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The Composition Theorem for Differential Privacy
Peter Kairouz, Member, IEEE, Sewoong Oh, Member, IEEE, Pramod Viswanath, Fellow, IEEE,

Abstract—Sequential querying of differentially private mecha-
nisms degrades the overall privacy level. In this paper, we answer
the fundamental question of characterizing the level of overall
privacy degradation as a function of the number of queries and
the privacy levels maintained by each privatization mechanism.
Our solution is complete: we prove an upper bound on the
overall privacy level and construct a sequence of privatization
mechanisms that achieves this bound. The key innovation is
the introduction of an operational interpretation of differential
privacy (involving hypothesis testing) and the use of a data
processing inequality along with its converse. Our result improves
over the state-of-the-art, and has immediate connections to
several problems studied in the literature.

I. INTRODUCTION

Differential privacy is a formal framework to quantify to
what extent individual privacy in a statistical database is
preserved while releasing useful aggregate information about
the database. It provides strong privacy guarantees by requiring
the indistinguishability of whether or not an individual is in
a database based on the released information, regardless of
the side information on the other aspects of the database the
adversary may possess. Denoting the database when the indi-
vidual is present as D1 and as D0 when the individual is not, a
differentially private mechanism provides indistinguishability
guarantees with respect to the pair (D0, D1). The databases
D0 and D1 are referred to as “neighboring” databases.

Definition I.1 (Differential Privacy [DMNS06], [DKM+06a]).
A randomized mechanism M over a set of databases is (ε, δ)-
differentially private if for all pairs of neighboring databases
D0 and D1, and for all sets S in the output space of the
mechanism X ,

P(M(D0) ∈ S) ≤ eε P(M(D1) ∈ S) + δ .

A basic problem in differential privacy is how privacy of a
fixed pair of neighbors (D0, D1) degrades under composition
of interactive queries when each query, individually, meets
certain differential privacy guarantees. A routine argument
shows that the composition of k queries, each of which is
(ε, δ)-differentially private, is at least (kε, kδ)-differentially
private [DMNS06], [DKM+06a], [DL09], [DRV10]. A tighter
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bound of (ε̃δ̃, kδ + δ̃)-differential privacy under k-fold adap-
tive composition is provided, using more sophisticated argu-
ments, in [DRV10] for the case when each of the individual
queries is (ε, δ)-differentially private. Here ε̃δ̃ = O

(
kε2 +

ε
√
k log(1/δ̃)

)
. On the other hand, it was not known if this

bound could be improved until this work.
Our main result is the exact characterization of the privacy

guarantee under k-fold composition. Any k-fold adaptive
composition of (ε, δ)-differentially private mechanisms satis-
fies the privacy guarantee stated in Theorem III.3. Further,
we demonstrate a specific sequence of (nonadaptive) privacy
mechanisms which when composed, degrade the privacy to
the level guaranteed in Theorem III.3. Our result entails a
strict improvement over the state-of-the-art result in [DRV10].
This can be seen immediately in the following approximation
– using the same notation as above, the value of ε̃δ̃ is now

reduced to ε̃δ̃ = O
(
kε2 + ε

√
k log(e+ (ε

√
k/δ̃) )

)
. Since

a typical choice of δ̃ is δ̃ = Θ(kδ), in the regime where
ε = Θ(

√
kδ), this improves the existing guarantee by a

logarithmic factor. The gain is especially significant when both
ε and δ are small.

We view differential privacy as a guarantee on the two types
of error (false alarm and missed detection) in a binary hy-
pothesis testing problem involving two neighboring databases.
This approach is similar to the previous work of Wasserman
and Zhou [WZ10]. Our work leverages two benefits of this
operational interpretation of differential privacy.
• The first is conceptual. The operational setting directs

the logic of the steps of the proof, makes the arguments
straightforward, and readily allows for generalizations
such as heterogeneous compositions.

• The second is technical. The operational interpretation of
hypothesis testing brings both the natural data processing
inequality and the strong converse to the data processing
inequality. These inequalities, while simple by them-
selves, lead to surprisingly strong technical results. As an
aside, we mention that there is a strong tradition of such
derivations in the information theory literature: the Fisher
information inequality [Bla65], [Zam98], the entropy
power inequality [Sta59], [Bla65], [VG06], an extremal
inequality involving mutual informations [LV07], matrix
determinant inequalities [CT88], the Brunn-Minkowski
inequality and its functional analytic variants [DCT91]
– Chapter 17 of [CT12] enumerates a detailed list – were
all derived using operational interpretations of mutual in-
formation and corresponding data processing inequalities.

The optimal composition theorem (Theorem III.3) provides
a fundamental limit on how much privacy degrades under com-
position. Such a characterization is a basic result in differential
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privacy and has been used widely in the literature [DRV10],
[HLM10], [BBDS12], [GRU12], [MN12], [HR13]. In each
of these instances, the optimal composition theorem derived
here (or the simpler characterization provided in Theorem
III.4) could be “cut-and-pasted”, allowing for a correspond-
ing strengthening of their conclusions. We demonstrate this
strengthening for two instances: (a) the variance of noise
adding mechanisms in Section V-A, and (b) the utility of graph
cut and matrix variance queries in Appendix A. We further
show that a variety of existing noise adding mechanisms
ensures the same level of privacy with similar variances. This
implies that there is nothing special about the popular choice
of adding a Gaussian noise when composing multiple queries,
and the same utility as measured through the noise variance
can be obtained using other known mechanisms. We start our
discussions by operationally introducing differential privacy as
a guarantee on the error probabilities of a binary hypothesis
testing problem.

II. DIFFERENTIAL PRIVACY AS HYPOTHESIS TESTING

Given a random output Y of a database access mechanism
M , consider the following hypothesis testing experiment.
We choose a null hypothesis as database D0 and alternative
hypothesis as D1:

H0 : Y came from a database D0 ,

H1 : Y came from a database D1 .

For a choice of a rejection region S, the probability of false
alarm (type I error), when the null hypothesis is true but
rejected, is defined as PFA(D0, D1,M, S) ≡ P

(
M(D0) ∈

S
)
, and the probability of missed detection (type II error),

when the null hypothesis is false but retained, is defined as
PMD(D0, D1,M, S) ≡ P

(
M(D1) ∈ S̄

)
where S̄ is the com-

plement of S. It turns out that imposing differential privacy
conditions on a mechanism M is equivalent to restricting the
probability of false alarm and missed detection from being
simultaneously small. Wasserman and Zhu proved that (ε, 0)-
differential privacy implies the conditions in Equation (1) for
the special case when δ = 0 [WZ10, Theorem 2.4]. The same
proof technique can be used to prove a similar result for a
general δ ∈ [0, 1], and to prove that the conditions in Equation
(1) imply (ε, δ)-differential privacy as well. We refer the reader
to Section VI-B for a proof.

Theorem II.1. For any ε ≥ 0 and δ ∈ [0, 1], a database
mechanism M is (ε, δ)-differentially private if and only if the
following conditions are satisfied for all pairs of neighboring
databases D0 and D1, and all rejection region S ⊆ X :

PFA(D0, D1,M, S) + eεPMD(D0, D1,M, S) ≥ 1− δ , and

eεPFA(D0, D1,M, S) + PMD(D0, D1,M, S) ≥ 1− δ . (1)

This operational perspective relates the privacy parameters
ε and δ to a set of conditions on probability of false alarm and
missed detection. This shows that under differential privacy,
it is impossible for both PMD and PFA to be simultaneously
small. This operational interpretation of differential privacy
suggests a graphical representation of differential privacy as
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Fig. 1. Privacy region for (ε, δ)-differential privacy. Dotted line represents
the solution of a maximization problem (20). For simplicity, we only show
the privacy region below the line PFA + PMD ≤ 1, since the whole region
is symmetric w.r.t. the line PFA + PMD = 1.

illustrated in Figure 1. We define the privacy region for (ε, δ)-
differential privacy as

R(ε, δ) ≡
{

(PMD, PFA)
∣∣PFA + eεPMD ≥ 1− δ ,

and eεPFA + PMD ≥ 1− δ} . (2)

Similarly, we define the privacy region of a database access
mechanism M with respect to two neighboring databases D0

and D1 as

R(M,D0, D1) ≡ conv
({

(PMD(S), PFA(S))
∣∣ for all S ⊆ X

})
, (3)

where conv(·) is the convex hull of a set and X is the alphabet
of the privatized output, PMD(S) = PMD(D0, D1,M, S), and
PFA(S) = PFA(D0, D1,M, S)). Operationally, by taking the
convex hull, the region includes the pairs of false alarm and
missed detection probabilities achieved by soft decisions that
might use internal randomness in the hypothesis testing rule.
Precisely, let γ : X → {H0, H1} be any randomized decision.
For example, we can accept the null hypothesis with a certain
probability p1 if the output is in a set S1 and probability p2 if it
is in another set S2. In full generality, a decision rule γ can be
fully described by a partition {Si} of the output space X , and
a corresponding accept probabilities {pi}. The probabilities
of false alarm and missed detection for a decision rule γ is
defined as PFA(D0, D1,M, γ) ≡ P(γ(M(D0)) = H1) and
PMD(D0, D1,M, γ) ≡ P(γ(M(D1)) = H0).

Remark II.2. For all neighboring databases D0 and D1 and
a database access mechanism M , the pair of false alarm and
missed detection probabilities achieved by any decision rule
γ is included in the privacy region:

(PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)) ∈ R(M,D0, D1) ,

for all decision rules γ.

Let D0 ∼ D1 denote that the two databases are neighbors.
The union over all neighboring databases defines the privacy
region of the mechanism.

R(M) ≡
⋃

D0∼D1

R(M,D0, D1) .
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The following corollary, which follows immediately from
Theorem II.1, gives a necessary and sufficient condition on
the privacy region for (ε, δ)-differential privacy.

Corollary II.3. A mechanism M is (ε, δ)-differentially private
if and only if R(M) ⊆ R(ε, δ).

To illustrate the strengths of the graphical representation of
differential privacy, we provide simpler proofs for some well-
known results in differential privacy in Appendix A.

Consider two database access mechanisms M(·) and M ′(·).
Let X and Y denote the random outputs of mechanisms
M and M ′ respectively. We say that M dominates M ′ if
M ′(D) is conditionally independent of D given the outcome
of M(D). In other words, the database D, X = M(D) and
Y = M ′(D) form the following Markov chain: D–X–Y . We
note that this holds for all distributions on D.

Theorem II.4 (Data processing inequality for differential
privacy). If a mechanism M dominates a mechanism M ′, then
for all pairs of neighboring databases D0 and D1,

R(M ′, D0, D1) ⊆ R(M,D0, D1) .

We refer the reader to Section VI-A for a proof. Together
with Corollary II.3, Theorem II.4 recovers a well known
result: differential privacy is preserved by postprocessing the
output [DKM+06b], [DR14], [WZ10]. Perhaps surprisingly,
the converse is also true.

Theorem II.5 ([Bla53, Corollary of Theorem 10]). Fix a pair
of neighboring databases D0 and D1, and let X and Y denote
the random outputs of mechanisms M and M ′, respectively.
If M and M ′ satisfy

R(M ′, D0, D1) ⊆ R(M,D0, D1) ,

then there exists a coupling of the random outputs X and
Y such that they form a Markov chain D–X–Y where D ∈
{D0, D1}.

In other words, when the privacy region of M ′ is included in
M , there exists a stochastic transformation T that operates on
X to produce a random output that has the same marginal
distribution as Y conditioned on the database D. We can
consider this mechanism T as a privatization mechanism that
takes a (privatized) output X and provides even further priva-
tization. The above theorem was proved in [Bla53, Corollary
of Theorem 10] in the context of comparing two experiments,
where a statistical experiment denotes a mechanism in the
context of differential privacy.

III. COMPOSITION OF DIFFERENTIALLY PRIVATE
MECHANISMS

In this section, we address how differential privacy guar-
antees compose: when accessing databases multiple times via
differentially private mechanisms, each of which having its
own privacy guarantees. Precisely, we address the following
fundamental question: how much privacy can be guaranteed
after multiple database accesses? To formally define com-
position, we consider the following scenario known as the
‘composition experiment’, proposed in [DRV10].

A composition experiment takes as input a parameter
b ∈ {0, 1}, and an adversary A. From the hypothesis test-
ing perspective proposed in the previous section, b can be
interpreted as the hypothesis: null hypothesis for b = 0 and
alternative hypothesis for b = 1. At each time i, a database
Di,b is accessed depending on b. For example, one includes a
particular individual and another does not. For example, D1,0

could be medical records including a particular individual and
D1,1 does not include the person, and D2,0 could be voter
registration database with the same person present and D2,1

with the person absent. An adversary A is trying to figure
out whether or not a particular individual is in the database
by testing the hypotheses on the output of k sequential
database accesses via differentially private mechanisms. In full
generality, we allow the adversary to have full control over
which pair of databases to access, which query to ask, and
which mechanism to be used at each repeated access. Further,
the adversary is free to make these choices adaptively based
on the previous outcomes. The only restrictions are: (a) the
differentially private mechanisms belong to a family M (e.g.,
the family of all (ε, δ)-differentially private mechanisms), (b)
the internal randomness of the mechanisms are independent
at each repeated access, and (c) that the hypothesis b is not
known to the adversary.

COMPOSE(A,M, k, b)
Input: A, M, k, b
Output: V b

Choose internal randomness R for the adversary A
for i = 1 to k do

A requests (Di,0, Di,1, qi,Mi) for some Mi ∈M;
A receives yi = Mi(D

i,b, qi);
end for
Output the view of the adversary V b = (R, Y b1 , . . . , Y

b
k ).

The outcome of this k-fold composition experiment is the
view of the adversary A: V b ≡ (R, Y b1 , . . . , Y

b
k ), which is the

sequence of random outcomes Y b1 , . . . , Y
b
k , and the outcome

R of any internal randomness of A.

A. Optimal privacy region under composition
We would like to characterize how much privacy degrades

after a k-fold composition experiment. It is known that the
privacy degrades under composition by at most the ‘sum’ of
the differential privacy parameters of each access.

Theorem III.1 ([DMNS06], [DKM+06a], [DL09], [DRV10]).
For any ε > 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially
private mechanisms satisfies (kε, kδ)-differential privacy un-
der k-fold adaptive composition.

In general, one can show that if Mi is (εi, δi)-differentially
private, then the composition satisfies (

∑
i∈[k] εi,

∑
i∈[k] δi)-

differential privacy. If we do not allow for any slack in the
δ, this bound cannot be tightened. Precisely, there are exam-
ples of mechanisms which under k-fold composition violate
(ε,
∑
i∈[k] δi)-differential privacy for any ε <

∑
i∈[k] εi. We

can prove this by providing a set S such that the privacy con-
dition is met with equality: P(V 0 ∈ S) = e

∑
i∈[k] εiP(V 1 ∈
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S)+
∑
i∈[k] δi. However, if we allow for a slightly larger value

of δ, then Dwork et al. showed in [DRV10] that one can gain
a significantly higher privacy guarantee in terms of ε.

Theorem III.2 ([DRV10, Theorem III.3]). For any ε > 0,
δ ∈ [0, 1], and δ̃ ∈ (0, 1], the class of (ε, δ)-differentially
private mechanisms satisfies (ε̃δ̃, kδ + δ̃)-differential privacy
under k-fold adaptive composition, for

ε̃δ̃ = kε(eε − 1) + ε

√
2k log(1/δ̃). (4)

By allowing a slack of δ̃ > 0, one can get a higher privacy
of ε̃δ̃ = O(kε2 +

√
kε2), which is significantly smaller than

kε. This is the best known guarantee so far, and has been used
whenever one requires a privacy guarantee under composition
(e.g. [DRV10], [BBDS12], [HR13]). However, the important
question of optimality has remained open. Namely, is there a
composition of mechanisms where the above privacy guarantee
is tight? In other words, is it possible to get a tighter bound
on differential privacy under composition?

We give a complete answer to this fundamental question
in the following theorems. We prove a tighter bound on the
privacy guarantee under composition. Further, we also prove
the achievability of the privacy guarantee: we provide a set
of mechanisms such that the privacy region under k-fold
composition is exactly the region defined by the conditions
in (5). Hence, this bound on the privacy region is tight and
cannot be improved upon.

Theorem III.3. For any ε ≥ 0 and δ ∈ [0, 1], the class of
(ε, δ)-differentially private mechanisms satisfies(

(k − 2i)ε , 1− (1− δ)k(1− δi)
)
-differential privacy (5)

under k-fold adaptive composition, for all i =
{0, 1, . . . , bk/2c}, where

δi =

∑i−1
`=0

(
k
`

)(
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

. (6)

Hence, the privacy region of k-fold composition is an
intersection of k regions, each of which is ((k − 2i)ε, 1 −
(1− δ)k(1− δi))-differentially private: R({(k−2i)ε, 1− (1−
δ)k(1−δi)}i∈[k/2]) ≡

⋂b k2 c
i=0 R((k−2i)ε, 1−(1−δ)k(1−δi)).

We prove this result in Section IV by constructing an ex-
plicit mechanism that achieves this region under composition.
Hence, this bound on the privacy region is tight, and gives the
exact description of how privacy degrades under k-fold adap-
tive composition. This settles the question that was left open
in [DMNS06], [DKM+06a], [DL09], [DRV10] by providing,
for the first time, the fundamental limit of composition and
proving a matching mechanism with the worst-case privacy
degradation.

To prove the optimality of our main result in Theorem
III.3, namely that it is impossible to have a privacy worse
than (5), we rely on the operational interpretation of the
privacy as hypothesis testing. To this end, we use the new
analysis tools (Theorem II.4 and Theorem II.5) provided in
the previous section. Figure 2 illustrates how much the privacy
region of Theorem III.3 degrades as we increase the number
of composition k. Figure 3 provides a comparison of the three
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Fig. 2. Privacy region R({(k−2i)ε, δi}) for the class of (ε, 0)-differentially
private mechanisms (top) and (ε, δ)-differentially private mechanisms (bot-
tom) under k-fold adaptive composition.

privacy guarantees in Theorems III.1, III.2 and III.3 for 30-fold
composition of (0.1, 0.001)-differentially private mechanisms.
Smaller region gives a tighter bound, since it guarantees higher
privacy.

B. Simplified privacy region under composition

In many applications of the composition theorems, a closed
form expression of the composition privacy guarantee is
required. The privacy guarantee in (5) is tight, but can be
difficult to evaluate. The next theorem provides a simpler
expression which is an outer bound on the exact region
described in (5). Compared to (4), the privacy guarantee is

significantly improved from ε̃δ̃ = O
(
kε2+

√
kε2 log(1/δ̃)

)
to

ε̃δ̃ = O
(
kε2 + min

{√
kε2 log(1/δ̃), ε log(ε/δ̃)

})
, especially

when composing a large number k of interactive queries.
Further, the δ-approximate differential privacy degradation of
(1− (1− δ)k(1− δ̃)) is also strictly smaller than the previous
(kδ + δ̃). We discuss the significance of this improvement in
the next section using examples from the existing differential
privacy literature.

Theorem III.4. For any ε > 0, δ ∈ [0, 1], and δ̃ ∈ [0, 1],
the class of (ε, δ)-differentially private mechanisms satisfies(
ε̃δ̃, 1 − (1 − δ)k(1 − δ̃)

)
-differential privacy under k-fold
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Fig. 3. Theorem III.3 provides the tightest bound (top). Given a mechanism
M , the privacy region can be completely described by its boundary, which
is represented by a set of tangent lines of the form PFA = −eε̃PMD + 1−
dε̃(P0, P1) (bottom).

adaptive composition, for

ε̃δ̃ = min
{
kε ,

(eε − 1)εk

eε + 1
+ ε

√
2k log

(
e+

√
kε2

δ̃

)
,

(eε − 1)εk

eε + 1
+ ε

√
2k log

(1

δ̃

)}
. (7)

This bound can be further simplified as

ε̃δ̃ ≤ min
{
kε, kε2 + ε

√
2k log

(
e+ (

√
kε2/δ̃ )

)
,

kε2 + ε

√
2k log(1/δ̃)

}
.

A proof is provided in Section VI-D. This privacy guarantee
improves over the existing result of Theorem III.2 when δ̃ =
Θ(
√
kε2). Typical regime of interest is the high-privacy regime

for composition privacy guarantee, i.e. when
√
kε2 � 1. The

above theorem suggests that we only need the extra slack of
approximate privacy δ̃ of order

√
kε2.

C. Composition Theorem for Heterogeneous Mechanisms

So far, we considered homogeneous mechanisms, where
all mechanisms are (ε, δ)-differentially private. Our analysis
readily extends to heterogeneous mechanisms, where the `-th
query satisfies (ε`, δ`)-differential privacy (we refer to such
mechanisms as (ε`, δ`)-differentially private mechanisms).

Theorem III.5. For any ε` > 0, δ` ∈ [0, 1] for ` ∈
{1, . . . . , k}, and δ̃ ∈ [0, 1], the class of (ε`, δ`)-differentially

private mechanisms satisfies
(
ε̃δ̃, 1 − (1 − δ̃)

∏k
`=1(1 − δ`)

)
-

differential privacy under k-fold adaptive composition, for
ε̃δ̃ =

min


k∑
`=1

ε` ,

k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√ k∑
`=1

2 ε2
` log

(1

δ̃

)
,

k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√√ k∑
`=1

2 ε2
` log

(
e+

√∑k
`=1 ε

2
`

δ̃

) .

(8)

This tells us that the ε`’s sum up under composition:
whenever we have kε or kε2 in (7) we can replace it by the
summation to get the general result for heterogeneous case.

IV. PROOF OF THEOREM III.3

We first propose a simple mechanism and prove that it
dominates over all (ε, δ)-differentially private mechanisms.
Analyzing the privacy region achieved by the k-fold compo-
sition of the proposed mechanism, we get a bound on the
privacy region under the adaptive composition. This gives an
exact characterization of privacy under composition, since we
show both converse and achievability. We prove that no other
family of mechanisms can achieve ‘more degraded’ privacy
(converse), and that there is a mechanism that we propose
which achieves the privacy region (achievability).

A. Achievability

We propose the following simple mechanism M̃ . Un-
der the null hypothesis (b = 0), the outputs {Xi,0 =
M̃(Di,0, qi)}i∈[k] are independent and identically distributed
to a discrete random variable X̃0 ∼ P̃0(·), where

P̃0(x) = P(X̃0 = x) ≡


δ for x = 0 ,

(1−δ) eε
1+eε for x = 1 ,

1−δ
1+eε for x = 2 ,

0 for x = 3 .

(9)

Under the alternative hypothesis (b = 1), the outputs {Xi,1 =
M̃(Di,1, qi)}i∈[k] are independent and identically distributed
to a discrete random variable X̃1 ∼ P̃1(·), where

P̃1(x) = P(X̃1 = x) ≡


0 for x = 0 ,

1−δ
1+eε for x = 1 ,

(1−δ) eε
1+eε for x = 2 ,

δ for x = 3 .

(10)

In particular, the output of this mechanism does not depend
on the database Di,b or the query qi, and only depends on
the hypothesis b. The privacy region of a single access to this
mechanism is R(ε, δ) in Figure 1. Hence, by Theorem II.5,
all (ε, δ)-differentially private mechanisms are dominated by
this mechanism.

In general, the privacy region R(M,D0, D1) of any mech-
anism can be represented by an intersection of multiple
{(ε̃j , δ̃j)} privacy regions. For a mechanism M , we can
compute the (ε̃j , δ̃j) pairs representing the privacy region as
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follows. Given a null hypothesis database D0, an alternative
hypothesis database D1, and a mechanism M whose output
space is X , let P0 and P1 denote the probability density
function of the outputs M(D0) and M(D1), respectively. To
simplify notations we assume that P0 and P1 are symmetric,
i.e. there exists a permutation π over X such that P0(x) =
P1(π(x)) and P1(x) = P0(π(x)). This ensures that we get a
symmetric privacy region.

The privacy region R(M,D0, D1) can be described by its
boundaries. Since it is a convex set, a tangent line on the
boundary with slope −eε̃j can be represented by the smallest
δ̃j such that

PFA ≥ −eε̃jPMD + 1− δ̃j , (11)

for all rejection sets (cf. Figure 3). Letting S denote the
complement of a rejection set, such that PFA = 1 − P0(S)
and PMD = P1(S), the minimum shift δ̃j that still ensures
that the privacy region is above the line (11) is defined as
δ̃j = dε̃j (P0, P1) where

dε̃(P0, P1) ≡ max
S⊆X

{
P0(S)− eε̃ P1(S)

}
.

The privacy region of a mechanism is completely described
by the set of slopes and shifts, {(ε̃j , δ̃j) : ε̃j ∈ E and δ̃j =
dε̃j (P0, P1)}, where

E ≡ { 0 ≤ ε̃ <∞ : P0(x) = eε̃ P1(x) for some x ∈ X} .

Any ε̃ /∈ E does not contribute to the boundary of the privacy
region. For the above example distributions P̃0 and P̃1, E =
{ε} and dε(P̃0, P̃1) = δ.

Remark IV.1. For a database access mechanism M over a
output space X and a pair of neighboring databases D0 and
D1, let P0 and P1 denote the probability density function for
random variables M(D0) and M(D1) respectively. Assume
there exists a permutation π over X such that P0(x) =
P1(π(x)). Then, the privacy region is

R(M,D0, D1 ) =
⋂
ε̃∈E
R
(
ε̃, dε̃(P0, P1)

)
,

where R(M,D,D′) and R(ε̃, δ̃) are defined as in (3) and (2).

The symmetry assumption is to simplify notations, and the
analysis can be easily generalized to deal with non-symmetric
distributions.

Now consider a k-fold composition experiment, where
at each sequential access M̃i, we receive a random output
Xi,b independent and identically distributed as X̃b. We can
explicitly characterize the distribution of k-fold composition of
the outcomes: P(X1,b = x1, . . . , X

k,b = xk) =
∏k
x=1 P̃b(xi).

It follows form the structure of these two discrete distributions
that, E = {e(k−2bk/2c)ε, e(k+2−2bk/2c)ε, . . . , e(k−2)ε, ekε}.
After some algebra, it also follows that

d(k−2i)ε

(
(P̃0)k, (P̃1)k

)
= 1− (1− δ)k+

(1− δ)k
∑i−1
`=0

(
k
`

)(
eε(k−`) − eε(k−2i+`)

)
(1 + eε)k

.

for i ∈ {0, . . . , bk/2c}. From Remark IV.1, it follows that
the privacy region is R({εi, δi}) =

⋂bk/2c
i=0 R

(
εi, δi

)
, where

εi = (k − 2i)ε and δi’s are defined as in (6). Figure 2 shows
this privacy region for k = 1, . . . , 5, ε = 0.4, and δ = 0 and
δ = 0.1.

B. Converse
We will now prove that this region is the largest region

achievable under k-fold adaptive composition of any (ε, δ)-
differentially private mechanisms.

From Corollary II.3, any mechanism whose privacy region is
included in R({εi, δi}) satisfies (ε̃, δ̃)-differential privacy. We
are left to prove that for the family of all (ε, δ)-differentially
private mechanisms, the privacy region of the k-fold compo-
sition experiment is included inside R({εi, δi}). To this end,
consider the following composition experiment, which repro-
duces the view of the adversary from the original composition
experiment.

At each time step i, we generate a random variable Xi,b

distributed as X̃b independent of any other random events,
and call this the output of a database access mechanism M̃i

such that M̃i(D
i,b, qi) = Xi,b. Since, Xi,b only depends on

b, and is independent of the actual database or the query, we
use M̃i(b) to denote this outcome.

We know that M̃i(b) has privacy region R(ε, δ) for any
choices of Di,0, Di,1 and qi. Now consider the mechanism Mi

from the original experiment. Since it is (ε, δ)-differentially
private, we know from Theorem II.1 that R(Mi, D

i,0, Di,1) ⊆
R(ε, δ) for any choice of neighboring databases Di,0, Di,1.
Hence, from the converse of data processing inequality (Theo-
rem II.5), we know that there exists a mechanism Ti that takes
as input Xi,b and produces an output Y i,b which is distributed
as Mi(D

i,b, qi) for all b ∈ {0, 1}. Hence, Y i,b is independent
of the past conditioned on Xi,b, Di,0, Di,1, qi,Mi. Precisely
we have the following Markov chain:

(b, R, {X`,b, D`,0, D`,1, q`,M`}`∈[i−1])–

(Xi,b, Di,0, Di,1, qi,Mi)–Y i,b ,

where R is any internal randomness of the adversary A. Since,
(X,Y )–Z–W implies X–(Y, Z)–W , we have

b–(R, {X`,b, D`,0, D`,1, q`,M`}`∈[i])–Y i,b .

Notice that if we know R and the outcomes {Y `,b}`∈[i], then
we can reproduce the original experiment until time i. This is
because the choices of Di,0, Di,1, qi,Mi are exactly specified
by R and {Y `,b}`∈[i]. Hence, we can simplify the Markov
chain as

b–(R,Xi,b, {X`,b, Y `,b}`∈[i−1])–Y i,b . (12)

Further, since Xi,b is independent of the past conditioned on
b, we have

Xi,b–b–(R, {X`,b, Y `,b}`∈[i−1]) . (13)

It follows that

P(b, r, x1 . . . , xk, y1, . . . , yk)

= P(b, r, x1, . . . , xk, y1, . . . , yk−1)×
P(yk|r, x1, . . . , xk, y1, . . . , yk−1)

= P(b, r, x1, . . . , xk−1, y1, . . . , yk−1)P(xk|b)×
P(yk|r, x1, . . . , xk, y1, . . . , yk−1) ,
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where we used (12) in the first equality and (13) in the second.
By induction, we get a decomposition

P(b, r, x1, . . . , xk, y1, . . . , yk)

= P(b, r)

k∏
i=1

P(xi|b)
k∏
i=1

P(yi|r, x1, . . . , xi, y1, . . . , yi−1)

= P(b, r, x1, . . . , xk)P(y1, . . . , yk|r, x1, . . . , xk)

= P(b|r, x1, . . . , xk)P(y1, . . . , yk, r, x1, . . . , xk) .

From the construction of the experiment, it also
follows that the internal randomness R is independent
of the hypothesis b and the outcomes Xi,b’s:
P(b|r, x1, . . . , xk) = P(b|x1, . . . , xk). Then, marginalizing
over R, we get P(b, x1, . . . , xk, y1, . . . , yk) =
P(b|x1, . . . , xk)P(y1, . . . , yk, x1, . . . , xk). This implies
the following Markov chain:

b–({Xi,b}i∈[k])–({Y i,b}i∈[k]) , (14)

and it follows that a set of mechanisms (M1, . . . ,Mk)
dominates (M̃1, . . . , M̃k) for two databases {Di,0}i∈[k] and
{Di,1}i∈[k]. By the data processing inequality for differential
privacy (Theorem II.4), this implies that

R
(
{Mi}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
⊆ R

(
{M̃i}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
= R

(
{εi, δi}

)
.

This finishes the proof of the desired claim.
Alternatively, one can prove (14), using the probabilistic

graphical model shown in Figure 4. Precisely, the following
Bayesian network describes the dependencies among various
random quantities of the experiment described above. Since
the set of nodes (X1,b, X2,b, X3,b, X4,b) d-separates node b
from the rest of the bayesian network, it follows immediately
from the Markov property of this Bayesian network that (14)
is true (cf. [Lau96]).

b R

X1,b

X2,b

X3,b

X4,b

Y 1,b

Y 2,b

Y 3,b

Y 4,b

D1,0, D1,1, q1,M1

D2,0, D2,1, q2,M2

D3,0, D3,1, q3,M3

D4,0, D4,1, q4,M4

Fig. 4. Bayesian network representation of the composition experiment. The
subset of nodes (X1,b, X2,b, X3,b, X4,b) d-separates node b from the rest
of the network.

V. APPLICATIONS OF THE OPTIMAL COMPOSITION
THEOREM

We now apply the results of the previous section to analyze
the utility of a complex privacy mechanism that is composed
of k sub-mechanisms, each with an (ε0, δ0)-differential privacy
guarantee. To ensure an overall of (ε, δ)-differential privacy,
we choose ε0 = ε/(2

√
k log(e+ ε/δ)) and δ0 = δ/2k.

The composition theorem presented in the previous section
guarantees the desired overall privacy. For each application
we study, we first fix k differentially private sub-mechanisms,
and then calculate the utility of the complex mechanism.
Following this recipe, we provide a sufficient condition on
the variance of noise adding mechanisms. Our analysis shows
that one requires smaller variance than what was previously
believed, especially in the regime where ε = Θ(δ). Further, we
show that a variety of known mechanisms achieve the desired
privacy under composition with the same level of variance.
Applying this analysis to known mechanisms for cut queries
of a graph, we show that in the regime where ε = Θ(δ),
one can achieve the desired privacy under composition with
improved utility.

For count queries with sensitivity one, the geometric noise
adding mechanism is known to be universally optimal in
a general cost minimization framework (Bayesian setting in
[GRS12] and worst-case setting in [GV12]). Here we provide
a new interpretation of the geometric noise adding mechanism
as an optimal mechanism under composition for counting
queries. Indeed, in the course of proving Theorem III.3,
we show that a family of mechanisms are optimal under
composition, in the sense that they achieve the largest privacy
region among k-fold compositions of any (εi, δi)-differentially
private mechanisms. Larger region under composition implies
that one can achieve smaller error rates, while ensuring the
same level of privacy at each step of the composition. In
section V-B, we show that the geometric mechanism is one
such mechanism, thus providing a new interpretation to the
optimality of the geometric mechanisms.

A. Variance of noise adding mechanisms under composition

Consider a real-valued database query q : D → R. The
sensitivity of q is defined as the maximum absolute difference
of the output between any two neighboring databases:

∆ ≡ max
D∼D′

|q(D)− q(D′)| ,

where ∼ indicates that the pair of databases are neighbors. The
output of q is usually privatized via the addition of random
noise the variance of which grows with sensitivity of the query
and the desired level of privacy. One of the most popular noise
adding mechanisms is the Laplacian mechanism, which adds
Laplacian noise to real-valued query outputs. When the sensi-
tivity is ∆, one can achieve (ε0, 0)-differential privacy with the
choice of the distribution Lap(ε0/∆) = (ε0/2∆)e−ε0|x|/∆.
The resulting variance of the noise is 2∆2/ε2

0. However,
the Laplacian mechanism has been largely ignored in the
context of query compositions. When composing real-valued
queries, the Gaussian mechanism is a popular choice [DN03],
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[DN04], [BDMN05], [BBDS12], [HR13]. To ensure (ε, δ)-
differential privacy under k-fold composition, it is sufficient
to add Gaussian noise with variance O(k∆2 log(1/δ)/ε2) to
each query output.

In this section, we show that there is nothing special about
the Gaussian mechanism. Indeed, we prove that the Laplacian
mechanism or the staircase mechanism (introduced in [GV12])
can achieve the same level of privacy under composition with
the same variance.

We can use Theorem III.4 to find how much noise we need
to add to each query output in order to ensure (ε, δ)-differential
privacy under k-fold composition. We know that if each query
output is (ε0, δ0)-differentially private, then the composed

outputs satisfy (kε2
0 +

√
2kε2

0 log(e+
√
kε2

0/δ̃), kδ0 + δ̃)-
differential privacy. With the choice of δ0 = δ/2k, δ̃ = δ/

√
2,

and ε2
0 = ε2/4k log(e + (ε/δ)), this ensures that the target

privacy of (ε, δ) is satisfied under k-fold composition as
described in the following corollary.

Corollary V.1. For any ε and δ ∈ (0, 1], if the database
access mechanism satisfies (

√
ε2/4k log(e+ (ε/δ)), δ/2k)-

differential privacy on each query output, then it satisfies
(ε, δ)-differential privacy under k-fold composition.

The above corollary implies a sufficient condition on the
variance of the Laplacian mechanism to ensure privacy under
composition.

Corollary V.2. For real-valued queries with sensitivity ∆ >
0, the mechanism that adds Laplacian noise with variance(
8k∆2 log

(
e+ (ε/δ)

)
/ε2
)

satisfies (ε, δ)-differential privacy
under k-fold adaptive composition for any ε and δ ∈ (0, 1].

In terms of variance-privacy trade-off for real-valued
queries, the optimal noise-adding mechanism known as the
staircase mechanism was introduced in [GV12]. The proba-
bility density function of this noise is piecewise constant, and
the probability density on the pieces decays geometrically. It is
shown in [GV13] that with variance of O(min{1/ε2, 1/δ2}),
the staircase mechanism achieves (ε, δ)-differential privacy.
Corollary V.1 implies that with variance O

(
k∆2 log(e +

ε/δ)/ε2
)
, the staircase mechanism satisfies (ε, δ)-differential

privacy under k-fold composition.
Another popular mechanism known as the Gaussian mech-

anism privatizes each query output by adding a Gaussian
noise with variance σ2. It is not difficult to show that
when the sensitivity of the query is ∆, with a choice of
σ2 ≥ 2∆2 log(2/δ0)/ε2

0, the Gaussian mechanism satisfies
(ε0, δ0)-differential privacy (e.g. [DKM+06a]). The above
corollary implies that the Gaussian mechanism with variance
O(k∆2 log(1/δ) log(e+ (ε/δ))/ε2) ensures (ε, δ)-differential
privacy under k-fold composition. However, we can get a
tighter sufficient condition by directly analyzing how Gaussian
mechanisms compose, and the proof is provided in Appendix
A.

Theorem V.3. For real-valued queries with sensitivity ∆ >
0, the mechanism that adds Gaussian noise with variance(
8k∆2 log

(
e+ (ε/δ)

)
/ε2
)

satisfies (ε, δ)-differential privacy

under k-fold adaptive composition for any ε > 0 and δ ∈
(0, 1].

It is known that it is sufficient to add i.i.d. Gaussian noise
with variance O(k∆2 log(1/δ)/ε2) to ensure (ε, δ)-differential
privacy under k-fold composition (e.g. [HT10, Theorem 2.7]).
The above theorem shows that when δ = Θ(ε), one can
achieve the same privacy with smaller variance by a factor
of log(1/δ).

B. Geometric noise adding mechanism under composition

In this section, we consider integer valued queries q :
D → Z with sensitivity one, also called count queries.
Such queries are common in practice, e.g. “How many in-
dividuals have income less than $100,000?”. The presence or
absence of an individual record changes the output by at most
one. Hence, the sensitivity of such queries is equal to one.
Count queries are well studied in differential privacy [DN03],
[DN04], [BDMN05], [BLR13] and they provide a primitive
for constructing more complex queries [BDMN05].

The geometric mechanism is a discrete variant of the popular
Laplacian mechanism. For integer-valued queries with sensi-
tivity one, the mechanism adds a noise distributed according to
a double-sided geometric distribution: p(k) =

(
(eε−1)/(eε+

1)
)
e−ε|k|. This mechanism is known to be universally optimal

in a general cost minimization framework (Bayesian setting in
[GRS12] and worst-case setting in [GV12]). In this section, we
show that the geometric noise adding mechanism achieves the
fundamental limit on the privacy region under composition.

Consider the composition experiment for counting queries.
For a pair of neighboring databases D0 and D1, some of the
query outputs differ by one, since sensitivity is one, and for
other queries the output might be the same. Let k denote the
number of queries whose output differs with respect to D0

and D1. We show, in Appendix A, that the privacy region
achieved by the geometric mechanism, is exactly described
by the optimal composition theorem of (5). Further, since
this is the largest privacy region under composition for the
pair of database D0 and D1 that differ in k queries, no
other mechanism can achieve a larger privacy region. Since
the geometric mechanism does not depend on the particular
choice of pairs of databases D0 and D1, nor does it depend
on the specific query being asked, the mechanism achieves
the exact composed privacy region universally for every pair
of neighboring databases simultaneously.

Among the mechanisms guaranteeing the same level of
privacy, the one with larger privacy region under composition
is considered to be better in terms of allowing for smaller
false alarm and missed detection rate in hypothesis testing
whether or not the database contains a particular entry. In
this sense, larger privacy degradation under composition has
more utility. The geometric mechanism has the largest possible
privacy region (or smallest possible privacy degradation) under
composition, stated formally below; the proof is deferred to
Appendix A.

Theorem V.4. Under the k-fold composition experiment
of counting queries, the geometric mechanism achieves the
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largest privacy region among all (ε, 0)-differentially pri-
vate mechanisms, universally for every pair of neighboring
databases simultaneously.

VI. PROOFS

A. Proof of Theorem II.4

Consider hypothesis testing between D1 and D2. If there is
a point (PMD, PFA) achieved by M ′ but not by M , then we
claim that this is a contradiction to the assumption that D–
X–Y forms a Markov chain. Consider a decision maker who
have only access to the output of M . Under the Markov chain
assumption, he can simulate the output of M ′ by generating a
random variable Y conditioned on M(D) and achieve every
point in the privacy region of M ′ (cf. Theorem II.2). Hence,
the privacy region of M ′ must be included in the privacy
region of M .

B. Proof of Theorem II.1

First we prove that (ε, δ)-differential privacy implies (1).
From the definition of differential privacy, we know that
for all rejection set S ⊆ X , P(M(D0) ∈ S̄) ≤
eεP(M(D1) ∈ S̄)+δ. This implies 1−PFA(D0, D1,M, S) ≤
eεPMD(D0, D1,M, S)+ δ. This implies the first inequality of
(1), and the second one follows similarly.

The converse follows analogously. For any set S, we assume
1 − PFA(D0, D1,M, S) ≤ eεPMD(D0, D1,M, S) + δ. Then,
it follows that P(M(D0) ∈ S̄) ≤ eεP(M(D1) ∈ S̄) + δ for
all choices of S ⊆ X . Together with the symmetric condition
P(M(D1) ∈ S̄) ≤ eεP(M(D0) ∈ S̄) + δ , this implies (ε, δ)-
differential privacy.

C. Proof of Remark II.2

We have a decision rule γ represented by a parti-
tion {Si}i∈{1,...,N} and corresponding accept probabilities
{pi}i∈{1,...,N}, such that if the output is in a set Si, we accept
with probability pi. We assume the subsets are sorted such
that 1 ≥ p1 ≥ . . . ≥ pN ≥ 0. Then, the probability of false
alarm is

PFA(D0, D1,M, γ)

=

N∑
i=1

pi P(M(D0) ∈ Si)

= pN +

N∑
i=2

(pi−1 − pi)P(M(D0) ∈ ∪j<iSj) .

and similarly, PMD(D0, D1,M, γ) = (1−p1)+
∑N
i=2(pi−1−

pi)P(M(D1) /∈ ∪j<iSj). Recall that PFA(D0, D1,M, S) =
P(M(D0) ∈ S) and PMD(D0, D1,M, S) = P(M(D1) ∈
S̄). So for any decision rule γ, we can represent the pair
(PMD, PFA) as a convex combination:(

PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)
)

=

N+1∑
i=1

(pi−1 − pi)
(
PMD(∪j<iSj), PFA(∪j<iSj)

)
,

where PMD(∪j<iSj) = PMD(D0, D1,M,∪j<iSj),
PFA(∪j<iSj) = PFA(D0, D1,M,∪j<iSj), and we used
p0 = 1 and pN+1 = 0, and hence it is included in the convex
hull of the privacy region achieved by decision rules with
hard thresholding.

D. Proof of Theorem III.4

We need to provide an outer bound on the privacy region
achieved by X̃0 and X̃1 defined in (9) and (10) under k-fold
composition. Let P0 denote the probability mass function of
X̃0 and P1 denote the PMF of X̃1. Also, let P k0 and P k1 denote
the joint PMF of k i.i.d. copies of X̃0 and X̃1 respectively.
Also, for a set S ⊆ X k, we let P k0 (S) =

∑
x∈S P

k
0 (x). In our

example, X = {1, 2, 3, 4}, and

P0 =
[
δ (1−δ)eε

1+eε
1−δ
1+eε 0

]
,

P1 =
[
0 1−δ

1+eε
(1−δ)eε

1+eε δ
]
,

P 2
0 =


δ2 δ (1−δ)eε

1+eε δ (1−δ)
1+eε 0

δ (1−δ)eε
1+eε

(
(1−δ)eε

1+eε

)2 (
1−δ
1+eε

)2

eε 0

δ 1−δ
1+eε

(
1−δ
1+eε

)2

eε
(

1−δ
1+eε

)2

0

0 0 0 0

 , etc.

We can compute the privacy region from P k0 and P k1
directly, by computing the line tangent to the boundary. A
tangent line with slope −eε̃ can be represented as

PFA = −eε̃PMD + 1− dε̃(P k0 , P k1 ) . (15)

To find the tangent line, we need to maximize the shift, which
is equivalent to moving the line downward until it is tangent
to the boundary of the privacy region (cf. Figure 3).

dε̃(P
k
0 , P

k
1 ) ≡ max

S⊆Xk
P k0 (S)− eε̃P k1 (S) .

Notice that the maximum is achieved by a set B ≡ {x ∈
X k |P k0 (x) ≥ eε̃P k1 (x)}. Then,

dε̃(P
k
0 , P

k
1 ) = P k0 (B)− eε̃P k1 (B) .

For the purpose of proving the bound of the form (7), we
separate the analysis of the above formula into two parts: one
where either P k0 (x) or P k1 (x) is zero and the other when
both are positive. Effectively, this separation allows us to treat
the effects of (ε, 0)-differential privacy and (0, δ)-differential
privacy separately. In previous work [DRV10], they separated
the analysis in a similar way. Here we provide a simpler proof
technique. Further, all the proof techniques we use naturally
generalize to compositions of general (ε, δ)-differentially pri-
vate mechanisms other than the specific example of X̃0 and
X̃1 we consider in this section.

Let X̃k
0 denote a k-dimensional random vector whose

entries are independent copies of X̃0. We partition B into
two sets: B = B0

⋃
B1 and B0

⋂
B1 = ∅. Let B0 ≡

{x ∈ X k : P k0 (x) ≥ eε̃P k1 (x), and P k1 (x) = 0} and
B1 ≡ {x ∈ X k : P k0 (x) ≥ eε̃P k1 (x), and P k1 (x) > 0}. Then,
it is not hard to see that P k0 (B0) = 1−P(X̃k

0 ∈ {1, 2, 3}k) =
1 − (1 − δ)k, P k1 (B0) = 0, P k0 (B1) = P k0 (B1|X̃k

0 ∈
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{1, 2}k)P(X̃k
0 ∈ {1, 2}k) = (1 − δ)k P k0 (B1|X̃k

0 ∈ {1, 2}k),
and P k1 (B1) = (1− δ)k P k1 (B1|X̃k

1 ∈ {1, 2}k). It follows that

P k0 (B0)− eε̃P k1 (B0) = 1− (1− δ)k , and

P k0 (B1)− eε̃P k1 (B1) =

(1− δ)k
(
P k0 (B1|X̃k

0 ∈ {1, 2}k)− eε̃P k1 (B1|X̃k
1 ∈ {1, 2}k)

)
.

Let P̃ k0 (x) ≡ P k0 (x|x ∈ {1, 2}k) and P̃ k1 (x) ≡ P k1 (x|x ∈
{1, 2}k). Then, we have

dε̃(P
k
0 , P

k
1 )

= P k0 (B0)− eε̃P k1 (B0) + P k0 (B1)− eε̃P k1 (B1)

= 1− (1− δ)k + (1− δ)k
(
P̃ k0 (B1)− eε̃P̃ k1 (B1)

)
. (16)

Now, we focus on upper bounding P̃ k0 (B1)−eε̃P̃ k1 (B1), using
a variant of Chernoff’s tail bound. Notice that

P̃ k0 (B1)− eε̃P̃ k1 (B1)

= EP̃k0
[
I(

log
P̃k0 (X̃k)

P̃k1 (X̃k)
≥ε̃
)]− eε̃EP̃k0 [I( log

P̃k0 (X̃k)

P̃k1 (X̃k)
≥ε̃
) P̃ k1 (X̃k)

P̃ k0 (X̃k)

]
= EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)(1− eε̃ P̃

k
1 (X̃k)

P̃ k0 (X̃k)

)]
≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (17)

where we use a random variable Z ≡ log(P̃ k0 (X̃k
0 )/P̃ k1 (X̃k

0 ))
and the last line follows from I(x≥ε̃)(1 − eε̃−x) ≤
eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0. To show this
inequality, notice that the right-hand side is always non-
negative. So it is sufficient to show that the inequality holds,
without the indicator on the left-hand side. Precisely, let
f(x) = eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) + eε̃−x − 1. This is
a convex function with f(x∗) = 0 and f ′(x∗) = 0 at
x∗ = ε̃+ log((λ+ 1)/λ). It follows that this is a non-negative
function.

Next, we give an upper bound on the moment generating
function of Z.

EP̃0
[eλ log(P0(X)/P1(X))] =

eε

eε + 1
eλε +

1

eε + 1
e−λε

≤ e
eε−1
eε+1λε+

1
2λ

2ε2 ,

for any λ, which follows from the fact that pex+(1−p)e−x ≤
e(2p−1)x+(1/2)x2

for any x ∈ R and p ∈ [0, 1] [AS04,
Lemma A.1.5]. Substituting this into (17) with a choice of

λ = ε̃−kε(eε−1)/(eε+1)
kε2 , we get

P̃ k0 (B1)− eε̃P̃ k1 (B1)

≤ e
eε−1
eε+1λεk+ 1

2λ
2ε2k−λε̃+λ log λ−(λ+1) log(λ+1)

= e
− kε22

(
λ− 1

kε2

(
ε̃−kε e

ε−1
eε+1

))2

− 1
2kε2

(
ε̃− kε(e

ε−1)
eε+1

)2

×

eλ log λ
λ+1− log(λ+1)

≤ exp
{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2

− log(λ+ 1)
}

≤ 1

1 + ε̃−kε(eε−1)/(eε+1)
kε2

exp
{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2 }
=

1

1 +

√
2kε2 log(e+(

√
kε2/δ̃))

kε2

1

e+
√
kε2

δ̃

≤ 1
√
kε2 +

√
2 log(e+ (

√
kε2/δ̃))

δ̃
eδ̃√
kε2

+ 1
,

for our choice of ε̃ = kε(eε − 1)/(eε + 1) +

ε

√
2k log(e+ (

√
kε2/δ̃)). The right-hand side is always less

than δ̃.
Similarly, one can show that the right-hand side is less than

δ̃ for the choice of ε̃ = kε(eε−1)/(eε+1)+ε
√

2k log(1/δ̃).
We get that the k-fold composition is (ε̃, 1− (1− δ)k(1− δ̃))-
differentially private.

E. Proof of Theorem III.5

In this section, we closely follow the proof of Theorem III.4
in Section VI-D carefully keeping the dependence on `, the
index of the composition step. For brevity, we omit the details
which overlap with the proof of Theorem III.4. By the same
argument as in the proof of Theorem III.3, we only need to
provide an outer bound on the privacy region achieved by X̃(`)

0

and X̃(`)
1 under k-fold composition, defined as

P(X̃
(`)
0 = x) = P̃

(`)
0 (x) ≡


δ` for x = 0 ,

(1−δ`) eε`
1+eε` for x = 1 ,

1−δ`
1+eε` for x = 2 ,

0 for x = 3 .

, and

P(X̃
(`)
1 = x) = P̃

(`)
1 (x) ≡


0 for x = 0 ,

1−δ`
1+eε` for x = 1 ,

(1−δ`) eε`
1+eε` for x = 2 ,

δ` for x = 3 .

Using the similar notations as Section VI-D, it follows that
under k-fold composition,

dε̃(P
k
0 , P

k
1 )

= 1−
k∏
`=1

(1− δ`) +
(
P̃ k0 (B1)− eε̃P̃ k1 (B1)

) k∏
`=1

(1− δ`) .

(18)
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Now, we focus on upper bounding P̃ k0 (B1)−eε̃P̃ k1 (B1), using
a variant of Chernoff’s tail bound. We know that

P̃ k0 (B1)− eε̃P̃ k1 (B1)

= EP̃k0
[
I(

log
P̃k0 (X̃k)

P̃k1 (X̃k)
≥ε̃
)]− eε̃EP̃k0 [I( log

P̃k0 (X̃k)

P̃k1 (X̃k)
≥ε̃
) P̃ k1 (X̃k)

P̃ k0 (X̃k)

]
= EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)(1− eε̃ P̃

k
1 (X̃k)

P̃ k0 (X̃k)

)]
≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (19)

where we use a random variable Z ≡ log(P̃ k0 (X̃k
0 )/P̃ k1 (X̃k

0 ))
and the last line follows from the fact that I(x≥ε̃)(1−eε̃−x) ≤
eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0.

Next, we give an upper bounds on the moment generating
function of Z. From the definition of P̃ (`)

0 and P̃ (`)
1 , E[eλZ ] =(

E
P̃

(`)
0

[eλ log(P̃
(`)
0 (X̃

(`)
0 )/P̃

(`)
1 (X̃

(`)
0 ))]

)k
. Let ε̃ =

∑k
`=1(eε` −

1)ε`/(e
ε` + 1) +

√
2
∑k
`=1 ε

2
` log

(
e+ (

√∑k
`=1 ε

2
`/δ̃)

)
. Next

we show that the k-fold composition is (ε̃, 1 − (1 −
δ̃)
∏
`∈[k](1− δ`) )-differentially private.

E
P̃

(`)
0

[eλ log(P
(`)
0 (X)/P

(`)
1 (X))] ≤ e

eε`−1

eε`+1
λε`+

1
2λ

2ε`
2

,

for any λ. Substituting this into (19) with a choice of λ =
ε̃−

∑
`∈[k] ε`(e

ε`−1)/(eε`+1)∑
`∈[k] ε

2
`

, we get

P̃ k0 (B1)− eε̃P̃ k1 (B1)

≤ 1

1 +
ε̃−

∑
`∈[k] ε`(e

ε`−1)/(eε`+1)∑
`∈[k] ε

2
`

×

exp
{
− 1

2
∑
`∈[k] ε

2
`

(
ε̃−

∑
`∈[k]

ε`
eε` − 1

eε` + 1

)2 }
.

Substituting ε̃, we get the desired bound.
Similarly, we can prove that with ε̃ =

∑k
`=1(eε` −

1)ε`/(e
ε` + 1) +

√
2
∑k
`=1 ε

2
` log

(
1/δ̃
)
, the desired bound

also holds.
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APPENDIX

Remark A.1. The following statements are true.
(a) If a mechanism is (ε, δ)-differentially private, then it is

(ε̃, δ̃)-differentially private for all pairs of ε̃ and δ̃ ≥ δ
satisfying

1− δ
1 + eε

≥ 1− δ̃
1 + eε̃

.

(b) For a pair of neighboring databases D and D′, and
all (ε, δ)-differentially private mechanisms, the total
variation distance defined as ‖M(D) − M(D′)‖TV =
maxS⊆X P(M(D′) ∈ S)−P(M(D) ∈ S) is bounded by

sup
(ε, δ)-differentially private M

‖M(D)−M(D′)‖TV

≤ 1− 2(1− δ)
1 + eε

.

Proof. Proof of (a). From Figure 1, it is immediate that
R(ε, δ) ⊆ R(ε̃, δ̃) when the conditions are satisfied. Then,
for a (ε, δ)-private M , it follows from R(M) ⊆ R(ε, δ) ⊆
R(ε̃, δ̃) that M is (ε̃, δ̃)-differentially private.

Proof of (b). By definition, ‖M(D) − M(D′)‖TV =
maxS⊆X P(M(D′) ∈ S) − P(M(D) ∈ S). Letting S be
the rejection region in our hypothesis testing setting, the total
variation distance is defined by the following optimization
problem:

max
S

1− PMD(S)− PFA(S) (20)

subject to (PMD(S), PFA(S)) ∈ R(ε, δ), for all S ⊆ X .

From Figure 1 it follows immediately that the total variation
distance cannot be larger than δ+ (1− δ)(eε−1)/(eε+ 1). �

Following the analysis in Section VI-D, we know that the
privacy region of a composition of mechanisms is described
by a set of (ε, δ) pairs that satisfy the following:

δ = µk0(B)− eεµk1(B) ,

where µk0 and µk1 are probability measures of the mechanism
under k-fold composition when the data base is D0 and D1 re-
spectively, and the subset B = arg maxS⊆Rk µ

k
0(S)−eεµk1(S).

In the case of Gaussian mechanisms, we can assume without
loss of generality that D0 is such that qi(D0) = 0 and D1 is
such that qi(D1) = ∆ for all i ∈ {1, . . . , k}. When adding
Gaussian noises with variances σ2, we want to ask how small
the variance can be and still ensure (ε, δ)-differential privacy
under k-fold composition.

Let fk0 (x1, . . . , xk) =
∏k
i=1 f0(xi) =

(1/
√

2πσ2)ke−
∑k
i=1 x

2
i /2σ

2

and fk1 (x1 . . . , xk) =∏k
i=1 f1(xi) = (1/

√
2πσ2)ke−

∑k
i=1(xi−∆)2/2σ2

be the
probability density functions of Gaussians centered at zero
and ∆1k respectively. Using a similar technique as in (17),
we know that

µk0(B)− eεµk1(B)

= Eµk0
[
I(

log
fk0 (X̃k)

fk1 (X̃k)
≥ε
)]− eεEµk0 [I( log

fk0 (X̃k)

fk1 (X̃k)
≥ε
) fk1 (X̃k)

fk0 (X̃k)

]
= Eµk0

[
I(

log(fk0 (X̃k)/fk1 (X̃k))≥ε
)(1− eε f

k
1 (X̃k)

fk0 (X̃k)

)]
≤ E[eλZ−λε+λ log λ−(λ+1) log(λ+1)] , (21)

where X̃k is a random vector distributed according to µk0 ,
Z ≡ log(fk0 (X̃k)/fk1 (X̃k)), and the last line follows from
I(x≥ε)(1−eε−x) ≤ eλ(x−ε)+λ log λ−(λ+1) log(λ+1) for any λ ≥
0.



12

Next, we give an upper bound on the moment generating
function of Z.

Eµ0
[eλ log(f0(X)/f1(X))] = E[e−λ∆X/σ2

]eλ∆2/2σ2

≤ e(∆2/2σ2)λ2+(∆2/2σ2)λ ,

for any λ ≥ 0. Substituting this into (21) with a choice of
λ = σ2

k∆2

(
ε − k∆2

2σ2

)
, which is positive for ε > k∆2/2σ2, we

get

µk0(B)− eεµk1(B)

≤ e(k∆2/2σ2)λ2+(k∆2/2σ2)λ−ελ+λ log λ−(λ+1) log(λ+1)

≤ 1

1 + σ2

k∆2

(
ε− k∆2

2σ2

) exp
{
− σ2

2k∆2

(
ε− k∆2

2σ2

)2}
≤ 1

1 +

√
2σ2

k∆2 log(e+ 1
δ

√
k∆2

σ2 )

1

e+ 1
δ

√
k∆2

σ2

≤ 1√
k∆2

σ2 +
√

2 log(e+ (1/δ)
√
k∆2/σ2)

δ

eδ
√

σ2

k∆2 + 1
,

for our choice of σ2 such that ε ≥ k∆2/(2σ2) +√
(2k∆2/σ2) log(e+ (1/δ)

√
k∆2/σ2). The right-hand side

is always less than δ.
With σ2 ≥ (4k∆2/ε2) log(e+ (ε/δ)) and σ2 ≥ k∆2/(4ε),

this ensures that the above condition is satisfied. This implies
that we only need σ2 = O((k∆2/ε2) log(e+ (ε/δ))).

Theorem V.4 follows directly from the proof of Theorem
III.3, once the appropriate associations are made. Consider two
databases D0 and D1, and a single query q such that q(D1) =
q(D0) + 1. The geometric mechanism produces two random
outputs q(D0) + Z and q(D1) + Z where Z is distributed
accruing to the geometric distribution. Let P0 and P1 denote
the distributions of the random output respectively. For x ≤
q(D0), P0(x) = eεP1(x), and for x > q(D0), eεP0(x) =
P1(x). Then, it is not difficult to see that the privacy region
achieved by the geometric mechanism is equal to the privacy
region achieved by the canonical binary example of X̃0 and
X̃1 in (9) and (10) with δ = 0. This follows from the fact
there is a stochastic transition from the pair X̃0 and X̃1 to
q(D0) + Z and q(D1) + Z; further, the converse is also true.
Hence, from the perspective of hypothesis testing, those two
(pairs of) outcomes are equivalent.

It now follows from the proof of Theorem III.3 that the k-
fold composition privacy region is exactly the optimal privacy
region described in (5) with δ = 0. We also know that this
is the largest possible privacy region achieved by a class of
(ε, 0)-differentially private mechanisms.

A. Cut queries of a graph and variance queries of a matrix

Blocki et. al. [BBDS12] showed that classical Johnson-
Lindenstrauss transform can be used to produce a differentially
private version of a database. Further, they show that this
achieves the best tradeoff between privacy and utility for two
applications: cut queries of a graph and variance queries of a
matrix. In this section, we show how the best known trade off
can be further improved by applying Theorem III.4.

First, Blocki et. al. provide a differentially private mecha-
nism for cut queries q(G,S): the number of edges crossing a
(S, S̄)-cut in a weighted undirected graph G. This mechanism
produces a sanitized graph satisfying (ε, δ)-differential privacy,
where two graphs are neighbors if they only differ on a single
edge. The utility of the mechanism is measured via the additive
error τ incurred by the privatization. Precisely, a mechanism
M is said to give a (η, τ, ν)-approximation for a single cut
query q(·, ·), if for every graph G and every nonempty S it
holds that

P
(

(1− η) q(G,S)− τ ≤ M(G,S) ≤ (1 + η) q(G,S) + τ
)

≥ 1− ν . (22)

For the proposed Johnson-Lindenstrauss mechanism satis-
fying (ε, δ)-differential privacy, it is shown that the additive
error τ0 incurred by querying the database k times is bounded
by [BBDS12, Theorem 3.2]1

τ0 = O
(
|S|
√

log(1/δ) log(k/ν)

ε
log
( log(k/ν)

η2δ

))
.(23)

Compared to other state-of-the-art privacy mechanisms such
as the Laplace noise adding mechanism [Dwo06], Exponential
mechanism [MT07], Multiplicative weights [HR10], and Itera-
tive Database Construction [GRU12], it is shown in [BBDS12]
that the Johnson-Lindenstrauss mechanism achieves the best
tradeoff between the additive error τ0 and the privacy ε. This
tradeoff in (23) is proved using the existing Theorem III.2.
We can improve this analysis using the optimal composition
theorem of Theorem III.4, which gives

τ = O
(
|S|
√

log(e+ ε/δ) log(k/ν)

ε
log
( log(k/ν)

η2δ

))
. (24)

This is smaller than (23) by (a square root of) a logarithmic
factor when ε = Θ(δ). The proof of the analysis in (24) is
provided below.

A similar technique has been used in [BBDS12] to pro-
vide a differentially private mechanism for variance queries
v(A, x) = xTATAx: the variance of a given matrix in
a direction x. The proposed mechanism produces a san-
itized covariance matrix that satisfy (ε, δ)-differential pri-
vacy, where two matrices are neighbors if they differ only
in a single row and the difference is by Euclidean dis-
tance at most one. With the previous composition theorem
in Theorem III.2, the authors of [BBDS12] get an error
bound τ1 = O

(
log(1/δ) log(k/ν)

ε2η log2
(

log(k/ν)
η2δ

))
. Using our

tight composition theorem, this can be improved as τ =

O
(

log(e+ε/δ) log(k/ν)
ε2η log2

(
log(k/ν)
η2δ

))
. Again, for ε = Θ(δ),

this is an improvement of a logarithmic factor.
For cut queries, Johnson-Lindenstrauss mechanism proceeds

as follows:

1The original theorem is stated for a single query with k = 1. Here we
state it more generally with arbitrary k. This requires scaling ν by 1/k to take
into account the union bound over k query outputs in the utility guarantee in
(22).
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JL mechanism for cut queries [BBDS12]
Input: A n-node graph G, parameters ε, δ, η, ν > 0

Output: An approximate Laplacian of G: L̃
1: Set r ← 8 log(2/ν)/ν2

2: Set w ←
√

32r log(2/δ) log(4r/δ)/ε
3: For every pair of nodes I 6= j,

Set new weights wi,j = w/n+ (1− w/n)wi,j
4: Randomly draw a matrix N of size r ×

(
n
2

)
,

whose entries are i.i.d. samples of N (0, 1)

5: Output L̃ = (1/r)ETGN
TNEG, where EG is(

n
2

)
× n matrix whose (i, j)-th row is √wi,j(ei − ej)

Here ei is the standard basis vector with one in the i-th entry.
Given this synopsis of the sanitized graph Laplacian, a cut
query q(G,S) returns 1/(1−w/n)(1TS L̃1S−w|S|(n−|S|)/n),
where 1S ∈ {0, 1}n is the indicator vector for the set S. If
the matrix N is an identity matrix, this returns the correct cut
value of G.

We have the choice of w ∈ R and r ∈ Z to ensure that
the resulting mechanism is (ε, δ)-differentially private, and
satisfy (η, τ, ν)-approximation guarantees of (22). We utilize
the following lemma from [BBDS12].

Lemma 1. With the choice of

w =
4

ε0
log(2/δ0) and r =

8 log(2/ν)

η2
,

each row of NEG satisfy (ε0, δ0)-differential privacy, and the
resulting Johnson-Lindenstrauss mechanism satisfy (η, τ, ν)-
approximation guarantee with

τ = 2|S| η w ,

where |S| is the size of the smaller partition S of the cut
(S, S̄).

The error bound in (23) follows from choosing

ε0 =
ε√

4r log(2/δ)
and δ0 =

δ

2r
,

and applying Theorem III.2 to ensure that the resulting mech-
anism with r-composition of the r rows of MEG is (ε, δ)-
differentially private. Here it is assumed that ε < 1.

Now, with Theorem III.3, we do not require ε0 to be as
small, which in turn allows us to add smaller noise w, giving
us an improved error bound on τ . Precisely, using Theorem
III.4 it follows that a choice of

ε0 =
ε√

4r log(e+ 2ε/δ)
and δ0 =

δ

2r
,

suffices to ensure that after r-composition we get (ε, δ)-
differential privacy. Resulting noise is bounded by w ≤
4
√

4r log(e+ 2ε/δ) log(4r/δ)/ε, which gives the error bound
in (24). The proof follows analogously for the matrix variance
queries.
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