], explores
fundamental limits on the size of a candidate set to ensure
that the true source or root of the random network is in the
candidate set with high probability. A natural question is how
to grow such a network to hide the identity of the root.

Connections to game theory. Consider a game-theoretic
setting where there are two players, the protocol designer and
the adversary. The designer can choose any strategy to spread
the message from a source v∗, as long as the message is passed
one hop at a time. The adversary can choose any strategy
(computationally expensive or not) to compute an estimated
source v̂ given a some side information on the spread. As a
result, the source can either be detected or not. In terms of the
payoff, the protocol designer wants to minimize the probability
of detection and the adversary wants to maximize it.

In this static game setting, the adaptive diffusion is a
(weak) dominant strategy under a certain condition. Consider
a snapshot-based adversary and a contact network of d-
regular tree. The special condition we impose is that we are
only allowed protocols that infect at most, say, 1 + (2(d −
1)(T+1)/2 − d)/(d − 2) nodes. In this setting, Theorem 4.1
implies that adaptive diffusion is dominant up to a vanishing
additive factor.

Following our work [45], a game-theoretic formulation of
the problem of source obfuscation was recently proposed in
[54]. The designer is restricted to use deterministic protocols,
and the snapshot-based adversary is restricted to use a certain
family of estimators based on Jordan centers. Under these
restrictions, it is shown that there is no “dominant” protocol in
Nash equilibrium sense, other than the simple (deterministic)
diffusion.

There are several interesting future research directions.
First, when infecting more nodes is of priority, a fundamen-
tal question is whether there is a dominant strategy for a
given target infection rate. Adaptive diffusion achieves the

fundamental limit of P(detection) = 1/NT until NT ≤
1 + (2(d − 1)(T+1)/2 − d)/(d − 2) ' (d − 1)(T/2) (see
Figure 18) on d-regular trees. It is an open question what
the fundamental limit is above this threshold, and if there is
efficient distributed protocol achieving this optimal tradeoff.
In particular, if we have to spread every time deterministically
to achieve the infection speed of NT ' (d − 1)T , then the
source will be trivially detected as the center of infection.
Above the threshold of logNT ' 1

2T log(d− 1), A variant of
adaptive diffusion can achieve the infection rate αT log(d−1)
with probability of detection (α − 1)T log(d − 1) for any
α ∈ [0.5, 1]. Hence, all grey triangular region is achievable
by adaptive diffusion in Figure 18.

−T log(d− 1)

− 1
2T log(d− 1)

T log(d− 1)1
2T log(d− 1)

1
NT

Infection size (logNT )

logP(detection)

Fig. 18: The fundamental limit of P(detection) ≥ 1/NT
is shown in a solid red line. This is achieved by adaptive
diffusion until log(NT ) ≤ 1

2T log(d − 1). Infection size at
time T is shown on the x-axis in log-scale and the probability
of detection on y-axis also in log-scale.

Second, when the same source spreads multiple messages
that can be linked, this can be posed as a dynamic game. If the
adversary observes multiple spreads of infection from a single
source, how much does the probability of detection increase as
a function of the multiplicity of the spread? One possibility is
to spread according to adaptive diffusion the first time, and use
exactly the same pattern of spread in the consecutive spread of
the following messages from the same source. Hence, from the
meta-data, there is no more information on who the source is.
However, this creates a certain permanent bias in the spread,
which may be undesirable, depending on the application.

Next, a set of nodes can collude to spread the exactly same
message, but starting from multiple sources simultaneously
with possible delays. Unless carefully coordinated, such spread
from multiple sources can be easily detected [55] and there is
no gain in collusion. However, we can consider an alternative
strategy of creating a pseudo-source node to make the source
hard to find. At a certain time (possible t = 0), the protocol
starts another chain of spread starting from a node far away
from the infection so far. This can improve the detection
probability by a factor of the number of such new infections,
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at a price of losing the benefits of social filtering and possibly
spamming the users with irrelevant messages. We want to be
able to measure such a loss in social filtering and characterize
the tradeoff.

IX. PROOFS

A. Proof of Theorem 4.1

Spreading rate. Under Protocol 1, GT is a complete (d− 1)-
ary tree (with the exception that the root has d children) of
depth T/2 whenever T is even. Whenever T is odd, with
probability αd(T, h), GT is again such a (d − 1)-ary tree of
depth (T + 1)/2. With probability 1− αd(T, h), GT is made
up of two (d−1)-ary trees of depth (T −1)/2 each with their
roots connected by an edge. Therefore, it follows that when
d > 2, NT is given by

NT =


1, T = 0,

2(d−1)(T+1)/2

d−2 − 2
d−2 , T ≥ 1, T odd, w.p. (1− α) ,

d(d−1)(T+1)/2

d−2 − 2
d−2 , T ≥ 1, T odd, w.p. α ,

d(d−1)T/2

d−2 − 2
d−2 , T ≥ 2, T even ;

Similarly, when d = 2, NT can be expressed as follows:

NT =


1, T = 0,

T + 1, T ≥ 1, T odd, w.p. (1− α) ,
T + 2, T ≥ 1, T odd, w.p. α ,
T + 2, T ≥ 2, T even ;

The lower bound on NT in equation (3) follows immediately
from the above expressions.

Probability of detection. For any given infected graph GT ,
the virtual source vT cannot have been the source node,
since the true source always passes the token at timestep
t = 1. So P(GT |v = vT ) = 0. We claim that for any two
nodes that are not the virtual source at time T , u,w ∈ GT ,
P(GT |u) = P(GT |w) > 0. This is true iff for any non-virtual-
source node v, there exists a sequence of virtual sources viTi=0

that evolves according to Protocol 1 with v0 = v that results in
the observed GT , and for all u,w ∈ GT \{vT }, this sequence
has the same likelihood. In a tree, a unique path exists between
any pair of nodes, so we can always find a valid path of virtual
sources from a candidate node u ∈ GT \{vT } to vT . We claim
that any such path leads to the formation of the observed
GT . Due to regularity of G and the symmetry in GT , for
even T , P(GT |v(1)) = P(GT |v(2)) for all v(1), v(2) ∈ GT
with δH(v(1), vT ) = δH(v(2), vT ). Moreover, recall that the
αd(t, h)’s were designed to satisfy the distribution in equation
(1). Combining these two observations with the fact that
we have (d − 1)h infected nodes h-hops away from the
virtual source, we get that for all v(1), v(2) ∈ GT \ {vT },
P(GT |v(1)) = P(GT |v(2)). For odd T , if the virtual source
remains the virtual source, then GT stays symmetric about
vT , in which case the same result holds. If the virtual source
passes the token, then GT is perfectly symmetric about the
edge connecting vT−1 and vT . Since both nodes are virtual

sources (former and present, respectively) and T > 1, the
adversary can infer that neither node was the true source.
Since the two connected subtrees are symmetric and each
node within a subtree has the same likelihood of being the
source by construction (equation (1)), we get that for all
v(1), v(2) ∈ GT \{vT , vT−1}, P(GT |v(1)) = P(GT |v(2)). Thus
at odd timesteps, P(v̂ML = v∗) ≥ 1/(NT − 2).

B. Proof of Proposition 4.2

First, under Protocol 1 (adaptive diffusion) with αd(t, h) =
0, GT is a complete (d− 1)-ary tree (with the exception that
the root has d children) of depth T/2 whenever T is even. GT
is made up of two complete (d−1)-ary trees of depth (T−1)/2
each with their roots connected by an edge whenever T is odd.
Therefore, it follows that NT is a deterministic function of T
and is given by

NT =


1, T = 0,

2(d−1)(T+1)/2

d−2 − 2
d−2 , T ≥ 1, T odd ,

d(d−1)T/2

d−2 − 2
d−2 , T ≥ 2, T even ;

The lower bound on NT in equation (5) follows immediately
from the above expression.

For any given infected graph GT , it can be verified that
any non-leaf node could not have generated GT under the
Tree Protocol. In other words, P(GT |v non-leaf node) = 0
and v could not have started the rumor. On the other hand,
we claim that for any two leaf nodes v1, v2 ∈ GT , we have
that P(GT |v1) = P(GT |v2) > 0. This is true because for
each leaf node v ∈ GT , there exists a sequence of state
values {s1,u, s2,u}u∈GT that evolves according to the Tree
Protocol with s1,v = 1 and s2,v = 0. Further, the regularity
of the underlying graph G ensures that all these sequences
are equally likely. Therefore, the probability of correct rumor
source detection under the maximum likelihood algorithm
is given by PML(T ) = 1/Nl,T , where Nl,T represents the
number of leaf nodes in GT . It can be also shown that Nl,T
and NT are related to each other by the following expression

Nl,T =
(d− 2)NT + 2

d− 1
.

This proves the expression for P
(
v̂ML = v∗

)
given in equation

(6).
Expected distance. For any v∗ ∈ G and any T ,

E[δH(v∗, v̂ML)] is given by

E[δH(v∗, v̂ML)] =
∑
v∈G

∑
GT

P(GT |v∗)P(v̂ML = v)δH(v∗, v).

As indicated above, no matter where the rumor starts from,
GT is a (d − 1)-ary tree (with the exception that the root
has d children) of depth T/2 whenever T is even. Moreover,
v̂ML = v with probability 1/Nl,T for all v leaf nodes in GT .
Therefore, the above equation can be solved exactly to obtain
the expression provided in the statement of the proposition.
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Fig. 19: One realization of the random, irregular-tree branching
process. Although each realization of the random process G(t)

D

yields a labelled graph, the adversary observes GT and GT ,
which are unlabelled. White nodes are uninfected, grey nodes
are infected.

C. Proof of Proposition 4.3

We upper bound the probability of detection by assuming
that the adversary takes a snapshot at every time step after T ;
the adversary can also learn the exact value of T by noting the
size of the snapshots in successive time steps. The structure of
all snapshots after GT depends deterministically on the binary
timeseries of choices to either keep the virtual source token, or
to pass it, in each time step after T—we refer to this timeseries
as KT . The timeseries KT , in turn, is random, with values
that depend probabilistically on only the timestamp (which
is known to the adversary), the tree degree (known), and
the virtual source’s distance from the true source (unknown).
Because adaptive diffusion does not allow the virtual source
to “backtrack", or move closer to the true source over time,
the (unique) path from the true source to the virtual source vT
at time T cannot intersect the path comprised of the virtual
sources after time T—call it PT—except possibly at vT itself.
Therefore, let us consider the first node in PT that is not equal
to vT ; we call it vT ′ . vT ′ is necessarily a neighbor of vT . Then
let us define the largest possible subtree of GT that is rooted
at vT ′ and does not contain vT ; we call this subtree TT .

Now, suppose that by observing the timeseries KT , the
adversary could learn the distance between v∗ and vT exactly
(this is a worst-case assumption). Let us call that distance
L. Then the source is equally likely to be any node w at a
distance of L hops from vT , such that w /∈ TT . Therefore, we
can upper bound the probability of detection by conditioning
on L, and counting the number of feasible nodes w.

We assume for the sake of simplicity that all snapshots are
taken at even time steps (including GT ), since snapshots at
odd time steps do not contribute any additional information,
i.e., if the adversary observed GT at an odd timestep, it could
recover GT−1 from the subsequent observed snapshots, which
is equivalent to observing the first snapshot at time T−1. Then

P(v̂ML = v∗) =

T/2∑
`=1

P(L = `)P(v̂ML = v∗|L = `)

From the previous argument, we have

P(v̂ML = v∗|L = `) =
1

(d− 1)`
,

instead of 1/d(d − 1)`−1, since the entire subtree of GT
containing PT is excluded from the set of possible candi-
date sources. Additionally, it is straightforward to compute
P(L = `) from the properties of adaptive diffusion:

P(L = `) =
(d− 2)(d− 1)`−1

(d− 1)T/2 − 1
,

so the overall probability of detection is

P(v̂ML = v∗) =
d− 2

d− 1
· 1

(d− 1)T/2 − 1
· T

2
.

Note that

NT =
d(d− 1)T/2 − 2

d− 2
=

(d− 1)T/2+1 + (d− 1)T/2 − 2

d− 2
.

Since
(
(d− 1)T/2+1 − 2

)
≥ (d− 1)T/2 for all d > 2 and all

even T ≥ 2, it holds that NT ≥ 2(d−1)T/2

d−2 . From this, we can
conclude that T/2 ≤ logd−1NT + logd−1(d/2 − 1). It also
holds that for all d > 2, (d− 1)T/2 − 1 ≥ NT−1

3 , so we have

P(v̂ML = v∗) ≤ d− 2

d− 1
· 3

NT − 1
(logNT + log(d/2− 1)) ,

which gives the claim.

D. Proof of Theorem 4.5

We first analyze the probability of detection for any given
estimator (see equation (??)); we then show that the estimator
in equation (11) is a MAP estimator, maximizing this probabil-
ity of detection. Finally, we show that using the MAP estimator
in equation (11) gives the probability of detection in equation
(9).

We begin with some definitions. Consider the following
random process, in which we fix a source v∗ and generate
a (random) labelled tree G(t)

D for each time t and for a given
degree distribution D. At time t = 0, G(t)

D consists of a single
node v∗, which is given a label 1. The source v∗ draws a
degree d1 from D, and generates d1 child nodes, labelled in
order of creation (i.e., 2 through d1 + 1). At the next time step,
t = 1, the source picks one of these neighbors uniformly at
random to be the new virtual source and infects that neighbor.
According to Protocol 1, each time a node v is infected, v
draws its degree dv from D, then generates dv − 1 labelled
child nodes. So at the end of time t = 1, G(1)

D contains the
source and its uninfected neighbors, as well as the new virtual
source and its uninfected neighbors. An example of G(2)

D is
shown in Figure 19 (left panel) with d1 = 3 and virtual
source at node 3. Grey nodes are infected and white nodes are
uninfected neighbors. Note that the node labelled 1 is always
exactly one hop from a leaf of G(t)

D for all t > 0; also, nodes
infect their neighbors in ascending order of their labels. The
leaves of G(t)

D represent the uninfected neighbors of infected
leaves in standard adaptive diffusion spreading over a given
graph. Define Ω(t,D) as the set of all labelled trees generated
at time t according to this random process.

At some time T , the adversary observes the snapshot of
infected subgraph GT . Notice that we do not need to generate
the entire contact network, since GT is conditionally inde-
pendent of the rest of the contact network given its one-hop
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Fig. 20: L(G2) for the snapshot G2 illustrated in Figure 19.
Boxes (a) and (b) illustrate the two families partitioning L(G2).

neighbors. Hence, the we only need to generate (and consider)
the one hop neighbors of GT at any given T . We use GT to
denote this random graph that includes GT and its one hop
neighbors as generated according to the previously explained
random process. Notice that the adversary only observes G,
which is an unlabelled snapshot of the infection and its one
hop neighbors (see Figure 19, right panel). We refer to the
leaves of GT as ‘infected leaves’, denoted by ∂GT , and the
leaves of GT as ‘uninfected leaves’ denoted by ∂GT . Define

L(GT ) ≡ {G̃ ∈ Ω(T,D) | U(G̃) = GT },

i.e., the set of all labelled graphs (generated according to the
described random process) whose unlabelled representation
U(G̃) is equal to the snapshot GT . Figure 20 illustrates L(GT )
for the graph G2 in Figure 19.

We define a family CGT ,v ⊆ L(GT ) as the set of all
labelled graphs whose labeling could have been generated by
breadth-first labeling of GT starting at node v ∈ ∂GT . Here
breadth-first labeling is a valid order of traversal for a breadth-
first search of GT starting at node v. We restrict v to be a
valid source for an adaptive diffusion spread—that is, it is an
infected leaf in ∂GT . Note that a BFS labeling starting from
two different nodes on the unlabelled tree can yield the same
labelled graph. In Figure 20, boxes (a) and (b) illustrate the
two families contained in L(G2).

Let P(CG,v) ≡ P(G
(T )
D ∈ CG,v) denote the probability that

the labelled graph G
(T )
D whose snapshot is G is generated

from a node v. From the definition of the random process
for generating labelled graphs, we get

P(CGT ,v) =

( ∏
w∈GT

PD(dw)

)
︸ ︷︷ ︸

degrees of G

Q(GT , v)︸ ︷︷ ︸
virtual sources

|CGT ,v|︸ ︷︷ ︸
count of

isomorphisms

(19)

where PD(d) is the probability of observing degree d under
degree distribution D, and

Q(GT , v) =
1v∈∂GT

dv
∏
w∈Φv,vT \{v,vT }

(dw − 1)

is the probability of passing the virtual source from v to the
virtual source vT given the structure of GT , where Φv,vT is the
unique path from v to vT in GT . Equation (19) holds because
for all instances in CGT ,v , the probability of the degrees of
the nodes and the probability of the path of the virtual source
remain the same.

The probability of observing a given snapshot GT is pre-
cisely P(G

(T )
D ∈ L(GT )). Notice that CGT ,v partitions L(GT )

in to family of labelled trees that are generated from the same
source. This gives the following decomposition:

P(G
(T )
D ∈ L(GT )) =

∑
v∈CGT

P(CGT ,v), (20)

where we define CGT as the set of possible candidates of the
source that generate distinct labelled trees, i.e.,

CGT ≡ {v ∈ GT |CGT ,v 6= CGT ,v′ ∀ v′ ∈ CGT , v′ 6= v} .

Notice that this set is not unique, since there can be multiple
nodes that represent the same family CGT ,v . We pick one of
such node v to represent the class of nodes that can generate
the same family of labelled trees. We use this v to index these
families and not to denote any particular node in ∂GT .

Consider an estimate of the source v̂(GT ). In general,
v̂(GT ) is a random variable, potentially selected from a set
of candidates. We define detection (D) as the event in which
v̂(GT ) = v1(G

(T )
D ); i.e., the estimator outputs the node

that started the random process. We can partition the set of
candidate nodes ∂GT , by grouping together those nodes that
are indistinguishable to the estimator into classes. Precisely,
we define a subset of nodes indexed by v ∈ CGT ,

χGT ,v ≡ {v′ ∈ ∂GT |CGT ,v = CGT ,v′} .

For a given snapshot, there are as many classes as there are
families. In Figure 20, the class associated with family (a)
has one element—namely, the node labeled ‘1’ in family (a).
The class associated with family (b) contains two nodes: the
node labeled ‘1’ in family (b), and the node labeled ‘5’ in the
rightmost graph of family (b), since both nodes give rise to
the same family.

We consider, without loss of generality, an estimator that
selects a node in a given class with probability P(v̂(GT ) ∈
χGT ,v). Notice that |χGT ,v| denotes the number of (indistin-
guishable) source candidates in this class. From equation (20),
the probability of detection given a snapshot is

P(D|GT ) =
P
(
G

(T )
D ∈ L(GT ) ∧D

)
P(G

(T )
D ∈ L(GT ))

.

=

∑
v∈CGT

P(CGT ,v)P
(
D
∣∣G(T )

D ∈ CGT ,v
)

∑
v∈CGT

P(CGT ,v)
(21)

where P(D|G(T )
D ∈ CGT ,v) = P(v̂(GT ) ∈ χGT ,v)/|χGT ,v|. We

use the following observation:
Lemma 9.1:

P(CGT ,v)/|χGT ,v|∑
v∈CGT

P(CGT ,v)
=

1

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
. (22)

(Proof in Section IX-D1)
Substituting equation (22) into equation (21), we get that

P(D|GT ) =
∑
v∈CGT

P(v̂(GT ) ∈ χGT ,v)
dvT

∏
w∈φ(v,vT )\
{v,vT }

(dw − 1)
.
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Fig. 21: A realization of the random labeling process given an
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Fig. 22: The set R(T )
GT ,v for the snapshot and node specified in

Figure 21.

Since each term of this summation is bounded by

P(v̂(GT ) ∈ χGT ,v)
dvT

∏
w∈φ(v,vT )\
{v,vT }

(dw − 1)
≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
,

and
∑
v∈CGT

P(v̂(GT ) ∈ χGT ,v) = 1, it must hold that

P(D|GT ) ≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
.

This upper bound on the detection probability is achieved
exactly if we choose weight P(v̂(GT ) ∈ χGT ,v) = 1 for the
class(es) minimizing the product

∏
w∈φ(v,vT )\{v,vT }(dw − 1),

i.e.,
v̂(GT ) = arg min

v∈∂GT

∏
w∈φ(v,vT )
\{v,vT }

(dw − 1).

1) Proof of Lemma 9.1: We have that

P(CGT ,v) =

( ∏
w∈GT

PD(dw)

)
︸ ︷︷ ︸

degrees of G

Q(GT , v)︸ ︷︷ ︸
virtual sources

|CGT ,v|︸ ︷︷ ︸
count of

isomorphisms

where v is a feasible source for the adaptive diffusion process,
i.e., a leaf of the infection GT .

The proof of the lemma proceeds in four steps:
1) We first recursively define a function H(GT , v) that

is equal to |CGT ,v|. This function is defined over any
balanced, undirected tree and node; the tree need not
be generated via the previously-described adaptive dif-
fusion branching process. In addition to H(GT , v), we
are interested in H(GT , vT ).

2) We show that

P(CGT ,v) =

( ∏
v∈GT

PD(dv)

)
H(GT , vT )×

|χGT ,v|
dvT

∏
w∈φ(v,vT )
\{v,vT }

(dw − 1)
.

3) We show that∑
v∈CGT ,v

P(CGT ,v) =

( ∏
v∈GT

PD(dv)

)
H(GT , vT ).

(23)
4) We combine steps (2) and (3) to show the result.

Step 1 We wish to define H(GT , v)—a function that counts the
number of distinct, isomorphic graphs generated by a breadth-
first search of a balanced tree GT , rooted at node v. Consider
a random process defined as follows. Given GT and root node
v, the process starts at v and labels it 1. For each neighbor
w of node 1, the process randomly orders w’s unlabelled
neighbors, and labels them in order of traversal. The process
proceeds to label nodes in a breadth-first fashion, traversing
each node’s unlabelled neighbors in a randomly-selected order,
until all nodes have been visited. Let R(t)

GT ,v denote a labelled
tree generated according to the described random process (see
Figure 21).

The function H(GT , v) counts the number of distinct graphs
that can result from this random process over GT when starting
from node v. More precisely, define R(T )

GT ,v as the set of
all possible trees R(T )

GT ,v generated according to this random
labeling. H(GT , v) is defined as the size of R(T )

GT ,v . Figure 22
illustrates R(T )

GT ,v for GT and v shown in Figure 21. In that
example, H(GT , v) = 3.

Recall that GT is a balanced tree. The Jordan center of
this tree is denoted by vT . If GT was generated according
to adaptive diffusion, vT would be the virtual source at time
T . Although we say GT is rooted at v, we define each node’s
children with respect to vT . That is, node z is among w’s
children if z is a neighbor of w and z /∈ φ(w, vT ).

Let Gvi→vjT denote the subtree of GT rooted at node vj with
node vi as parent of vj (let Gv1→v1T = GT ). Each node vi in
GT will have some number of child subtrees. Some of these
subtrees may be identical (i.e., given a realization RGT ,v of
the labeling random process, they would be isomorphic); let kv
denote the number of distinguishable subtrees of node v. We
use ∆v

1, . . . ,∆
v
kv

to denote the number of each distinct subtree
appearing among the child subtrees of node v (recall children
are defined with respect to vT ). For example, node v in graph
GT in Figure 21 (left panel) has ∆v

1 = 1 and ∆v
2 = 2, since the

first of v’s child subtrees is equal only to itself, and the second
(middle) subtree is isomorphic to the subtree on the right. If
there exists a neighboring, unvisited subtree rooted at a parent
of v, then we say ∆v

0 = 1 (by definition, there will only be
one such subtree, and it cannot be equal to any child subtrees
because GT is balanced). Otherwise, we say ∆v

0 = 0. This
distinction becomes relevant if v 6= vT . For example the figure
below shows a tree that is rooted at w 6= vT . In computing
H(GT , w), we have ∆w

0 = 1 because there is an unvisited
branch from w that contains vT , and ∆w

1 = 2 because both
child subtrees of w are identical.

2  w
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Let γv denote the unvisited neighbors of node v in GT . We
give a recursive expression for computing H(GT , v).

Lemma 9.2:

H(GT , v) =

(
dv

∆v
0,∆

v
1, . . . ,∆

v
k

) ∏
w∈γv

H(Gv→wT , w). (24)

Proof: We show this by induction on the depth λ of GT
(rooted at v). For λ = 1, GT has a node v and dv neighbors.
Every realization of the random breadth-first labeling of GT
will yield an identical graph since the neighbors of v are
indistinguishable, so H(GT , v) =

(
dv
dv

)
= 1.

Now suppose equation (24) holds for all graph-node pairs
(GT , v) with λ < λo; we want to show that it holds for λ =
λo. We can represent GT as a root node v and dv subtrees:
Gv→wT for w ∈ γv . Since each subtree has depth at most λo−1,
we can compute H(Gv→wT , w) for each subtree Gv→wT using
equation (24) (from the inductive hypothesis).

Suppose we impose (any) valid labeling on GT starting from
v; we refer to the labeled graph as RG,v . Given RG,v , we order
the subtrees of a node in ascending order of their numeric
labels. For any fixed ordering of the dv subtrees of v, we have∏
w∈γv H(Gv→wT , w) nonidentical labelings of GT that respect

the ordering of subtrees and are isomorphic to any given real-
ization RGT ,v . At most, there can be dv! arrangements of the
subtrees. However, some of the subtrees are isomorphic, so this
value over-counts the number of distinct arrangements. That is,
switching the order of two nonidentical, isomorphic subtrees
is the same as preserving the order and changing both subtrees
to the appropriate nonidentical, isomorphic subtree; this is
already accounted for in the product

∏
w∈γv H(Gv→wT , w).

∆v
j ! of the dv! permutations of v’s subtrees permute the jth

unique subtree with isomorphisms of itself. As such, the non-
redundant number of different arrangements of the subtrees
of node v is dv!

∆v
0 !,∆v

1 !...∆v
kv

! =
(

dv
∆v

0 ,∆
v
1 ,...,∆

v
kv

)
. This gives the

expression in equation (24).

Step 2. We want to show that

P(CGT ,v) =

( ∏
v∈GT

PD(dv)

)
H(GT , vT )|χGT ,v|

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
.

Since P(CGT ,v) =
(∏

v∈GT PD(dv)
)
Q(GT , v)H(GT , v), this

is equivalent to showing that

H(GT , v)

H(GT , vT )
=

|χGT ,v|
Q(GT , v)dvT

∏
w∈φ(v,vT )
\{v,vT }

(dw − 1)

=
dv
dvT
|χGT ,v|.

The expressions for H(GT , vT ) and H(GT , v) differ in that
the former starts at the virtual source and counts all subtrees

by “trickling down" the tree (i.e., ∆w
0 = 0 for all w ∈ GT ),

whereas the latter progresses from an infected leaf v to the
virtual source, then recurses over the remaining, unvisited
subtrees of vT . Let Pi denote the ith node in the path from v
to vT , which has length `. We get

H(GT , v) =

(
dP1

1, dP1 − 1

)
×(

dP2
− 1

1,∆P2
1 − 1, . . . ,∆P2

kP2

) ∏
w∈γP2\{P1,P3}

H(GP2→w
T , w)×

. . .(
dP`−1

− 1

1,∆
P`−1

1 − 1, . . . ,∆
P`−1

kP`−1

) ∏
w∈γP`−1

\{P`−2,P`}

H(GP`−1→w
T , w)×

(
dP` − 1

∆P`
1 − 1, . . . ,∆P`

kP`

) ∏
w∈γP`\{P`−1}

H(GP`→wT , w).

where each line corresponds to the terms that result from
recursively moving up the path from v = P1 to vT = P`.
Similarly, we have

H(GT , vT ) =

(
dP1
− 1

dP1 − 1

)
×(

dP2
− 1

∆P2
1 , . . . ,∆P2

kP2

) ∏
w∈γP2\{P1,P3}

H(GP2→w
T , w)×

. . .(
dP`−1

− 1

∆
P`−1

1 , . . . ,∆
P`−1

kP`−1

) ∏
w∈γP`−1

\{P`−2,P`}

H(GP`−1→w
T , w)×

(
dP`

∆P`
1 , . . . ,∆P`

kP`

) ∏
w∈γP`\{P`−1}

H(GP`→wT , w).

Here we have expanded the expression in terms of the path
from v to vT to make simplification clearer, where v is the
node over which we previously computed H(GT , v). Com-
puting the ratio of H(GT , v) to H(GT , vT ), all the rightmost
products of each line cancel. We are left with the ratio of the
combinatorial expressions, which simplify to

H(GT , v)

H(GT , vT )
=

dP1

dP`
∆P2

1 . . .∆
P`−1

1 ∆P`
1

=
dv
dvT

∆v+1
1 . . .∆vT−1

1 ∆vT
1 .

Each ∆1 denotes the number of child subtrees that are identical
to the one containing v, for a given root. As such, the product
of ∆s above is precisely the number of candidates in the
class being considered, or |χGT ,v|. That is, since they are
indistinguishable in the unlabelled graph, they generate the
same family CGT ,v .
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Fig. 23: Pruning of a snapshot. In this example, the distribution
D allows nodes to have degree 2 or 3, so we prune all de-
scendants of nodes with degree 3 that are more than c log(t0)
hops from the root. In this example, p1(f1 − 1) < 1 and the
pruned random process eventually goes extinct.

Step 3. We have∑
v∈CGT

P(CGT ,v) =
∑
v∈CGT

( ∏
w∈GT

PD(dw)

)
H(GT , vT )

× |χGT ,v|
dvT

∏
w∈φ(v,vT )\{v,vT }(dw − 1)

=

( ∏
w∈GT

PD(dw)

)
H(GT , vT )×

∑
v∈CGT

|χGT ,v|
dvT

∏
w∈φ(v,vT )\{v,vT }(dw − 1)

=

( ∏
w∈GT

PD(dw)

)
H(GT , vT )×

∑
v∈∂GT

1

dvT
∏
w∈φ(v,vT )\{v,vT }(dw − 1)

(25)

where equation (25) follows because every leaf in the graph
is a candidate source in exactly one class. We wish to show
this last summation sums to 1. Consider a random process
over GT . The process starts at the virtual source vT , and in
each timestep it moves one hop away from vT . It chooses
among the (unvisited) children of a node uniformly at random.
At time T , the process is necessarily at one of the leaves of
GT , and the probability of landing at a particular leaf v is
precisely 1

dvT
∏
w∈φ(v,vT )\{v,vT }

(dw−1) . Therefore, the sum of
this quantity over all leaves v ∈ ∂GT is 1.

Step 4. Combining the results from steps 3 and 4, we get that

P(CGT ,v)/|χGT ,v|∑
v∈CGT

P(CGT ,v)
=(∏

w∈GT PD(dw)
)
H(GT , vT )(∏

w∈GT PD(dw)
)
H(GT , vT )

× |χGT ,v|/|χGT ,v|
dvT

∏
w∈φ(v,vT )
\{v,vT }

(dw − 1)

1

dvT
∏

w∈φ(v,vT )\{v,vT }
(dw − 1)

.

E. Proof of Theorem 4.7

To facilitate the analysis, we consider an alternative random
process that generates unlabeled graphs G′T according to the
same distribution as GT (i.e., the infected, unlabeled subgraph
embedded in U(G

(T )
D ) from the proof of Theorem 4.5). For a

given degree distribution D and a stopping time T , the new
process is defined as a Galton-Watson process in which the
set of offsprings at the first time step is drawn from D and
the offsprings at subsequent time steps are drawn from D−1.
At time t = 0, a given root node vT draws its degree dvT
from D, and generates dvT child nodes. The resulting tree
now has depth 1. In each subsequent time step, the process
traverses each leaf v of the tree, draws its degree from D,
and generates dv − 1 children. The random process continues
until the tree has depth T/2, since under adaptive diffusion,
the infected subgraph at even time T has depth T/2. Because
the probability of detection in equation (9) does not depend
on the degrees of the leaves of GT , the random process stops
at depth T/2 rather than T/2 + 1. We call the output of this
random process G′T . The distribution of G′T is identical to the
distribution of the previous random process imposed on GT ,
which follows from equation (23) in the proof of Theorem
4.5. We therefore use GT to denote the resulting output in the
remainder of this proof.

Distribution D is a multinomial distribution with support
f = (f1, . . . , fη) and probabilities p = (p1, . . . , pη). Without
loss of generality, we assume 2 ≤ f1 < . . . < fη . Let µD
denote the mean number of children generated by D:

µD =

η∑
i=1

pi(fi − 1).

There are two separate classes of distributions, which we deal
with as separate cases.

Case 1: When p1(f1 − 1) > 1, we claim that with high
probability, there exists a leaf node v in ∂GT such that on
the unique path from the root vT to this leaf v, all nodes in
this path have the minimum degree f1, except for a vanishing
fraction. To prove this claim, consider a different graph HT

derived from GT by pruning large degree nodes:
1) For a fixed, positive c, find t0 such that T/2 = t0 +

c log(t0).
2) Initialize HT to be identical to GT .
3) For each node v ∈ HT , if the hop distance δH(v, vT ) ≤

c log(t0), do not modify that node.
4) For each node v ∈ HT , if the hop distance δH(v, vT ) >

c log(t0) and dv > f1, prune out all the children of v,
as well as all their descendants (Figure 23).

We claim that this pruned process survives with high prob-
ability. The branching process that generates HT is equivalent
to a Galton-Watson process that uses distribution D − 1 for
the first c log(t0) generations, and a different degree distri-
bution D′ − 1 for the remaining generations; D′ has support
f ′ = (f1, 1), probability mass p′ = (p1, 1 − p1), and mean
number of children µD′ = p1(f1 − 1).

Note that f1 ≥ 3 by the assumption that p1(f1 − 1) > 1.
Hence, the inner branching process up to c log t0 has prob-
ability of extinction equal to 0. This means that at a hop
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Fig. 24: Pruning of a snapshot using multiple types. In this
example, the distribution D allows nodes to have degree 2 or
3. We take t0 = 2 and r = 0.5, so all descendants of nodes
with type rt0 = 1 are pruned.

distance of t0 from vT , there are at least (f1 − 1)c log(t0)

nodes. Each of these nodes can be thought of as the source
of an independent Galton-Watson branching process with
degree distribution D′−1. By the properties of Galton-Watson
branching processes ([56], Thm. 6.1), since µD′ > 1 by
assumption, each independent branching process’ asymptotic
probability of extinction is the unique solution of gD′(s) = s,
for s ∈ [0, 1), where gD′(s) = p1 s

f1−1 + (1 − p1) denotes
the probability generating function of the distribution D′. Call
this solution θD′ . The probability of any individual Galton-
Watson process going extinct in the first generation is exactly
1 − p1. It is straightforward to show that gD′(s) is convex,
and gD′(1− p1) > 1− p1, which implies that the probability
of extinction is nondecreasing over successive generations and
upper bounded by θD′ . Then for the branching process that
generates HT , the overall probability of extinction (for a given
time T ) is at most θ(f1−1)c log t0

D′ . Increasing the constant c
therefore decreases the probability of extinction. If there exists
at least one leaf at depth T (i.e., extinction did not occur),
then there exists at least one path in HT of length t0−c log t0
in which every node (except possibly the final one) has the
minimum degree f1. This gives

log(ΛHT )

T/2
≤ t0 log(f1 − 1) + c log(t0) log(fη − 1)

t0 + c log(t0)
(26)

≤ log(f1 − 1) +
c log t0
t0

log
fη − 1

f1 − 1
, (27)

with probability at least 1− θ(f1−1)c log t0

D′ = 1− θt
c log(f1−1)
0

D′ =
1− e−CD′ t0 , where CD′ = log(θD′) and the upper bound
in equation (26) comes from assuming all the interior nodes
have maximum degree fη . Since HT is a subgraph of a valid
snapshot GT , there exists a path in GT from the virtual source
vT to a leaf of the tree where the hop distance of the path is
exactly T/2, and at least t0 nodes have the minimum degree
f1. Since the second term in equation (27) is o(t0), the claim
follows. The lower bound log(ΛHT )/(T/2) ≥ log(f1 − 1)
holds by definition. Therefore, for any δ > 0, by setting T
(and consequently, t0) large enough, we can make the second
term in equation (27) arbitrarily small. Thus, for T ≥ C ′D,δ ,
where C ′D,δ is a constant that depends only on the degree
distribution and δ, the result holds.

Case 2: Consider the case when p1(f1 − 1) ≤ 1. By the
properties of Galton-Watson branching processes ([56], Thm.
6.1), the previous pruned random process that generated graphs
HT goes extinct with probability approaching 1. This implies
that with high probability there is no path from the root to a
leaf that consists of only minimum degree nodes.

Instead, we introduce a Galton-Watson process with mul-
tiple types, derived from the original process. Our approach
is to assign a numeric type to each node in GT according to
the number of non-minimum-degree nodes in the unique path
between that node and the virtual source. If a node’s path to
vT contains too many nodes of high degree, then we prune the
node’s descendants. The challenge is to choose the smallest
pruning threshold that still ensures the pruned tree will survive
with high probability. Knowing this threshold allows us to
precisely characterize ΛGT for most of the instances.

To simplify the discussion, we start by considering a special
case in which D allows nodes to take only two values of
degrees, i.e., η = 2. We subsequently extend the results for
η = 2 to larger, finite values of η. With a slight abuse of a
notation, consider a new random process HT derived from GT
by pruning large degree nodes in the following way:

1) For a fixed, positive c, find t0 such that T/2 = t0 +
c log(t0).

2) Initialize HT to be identical to GT .
3) For each node v ∈ HT , if the hop distance δH(v, vT ) ≤

c log(t0), do not modify that node, and assign it type 0.
4) For each node v ∈ HT , if the hop distance δH(v, vT ) >

c log(t0), assign v a type ξv , which is the number of
nodes in φ(w, v) \ {v} that have the maximum possible
degree f2, where w is the closest node in HT to v such
that δH(w, vT ) ≤ c log(t0) (Figure 24).

5) Given a threshold r ∈ (0, 1), if a node v has type ξv ≥
rt0, prune out all the descendants of v. For example, in
Figure 24, if t0 = 2 and the threshold is r = 0.5, we
would prune out all descendants of nodes with ξv ≥ 1.

We show that for an appropriately-chosen threshold r, this
pruned tree survives with high probability. By choosing the
smallest possible r, we ensure that ΛHT consists (in all but
a vanishing fraction of nodes) of a fraction r nodes with
maximum degree, and (1−r) of minimum degree. This allows
us to derive the bounds on log(ΛHT )/(T/2) stated in the
claim, which hold with high probability.

Let k ≡ rt0. The process that generates HT is equivalent
to a different random branching process that generates nodes
in the following manner: set the root’s type ξvT = 0. At time
t = 0, the root vT draws a number of children according
to distribution D, and generates dvT children, all type 0.
Each leaf generates type 0 children according to child degree
distribution D − 1 until c log(t0) generations have passed.
At that point, each leaf v in this branching process (which
necessarily has type 0) reproduces as follows: if its type
ξv > k, then v does not reproduce. Otherwise, it either
generates (f1−1) children with probability p1, each with state
ξv , or it generates (f2 − 1) children with probability p2, each
with state ξv+1. This continues for t0 generations. Mimicking
the notation from Case 1, we use D′ to denote the distribution
that gives rise to this modified, multi-type random process



29

(in the final t0 generations); this is a slight abuse of notation
since the branching dynamics are multi-type, not defined by
realizations of i.i.d. degree random variables.

Lemma 9.3: Consider a Galton-Watson branching process
with child degree distribution D − 1, where each node has at
least one child with probability 1, and µD−1 > 1. Then the
number of leaves in generation t, Z(t), satisfies the following:

Z(t) ≥ eC`t

with probability at least 1 − eC′`t, where both C` and C ′` are
constants that depend on the degree distribution.
(Proof in Section IX-E1)

The first c log(t0) generations ensure that with high prob-
ability, we have at least eC` log t0 independent multi-type
Galton-Watson processes originating from the leaves of the
inner subgraph; this follows from Lemma 9.3. Here we have
encapsulated the constant c from the first c log(t0) generations
in the constant C`. For example, in Figure 24, there are 3
independent Galton-Watson processes starting at the leaves of
the inner subgraph. We wish to choose r such that the expected
number of new leaves generated by each of these processes, at
each time step, is large enough to ensure that extinction occurs
with probability less than one. For brevity, let α ≡ p1(f1− 1)
and let β ≡ p2(f2−1). Let x(t) denote the (k+1)-dimensional
vector of the expected number of leaves generated with each
type from 0 to k in generation t. This vector evolves according
to the following (k + 1)× (k + 1) transition matrix M :

x(t+1) = x(t)


α β

. . .

. . . α β
0


︸ ︷︷ ︸

M

.

The last row of M is 0 because a node with type k does not
reproduce. Since the root of each process always has type 0,
we have x(0) = e1, where e1 is the indicator vector with a 1
at index 1 and zeros elsewhere.

Let Z(t) denote the expected number of new leaves created
in generation t. This gives

E[Z(t)] = e1M
t1

ᵀ
(k+1), (28)

where ᵀ denotes a transpose, and 1(k+1) is the (k+1) all-ones
vector. When t < k, this is a simple binomial expansion of
(α+ β)t. For t ≥ k, this is a truncated expansion up to k:

E[Z(t)] =

k∑
i=0

(
t

i

)
αt−iβi. (29)

We seek the necessary and sufficient condition on r for
non-extinction, such that (1/t) log(E[Z(t)]) > 0. Consider a
binomial random variable W with parameter β/(α + β) =
β/µD and t trials. Equation (29) implies that for large t,

E[Z(t)] = (α+ β)t P(W ≤ k).

= µtD exp
{
− tDKL

(
r ‖ β

µD

)
+ o(t)

}
, (30)

by Sanov’s theorem [57]. We wish to identify the smallest r
for which (1/t) log(E[Z(t)]) is bounded away from zero. Such

an r is a sufficient (and necessary) condition for the multi-type
Galton-Watson process to have a probability of extinction less
than 1. To achieve this, we define the following set of r such
that equation (30) is strictly positive, for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖β/µD) + ε

}
,

Suppose we now choose a threshold r ∈ Rα,β(ε). This is
the regime where the modified Galton-Watson process with
threshold r has a chance for survival. In other words, the
probability of extinction θD′ is strictly less than one. Precisely,
θD′ is the unique solution to s = gD′(s), where gD′(s) denotes
the probability generating function of the described multi-
type Galton-Watson process. Using the same argument as in
Case 1, we can construct a process where the probability of
extinction is asymptotically zero. Precisely, we modify the
pruning process such that we do not prune any leaves in
the first c log(t0) generations. This ensures that with high
probability, there are at least eC` log(t0) independent multi-
type Galton-Watson processes evolving concurrently after time
c log(t0), each with probability of extinction θD′ . Hence with
probability at least 1−e−2CD′ t0 (for an appropriate choice of a
constant CD′ that only depends on the degree distribution D′

and the choice of r), the overall process does not go extinct.
Our goal is to find the choice of r with minimum product

of degrees log(ΛGT )/(T/2) that survives. We define r1 as
follows:

r1 ≡ arg min
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2).

Since Rα,β(ε) is just an interval and we are minimizing a
linear function with a positive slope, the optimal solution is
r1 = infr∈Rα,β(ε) r. This is a choice that survives with high
probability and has the minimum product of degrees. Precisely,
with probability at least 1− e−CD′T , where CD′ depends on
D′ and ε, we have that

log(ΛGT )

T/2
≤ 〈r1, f〉+

c log(t0)

t0
log (f2 − 1)

where with a slight abuse of notation, we define 〈r1,f〉 ,
(1− r1) log(f1 − 1) + r1 log(f2 − 1). It follows that

log(ΛGT )

T/2
− 〈r∗,f〉 ≤

(r1 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f2 − 1)

By setting ε small enough and t0 large enough, we can make
this as small as we want. For any given δ > 0, there exists
a positive ε > 0 such that the first term is bounded by δ/2.
Further, recall that T/2 = c log(t0) + t0. For any choice of ε,
there exists a tD′,ε such that for all T ≥ tD′,ε the vanishing
term in equation (30) is smaller than ε. For any given δ > 0,
there exists a positive tD′,δ such that T ≥ tD′,δ implies that
the second term is upper bounded by δ/2. Putting everything
together (and setting ε small enough for the target δ), we get
that

P
( log(ΛGT )

T/2
≥ 〈r∗,f〉+ δ

)
≤ e−CD′,δT
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for all T ≥ C ′D′,δ , where CD′,δ and C ′D′,δ are positive
constants that only depend on the degree distribution D′ and
the choice of δ > 0.

For the lower bound, we define the following set of r such
that equation (30) is strictly negative:

Rα,β(ε) =
{
r | log(µD) ≤ DKL(r‖β/µD)− ε

}
.

Choosing r ∈ Rα,β(ε) causes extinction with probability
approaching 1. Explicitly, P(Z(t) 6= 0) is the probability of
non-extinction at time t, and P(Z(t) 6= 0) ≤ E[Z(t)]. By
equation (30), we have

E[Z(t)] ≤ et(log(µD)−DKL(r‖β/µD)+o(t))

where log(µD) − DKL(r‖β/µD) ≤ −ε. The probability of
extinction is therefore at least 1 − E[Z(t)] ≥ 1 − e−t(ε+o(t)).
So defining

r2 ≡ arg max
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2),

we have
log(ΛGT )

T/2
≥ 〈r2,f〉+

c log(t0)

t0
log(f1 − 1)

with probability at least 1− e−CD′,2T where CD′,2 is again a
constant that depends on D′ and ε. It again follows that

log(ΛGT )

T/2
− 〈r∗,f〉 ≥

(r2 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f1 − 1) ,

where r2− r∗ is strictly negative. Again, for any given δ > 0,
there exists a positive ε > 0 such that the first term is lower
bounded by −δ/2, and for any choice of ε, there exists a tD′,ε
such that for all T ≥ tD′,ε the vanishing term in equation (30)
is smaller than ε. Note that this ε might be different from the
one used to show the upper bound. We ultimately choose the
smaller of the two ε values. For any given δ > 0, there exists
a positive tD′,δ such that T ≥ tD′,δ implies that the second
term is lower bounded by −δ/2. Putting everything together
(and setting ε small enough for the target δ), we get that

P
( log(ΛGT )

T/2
≤ 〈r∗,f〉 − δ

)
≤ e−CD′,δT

for all T ≥ C ′D′,δ , where CD′,δ and C ′D′,δ are positive
constants that only depend on the degree distribution D′ and
the choice of δ > 0. This gives the desired result.

We now address the general case for D with support greater
than two. We follow the identical structure of the argument.
The first major difference is that node types are no longer
scalar, but tuples. Each node v’s type ξv is the (η − 1)-tuple
listing how many nodes in the path φ(w, v) \ {v} had each
non-minimum degree from f2 to fη , where w is the closest
node to v such that δH(w, vT ) ≤ c log(t0). Consequently,
the threshold r = [r1, . . . , rη−1] is no longer a scalar, but
a vector-valued, pointwise threshold on each element of ξv .
We let k = [k1 = r1t0, . . . , kη−1 = rη−1t0] denote the time-
dependent threshold, and we say k < ξv if ki < (ξv)i for
1 ≤ i ≤ η − 1. The matrix M is no longer second-order, but

a tensor. Equation (28) still holds, except M is replaced with
its tensor representation. For brevity, let α = p1(f1 − 1) and
βi = pi+1(fi+1− 1). Let β̃ =

∑η−1
i=1 βi. Hence, equation (29)

gets modified as

E[Z(t)] =

k1∑
i1=0

. . .

kη−1∑
iη−1=0

(
t

i1, . . . , iη−1

)
αt−β̃βi11 . . . β

iη−1

η−1 .

(31)
Now we consider a multinomial variable W with parameters

βi/µD for 1 ≤ i ≤ η − 1 and t trials. Note that α/µD is the
‘failure’ probability (corresponding to a node of degree f1);
such events do not contribute to the category count, so the
sum of parameters is strictly less than 1. As before, equation
(31) can equivalently be written as

E[Z(t)] = µtD P(W ≤ k)

= µtD exp
{
− tDKL

(
r ‖
(
β

µD

))
+ o(t)

}
,(32)

where β/µD denotes elementwise division. Once again, we
wish to obtain bounds on P(W ≤ k). As before, we define the
following set of r such that equation (32) is strictly positive,
for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖

(
β

µD

)
) + ε

}
,

We now choose a threshold r ∈ Rα,β(ε). Using the same
argument as before, we can construct a process where the
probability of extinction is asymptotically zero. We again
do not prune any leaves in the first c log(t0) generations.
This ensures that with high probability, there are at least
eC` log(t0) independent multi-type Galton-Watson processes
evolving concurrently after time c log(t0), each with prob-
ability of extinction θD′ . Hence with probability at least
1−e−2CD′ t0 (for an appropriate choice of a constant CD′ that
only depends on the degree distribution D′ and the choice of
r), the overall process does not go extinct.

We define r1 analogously to the η = 2 case:

r1 ≡ arg min
r∈Rα,β(ε)

〈r,f〉 ,

where we now define 〈r,f〉 ≡ (1 −
∑
i ri) log(f1 − 1) +∑η−1

j=1 rj log(fj+1−1). Therefore with probability at least 1−
e−CD′T , where CD′ depends on D′ and ε, we have that

log(ΛGT )

T/2
≤ 〈r1,f〉+

c log(t0)

t0
log (fη − 1) .

It follows that
log(ΛGT )

T/2
− 〈r∗,f〉 ≤

η−1∑
j=1

((r1)j − r∗j ) log

(
fj+1 − 1

f1 − 1

)
+
c log(t0)

t0
log (fη − 1) .

(33)

By setting ε small enough and t0 large enough, we can make
this as small as we want. For any given δ > 0, there exists
a positive ε > 0 such that each term in the summation in
equation (33) is bounded by δ/η. Further, recall that T/2 =
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c log(t0) + t0. For any choice of ε, there exists a tD′,ε such
that for all T ≥ tD′,ε the vanishing term in equation (30) is
smaller than ε. For any given δ > 0, there exists a positive
tD′,δ such that T ≥ tD′,δ implies that the second term of
equation (33) is upper bounded by δ/η. Putting everything
together (and setting ε small enough for the target δ), we get
that

P
( log(ΛGT )

T/2
≥ 〈r∗,f〉+ δ

)
≤ e−CD′,δT

for all T ≥ C ′D′,δ , where CD′,δ and C ′D′,δ are positive
constants that only depend on the degree distribution D′ and
the choice of δ > 0.

For the lower bound, we again define a set of r such that
equation (30) is strictly negative:

Rα,β(ε) =
{
r | log(µD) ≤ DKL(r‖

(
β

µD

)
)− ε

}
.

Choosing r ∈ Rα,β(ε) causes extinction with probability
approaching 1. Explicitly, P(Z(t) 6= 0) is the probability of
non-extinction at time t, and P(Z(t) 6= 0) ≤ E[Z(t)]. By
equation (30), we have

E[Z(t)] ≤ et(log(µD)−DKL(r‖β/µD)+o(t))

where log(µD) − DKL(r‖β/µD) ≤ −ε. The probability of
extinction is therefore at least 1 − E[Z(t)] ≥ 1 − e−t(ε+o(t)).
So defining

r2 ≡ arg max
r∈Rα,β(ε)

〈r,f〉 ,

we have
log(ΛGT )

T/2
≥ 〈r2,f〉+

c log(t0)

t0
log(f1 − 1)

with probability at least 1− e−CD′,2T where CD′,2 is again a
constant that depends on D′ and ε. It follows that

log(ΛGT )

T/2
− 〈r∗,f〉 ≥

η−1∑
j=1

((r2)j − r∗j ) log

(
fj+1 − 1

f1 − 1

)
+
c log(t0)

t0
log (fη − 1) .

(34)

where (r2)j − r∗j is strictly negative. Again, for any given
δ > 0, there exists a positive ε > 0 such that each term in
the summation in equation (34) is lower bounded by −δ/η,
and for any choice of ε, there exists a tD′,ε such that for all
T ≥ tD′,ε the vanishing term in equation (30) is smaller than
ε. We again choose the smaller of the two ε values from the

upper and lower bound. For any given δ > 0, there exists a
positive tD′,δ such that T ≥ tD′,δ implies that the second term
is lower bounded by −δ/η. Putting everything together (and
setting ε small enough for the target δ), we get that

P
( log(ΛGT )

T/2
≤ 〈r∗,f〉 − δ

)
≤ e−CD′,δT

for all T ≥ C ′D′,δ , where CD′,δ and C ′D′,δ are positive
constants that only depend on the degree distribution D′ and
the choice of δ > 0. This gives the desired result.

1) Proof of Lemma 9.3: If f1 > 2, then the claim follows
directly, because each leaf generates at least 2 children in each
generation.

If f1 = 2, then for parameters ρ > 0 and λ > 0, we use the
Markov inequality to get

P(Z(t) ≤ ρ) ≤ E[e−λZ
(t)

]eρλ

= g
(t)
D−1(e−λ)eρλ ,

where gD−1(s) = E[es(D−1)] is the probability generating
function of D−1, and g(t)

D−1(s) is the t-fold composition of this
function. The goal is to choose parameters ρ and λ such that
this quantity approaches zero exponentially fast. The challenge
is understanding how g

(t)
D−1(e−λ) behaves for a given choice

of λ.
Figure 25 illustrates gD−1(s). Because each node always

has at least one child, the probability of extinction for this
branching process is 0. As such, the probability generating
function is convex, with gD−1(0) = 0 and gD−1(1) = 1.
This implies that for any starting point e−λ, the fixed-point
iteration method approaches 0. We characterize the rate at
which g(t)

D−1(s0) approaches 0 by separately bounding the rate
of convergence in three different regions of s (Figure 25).
First, we choose a starting point s0 = e−λ. We pick any
value s1 < 1, such that the slope is strictly larger than one,
i.e. g′D−1(s1) > 1. There may be multiple points that satisfy
this property; we can choose any one of them, since it only
changes the constant factor in the exponent. Without loss of
generality, we assume that s0 > s1, since otherwise we can
start the analysis from the region III. Then region I consists
of all s ∈ [s1, s0]. To define s2, we draw a line segment
parallel to the diagonal from s1. The intersection is defined as
(s2, gD−1(s2)). Region II consists of all s ∈ [s2, s1). Finally,
we choose a threshold ε, below which we say the process has
converged. Then region III consists of all s ∈ [ε, s2). We wish
to identify a time t that guarantees, for a given ε and λ, that
g

(t)
D−1(e−λ) ≤ ε.
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Fig. 25: Regions of the probability generating function, in
which we bound the rate of convergence.

To begin, we split the time spent in each region into t1, t2,
and t3, with t1 + t2 + t3 = t. We first characterize t1. Note
that gD−1(s0) ≤ 1−g′D−1(s1)(1−s0) for s0 in region I. This
holds because s1 has the lowest slope of all points in region
I. Applying this recursively, we get that

g
(t1)
D−1(s) ≤ max

{
1− g′D−1(s1)t1(1− s), gD−1(s1)

}
for all s in region I. In region II, we instead upper bound
gD−1(s) by the line segment joining gD−1(s1) and gD−1(s2).
This line has slope 1, giving

g
(t2)
D−1(s) ≤ max {gD−1(s1)− (s1 − gD−1(s1))t2, gD−1(s2)} .

In region III, we upper bound gD−1(s) by the line y(s) =
g′D−1(s2)s. We have that gD−1(s) < g′D−1(s2) · s for s in
region III. Recursing this relation gives

g
(t3)
D−1(s) ≤ max

{
g′D−1(s2)t3 · s, ε

}
.

Thus, if t ≥ 3 max{t1, t2, t3}, then g
(t)
D−1(e−λ) ≤ ε. In

particular, we choose

t ≥ 3 max
{ log((1− gD−1(s1))/(1− e−λ))

log(g′D−1(s1))
,

gD−1(s1)− gD−1(s2)

s1 − gD−1(s1)
,

log(ε)

s2 log(g′D−1(s2))

}
. (35)

So for sufficiently large t, we have P(Z(t) ≤ ρ) ≤ ε · eρλ. By
choosing

ε = g′D−1(s2)s2t/3,

we ensure that the third bound on t is always true, and the
other two are constant. Similarly, we choose

e−λ = 1− 1− s2

g′D−1(s1)t/3
,

giving

P(Z(t) ≤ ρ) ≤ s2 · g′D−1(s2)t/3

1− 1− s2

g′D−1(s1)t/3︸ ︷︷ ︸
B


−ρ

= s2 · g′D−1(s2)t/3 (1−B)
− 1
BBρ

≤ s2 · g′D−1(s2)t/3eρ(1−s2)g′D−1(s1)−t/3 .

Choosing ρ = g′D−1(s1)t/3/(1 − s2), we observe that for t
larger than the bound in equation (35), the number of leaves
is lower bounded by an exponentially growing quantity (ρ)
with probability approaching 1 exponentially fast in t.

F. Proof of Proposition 4.9

Number of nodes. T is either even or odd. At each even T ,
GT is a ball (defined over a grid graph) centered at the virtual
source with radius T/2; that is, GT consists of all nodes whose
distance from the virtual source is at most T/2 hops. Thus
at each successive even T , GT increases in radius by one.
The perimeter of such a ball (over a two-dimensional grid) is
4T2 . The total number of nodes is therefore 1 +

∑T/2
i=1 4i =

1
2 (T 2 + 2T + 2).

When T is odd, there are two cases. Either the virtual source
did not move, in which case NT = NT+1 (because all the
spreading occurs in one time step), or the virtual source did
move, so spreading occurs over two timesteps. In the latter
case, the odd timestep adds a number of nodes that is at least
half plus one of the previous timestep’s perimeter nodes: NT ≥
NT−1 + 2T−1

2 + 1 = 1
2 (T 2 + 2T + 1). This is the smaller of

the two expressions, so we have NT ≥ (T + 1)2/2.
Probability of detection. At each even T , GT is symmet-
ric about the virtual source. We reiterate that the snapshot
adversary can only see which nodes are infected—it has no
information about who infected whom.

In order to ensure that each node is equally likely to be
the source, we want the distribution of the (strictly positive)
distance from the virtual source to the true source to match
exactly the distribution of nodes at each viable distance from
the virtual source:

p(t) =
4

t( t2 + 1)


1
2
...
t/2

 ∈ Rt/2 . (36)

There are 4h nodes at distance h from the virtual source, and
by symmetry all of them are equally likely to have been the
source, giving:

P(GT |v∗, δH(v∗, vt) = h) =
1

4h
p

(t)
h

=
1

t( t2 − 1)
,

which is independent of h. Thus all nodes in the graph are
equally likely to have been the source. The claim is that by
choosing α(t, h) according to equation (16), we satisfy the
distribution in equation (36).
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Protocol 5 Grid adaptive diffusion

Input: grid contact network G = (V,E), source v∗, time T
Output: set of infected nodes VT

1: V0 ← {v∗}, h← 0, v0 ← v∗

2: K ← {N,S,E,W} . Cardinality directions
3: let kv(u) denote u’s direction with respect to v
4: v∗ selects one of its neighbors u at random
5: V1 ← V0 ∪ {u}, v1 ← u
6: hH = 1{kv(u)=E} − 1{kv(u)=W}
7: hV = 1{kv(u)=N} − 1{kv(u)=S}
8: let NK(u) represent u’s neighbors in directions K ⊆ K
9: V2 ← V1 ∪NK(u) \ {v∗}, v2 ← v1

10: t← 3
11: for t ≤ T do
12: vt−1 selects a random variable X ∼ U(0, 1)
13: if X ≤ α(t− 1, |hV |+ |hH |) then
14: for all v ∈ N(vt−1) do
15: Infection Message(G,vt−1,v,{kv(vt−1)}, Gt)
16: else
17: K ← ∅
18: if hH < 0 then
19: K ← K ∪ {E}
20: else if hH > 0 then
21: K ← K ∪ {W}
22: if hV < 0 then
23: K ← K ∪ {N}
24: else if hV > 0 then
25: K ← K ∪ {S}
26: vt−1 randomly selects u ∈ NK\K(vt−1)
27: hH = hH + 1{kv(u)=E} − 1{kv(u)=W}
28: hV = hV + 1{kv(u)=N} − 1{kv(u)=S}
29: vt ← u
30: for all v ∈ NK\{kvt−1

(v)(vt)} do
31: Infection Message(G,vt,v,{kvt(vt−1), kv(vt)},Vt)
32: if t+ 1 > T then
33: break
34: Infection Message(G,vt,v,{kvt(vt−1), kv(vt)},Vt)
35: t← t+ 2

36: procedure INFECTION MESSAGE(G,u,v,K,Vt)
37: if v ∈ Vt then
38: for all w ∈ NK\K(v) do
39: Infection Message(G,v,w,K,Gt)
40: else
41: Vt ← Vt−2 ∪ {v}

The state transition can be represented as the usual ((t/2)+
1)× (t/2) dimensional column stochastic matrix:

p(t+2) =


α(t, 1)

1− α(t, 1) α(t, 2)

1− α(t, 2)
. . .
. . . α(t, t/2)

1− α(t, t/2)

 p
(t).

This relation holds because we have imposed the condition

that the virtual source never moves closer to the true source.
We can solve directly for α(t, 1) = t/(t + 4), and obtain a
recursive expression for α(t, h) when h > 1:

α(t, h) =
t

t+ 4
− h− 1

h
(1− α(t, h− 1)) .

We show by induction that this expression evaluates to equa-
tion (16). For h = 2, we have α(t, 2) = t

t+4 −
1
2

4
t+4 = t−2

t+4 .
Now suppose that equation (16) holds for all h < h0. We then
have

α(t, h0) =
t

t+ 4
− h0 − 1

h0
(1− t− 2(h0 − 1)

t+ 4
)

=
t− 2(h0 − 1)

t+ 4
,

which is the claim.
By construction the ML estimator for even T is to choose

any node except the virtual source uniformly at random. For
odd T , there are two options: either the virtual source stayed
fixed or it moved. If the former is true, then spreading occurs
in one timestep, so the ML estimator once again chooses a
node other than the virtual source uniformly at random. If
the virtual source moved, then GT is symmetric about the
edge connecting the old virtual source to the new one. Since
the adversary only knows that virtual sources cannot be the
true source, the ML estimator chooses one of the remaining
NT − 2 nodes uniformly at random. This gives a probability
of detection of 1/(NT −2). The claim follows from observing
that NT ≥ 1

2 (T + 1)2 − 2 = (T+3)(T−1)
2 .

G. Proof of Proposition 7.1

The control packet at spy node s1 includes the amount of
delay at s1 = 0 and all descendants of s1, which is the set
of nodes {−1,−2, . . .}. The control packet at spy node s2

includes the amount of delay at s2 = n+1 and all descendants
of s2, which is the set of nodes {n + 2, n + 3, . . .}. Given
this, it is easy to figure out the whole trajectory of the virtual
source for time t ≥ T1. Since the virtual source follow i.i.d.
Bernoulli trials with probability q, one can exactly figure out
q from the infinite Bernoulli trials. Also the direction D is
trivially revealed.

To lighten the notations, let us suppose that T1 ≤ T2 (or
equivalently Ts1 ≤ Ts2 ). Now using the difference of the
observed time stamps Ts2−Ts1 and the trajectory of the virtual
source between Ts1 and Ts2 , the adversary can also figure out
the time stamp T1 with respect to the start of the infection.
Further, once the adversary figures out T1 and the location of
the virtual source vT1

, the timestamp T2 does not provide any
more information. Hence, the adversary performs ML estimate
using T1, D and q. Let B(k, n, q) =

(
n
k

)
qk(1− q)n−k denote

the pmf of the binomial distribution. Then, the likelihood can
be computed for T1 as
P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣v∗, q, `) ={

q B(v∗ − t1
2 − 2, t12 − 2, q) I(v∗∈[2+

t1
2 ,t1]) , if t1 even ,

B(v∗ − t1+3
2 , t1−3

2 , q) I
(v∗∈[

t1+3
2 ,t1])

, if t1 odd ,
(37)
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P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣ v∗, q, r) ={

0 , if t1 even ,
(1− q)B( t1−1

2 − v∗, t1−3
2 , q) I

(v∗∈[1,
t1−1

2 ])
, if t1 odd .

(38)

This follows from the construction of the adaptive diffusion.
The protocol follows a binomial distribution with parameter q
until (T1 − 1). At time T1, one of the following can happen:
the virtual source can only be passed (the first equation in
(37)), it can only stay (the second equation in (38)), or both
cases are possible (the second equation in (37)).

Given T1, Q and D, which are revealed under the ad-
versarial model we consider, the above formula implies that
the posterior distribution of the source also follows a bino-
mial distribution. Hence, the ML estimate is the mode of a
binomial distribution with a shift, for example when t1 is
even, ML estimate is the mode of 2 + (t1/2) + Z where
Z ∼ Binom((t1/2) − 2, q). The adversary can compute the
ML estimate:

v̂ML =


T1+2

2 +
⌊
q
(
T1−2

2

)⌋
if T1 even, D = `

T1+3
2 +

⌊
q
(
T1−1

2

)⌋
if T1 odd, D = `

1 +
⌊
(1− q)

(
T1−1

2

)⌋
if T1 odd, D = r .

(39)

Together with the likelihoods in equations (37) and (38),
this gives
P(adaptive)
T1,D|V ∗,Q

(
t1, r, v̂ML = v∗

∣∣v∗, q) =

1

2
(1− q)B

( t1 − 1

2
− v∗, t1 − 3

2
, q
)
I(v̂ML=v∗) I(t1 is odd)

P(adaptive)
T1,D|Q

(
t1, r, V

∗ = v̂ML

∣∣q) =

=
1

2n
(1− q)B

( t1 − 1

2
− v̂ML,

t1 − 3

2
, q
)
I(t1 is odd)

≤ (1− q)
2n

(√2 I(t1 is odd and t1 > 3)√
t1−3

2 q(1− q)
+ I(t1=3)

)
where v̂ML = v̂ML(t1, q, r) is provided in equation (39),
and the bound on B(·) follows from Gaussian approximation
(which gives an upper bound 1/

√
2πkq(1− q)) and Berry-

Esseen theorem (which gives an approximation guarantee
of 2 × 0.4748/

√
kq(1− q)) [58], for k = (t1 − 3)/2.

Marginalizing out T1 ∈ {3, 5, . . . , 2b(n − 1)/2c + 1} and
applying an upper bound

∑k
i=1 1/

√
i ≤ 2

√
k + 1 − 2 ≤

2
√
k − 1 +

√
1/(2(k − 1))− 2 ≤

√
4(k − 1), we get

P
(
D = r, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

(1− q)
√

2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1− q
2n

.

Similarly, we can show that

P
(
D = `, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

√
2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1

n
,

P
(
V ∗ = v̂ML, T1 is even

∣∣Q = q
)
≤

q
√

2

2n
√
q(1− q)

√
8
⌊n

2

⌋
+

1 + q

2n
,

Summing up,

P(V ∗ = v̂ML|Q = q) ≤

√
8

n q (1− q)
+

2

n
.

Recall Q is uniformly drawn from [0, 1]. Taking expectation
over Q gives

P(V ∗ = v̂ML) ≤ π

√
8

n
+

2

n
,

where we used
∫ 1

0
1/
√
x(1− x)dx = arcsin(1) −

arcsin(−1) = π.
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