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AND THEN THE INTERNET GOT BETTER
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UNPRECEDENTED LEVEL OF CONNECTIVITY
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WE'RE BEING WATCHED!
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T'S OKAY, OUR iTA s ENCRYPIED

iCloud CHASE “‘!




DON'T RELY EXCLUSIVELY
ON ENCRYPTION
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from anonymous faces to social security numbers



WE NEED CONTEXT FREE
PRIVACY GUARANTEES



THE ULTIMATE PROTECTION

“the future of privacy is lying”

PRICE 5699 T H E APRIL 15, 2013

lying = adding noise to data



DIFFERENTIAL PRIVACY

privacy leve| — Differential

riv '
P aC_Y BN Privacy
mechanism

» Yes

[Dinur et al. 2003, Dwork et al. 2006]



DIFFERENTIAL PRIVACY
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DIFFERENTIAL PRIVACY

Laplace Mechanism
AN

standard deviation proportional to privacy level



PRIVACY V3. UTILITY



GIVEN A PRIVACY LEVEL

FIND THE "BEST™ PRIVACY
MECHANISM UNDER
DIFFERENTIAL PRIVACY
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OUR MAIN RESULT

Multi-Party
Privacy

Global Privacy Local Privacy

privacy mechanisms that achieve the best privacy-utility tradeoff

[NIPS 14, NIPS 15, ICML 15, TSTSP 15, CISS 16, JMLR 16, TIT 16]



OUR MAIN RESULT

Multi-Party
Privacy

Global Privacy Local Privacy

the optimal mechanisms in all three settings have a staircase shape
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[NIPS 14, NIPS 15, ICML 15, TSTSP 15, CISS 16, JMLR 16, TIT 16]



STAIRCASE MECHANISMS ARE OPTIMAL
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Differential privacy

C Dwork - Automata, languages and programming, 2006 - Springer

Abstract In 1977 Dalenius articulated a desideratum for statistical databases: nothing about
an individual should be learnable from the database that cannot be learned without access
to the database. We give a general impossibility result showing that a formalization of ...
Cited by 1744 Related articles All 22 versions Web of Science: 293 Cite Save

Differential privacy: A survey of results

C Dwork - Theory and applications of models of computation, 2008 - Springer

Abstract Over the past five years a new approach to privacy-preserving data analysis has
born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the
related literature in the statistics, databases, theory, and cryptography communities, in that ...
Cited by 749 Related articles All 24 versions Cite Save

Mechanism design via differential privacy

F McSherry, K Talwar - ... of Computer Science, 2007. FOCS'07. ..., 2007 - ieeexplore.ieee.org
Abstract We study the role that privacy-preserving algorithms, which prevent the leakage of
specific information about participants, can play in the design of mechanisms for strategic
agents, which must encourage players to honestly report information. Specifically, we ...

Cited by 573 Related articles All 24 versions Cite Save

Differential privacy via wavelet transforms

X Xiao, G Wang, J Gehrke - Knowledge and Data Engineering, ..., 2011 - ieeexplore.ieee.org
Abstract—Privacy preserving data publishing has attracted considerable research interest in
recent years. Among the existing solutions, e-differential privacy provides the strongest
privacy guarantee. Existing data publishing methods that achieve e-differential privacy, ...




PART 1/3:
GLOBAL PRIVACY
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GLOBAL DIFFERENTIAL PRIVACY
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OPERATIONAL INTERPRETATION
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PRIVACY-UTILITY TRADEOFF
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PRIVACY-UTILITY TRADEOFF

user A g data
trusted i malicious
Q > Un
curator % analyst
user B g/ Y

W/

minimize the worst case average loss

subject to differential privacy



OPTIMALITY OF STAIRCASE MECHANISM
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WHAT ABOUT OTHER LOSSES
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WHAT ABOUT 2 DIMENSIONAL DATA
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PART 2/3:
LOCAL PRIVACY



LOCAL PRIVACY MODEL
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LOCAL PRIVACY MODEL

y

user A 2—» Q) >
X Yy

have you ever used illegal drugs?

malicious
analyst

.

<—g user B

answer truthfully

answer wrongly W e
arner 1965



LOCAL DIFFERENTIAL PRIVACY
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PRIVACY-UTILITY TRADEOFF
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BINARY DATA
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WARNER'S RESPONSE IS OPTIMAL

user A g—» Q) > o mahuous{_ Q <—g user B
analyst
X

answer truthfully

optimal for all privacy levels & all well behaved utilities




WHAT ABOUT NON-BINARY DATA
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MAIN RESULTS
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RANDOMIZED RESPONSE
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optimal in the low privacy regime



BINARY MECHANISM

X = 1 2 3 4 5

optimal in the high privacy regime
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PART 3/3:
MULTI-PARTY
PRIVACY



MULTI-PARTY COMPUTATION
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PRIVATE MULTI-PARTY COMPUTATION
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INTERACTIVE MECHANISMS
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INTERACTIVE MECHANISMS
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INTERACTIVE MECHANISMS
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INTERACTIVE MECHANISMS
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NON-INTERACTIVE MECHANISMS
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GENERAL REPRESENTATION
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MULTI-PARTY DIFFERENTIAL PRIVACY
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CAN'T SAY MUCH EVEN IF...
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FUNCTION ESTIMATION
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FUNCTION ESTIMATION
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ACCURACY-PRIVACY TRADEOFF

xz'sf;' ~ o
T . transcript ectimation Si(x;,7) estimation w; (i, f1)
[ ] accuracy

—)
ACCye = Z B¢ p [wi(Ti(x), fi(z,%))]

XE{O 1}

—

average over all possible inputs



ACCURACY-PRIVACY TRADEOFF

maxixpize Accave(Pa Wy, fia fz)a
P, f;

subject to P and ﬁ are row-stochastic matrices
P satisfies the differential privacy constraints

for all parties

= heterogeneous privacy levels across users
= each party possesses a single bit

= the functions can vary from one party to the other
" the accuracy metrics can vary from one party to the other
" interactive & non-interactive mechanisms




OUR RESULT

non-interactive mechanisms are optimal
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OUR RESULT

Warner’s randomized response is optimal




NON-BINARY DATA
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METADATA PRIVACY

Bob W Follow
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[Best Paper Award at SIGMETRICS 15, SIGMETRICS 16]

first fully distributed, truly anonymous social network
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