The Fundamental Limits of Statistical Data Privacy

Peter Kairouz ECE Department UIUC



#### 30 YEARS AGO



Human to human



## THEN CAME THE INTERNET





+ smart networks, IT platforms and services

## AND THEN THE INTERNET GOT BETTER



services

#### AND BETTER



#### UNPRECEDENTED LEVEL OF CONNECTIVITY



## WE'RE BEING WATCHED!





# DON'T RELY EXCLUSIVELY ON ENCRYPTION





#### de-anonymizing Hetflik YOU'RECTIFICE guinames and ages watch histories THINGS CAN GO WRONG



from anonymous faces to social security numbers

# WE NEED CONTEXT FREE PRIVACY GUARANTEES

## THE ULTIMATE PROTECTION

#### "the future of privacy is lying"



#### lying = adding noise to data

#### DIFFERENTIAL PRIVACY



[Dinur et al. 2003, *Dwork et al.* 2006]

#### DIFFERENTIAL PRIVACY



[Dinur et al. 2003, *Dwork et al.* 2006]



standard deviation proportional to privacy level

## PRIVACY VS. UTILITY

## GIVEN A PRIVACY LEVEL

# FIND THE "BEST" PRIVACY MECHANISM UNDER DIFFERENTIAL PRIVACY



## OUR MAIN RESULT



#### privacy mechanisms that achieve the best privacy-utility tradeoff

[NIPS 14, NIPS 15, ICML 15, TSTSP 15, CISS 16, JMLR 16, TIT 16]

## OUR MAIN RESULT



the optimal mechanisms in all three settings have a staircase shape  $f_N$ 

[NIPS 14, NIPS 15, ICML 15, TSTSP 15, CISS 16, JMLR 16, TIT 16]

## STAIRCASE MECHANISMS ARE OPTIMAL

| Google                                                             | differential privacy -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scholar                                                            | About 2,560,000 results ( <b>0.03</b> sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Articles<br>Case law<br>My library                                 | Differential privacy<br><u>C Dwork</u> - Automata, languages and programming, 2006 - Springer<br>Abstract In 1977 Dalenius articulated a desideratum for statistical databases: nothing about<br>an individual should be learnable from the database that cannot be learned without access<br>to the database. We give a general impossibility result showing that a formalization of<br>Cited by 1744 Related articles All 22 versions Web of Science: 293 Cite Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Any time<br>Since 2016<br>Since 2015<br>Since 2012<br>Custom range | <b>Differential privacy</b> : A survey of results<br><u>C Dwork</u> - Theory and applications of models of computation, 2008 - Springer<br>Abstract Over the past five years a new approach to <b>privacy</b> -preserving data analysis has<br>born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the<br>related literature in the statistics, databases, theory, and cryptography communities, in that<br>Cited by 749 Related articles All 24 versions Cite Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sort by relevance<br>Sort by date                                  | <ul> <li>Mechanism design via differential privacy</li> <li>F McSherry, <u>K Talwar</u> of Computer Science, 2007. FOCS'07, 2007 - ieeexplore.ieee.org</li> <li>Abstract We study the role that privacy-preserving algorithms, which prevent the leakage of</li> <li>specific information about participants, can play in the design of mechanisms for strategic</li> <li>agents, which must encourage players to honestly report information. Specifically, we</li> <li>Cited by 573 Related articles All 24 versions Cite Save</li> <li>Differential privacy via wavelet transforms</li> <li>X Xiao, G Wang, J Gehrke - Knowledge and Data Engineering,, 2011 - ieeexplore.ieee.org</li> <li>Abstract—Privacy preserving data publishing has attracted considerable research interest in</li> <li>recent years. Among the existing solutions, e-differential privacy provides the strongest</li> <li>privacy guarantee. Existing data publishing methods that achieve e-differential privacy,</li> </ul> |
| <ul> <li>✓ include patents</li> <li>✓ include citations</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ☑ Create alert                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

PART 1/3: GLOBAL PRIVACY

#### GLOBAL PRIVACY MODEL





National Institutes of Health



#### GLOBAL DIFFERENTIAL PRIVACY



$$e^{-\varepsilon} \leq \frac{\mathbb{P}\left(Y|\text{user A present}\right)}{\mathbb{P}\left(Y|\text{user A absent}\right)} \leq e^{+\varepsilon}$$

 $\mathcal{E}$  controls the level of privacy large  $\mathcal{E}$ , low privacy small  $\mathcal{E}$ , high privacy

#### **OPERATIONAL INTERPRETATION**



#### **OPERATIONAL INTERPRETATION**



#### PRIVACY-UTILITY TRADEOFF



$$|OSS = |X - Y|$$
  
average  $|OSS = \mathbb{E}|X - Y|$ 

worst case average loss

#### PRIVACY-UTILITY TRADEOFF



#### minimize the worst case average loss

subject to differential privacy

## OPTIMALITY OF STAIRCASE MECHANISM



#### WHAT ABOUT OTHER LOSSES



## WHAT ABOUT 2 DIMENSIONAL DATA



PART 2/3: LOCAL PRIVACY

## LOCAL PRIVACY MODEL





## LOCAL PRIVACY MODEL



#### have you ever used illegal drugs?





answer wrongly



[*Warner* 1965]

#### LOCAL DIFFERENTIAL PRIVACY



$$e^{-\varepsilon} \leq \frac{\mathbb{P}\left(Y|X\right)}{\mathbb{P}\left(Y|X'\right)} \leq e^{+\varepsilon}$$

 $\mathcal{E}$  controls the level of privacy large  $\mathcal{E}$ , low privacy small  $\mathcal{E}$ , high privacy

[Duchi et al. 2012]

#### PRIVACY-UTILITY TRADEOFF



maximize utility

subject to differential privacy

#### **BINARY DATA**



#### WARNER'S RESPONSE IS OPTIMAL



#### optimal for all privacy levels & all well behaved utilities

## WHAT ABOUT NON-BINARY DATA



maximize utility

subject to differential privacy

#### MAIN RESULTS



#### RANDOMIZED RESPONSE



#### optimal in the low privacy regime

#### BINARY MECHANISM





PART 3/3: MULTI-PARTY PRIVACY

#### MULTI-PARTY COMPUTATION



#### an important setting in distributed systems

## PRIVATE MULTI-PARTY COMPUTATION



#### each party shares a noisy version of its data















 $au = ext{communication transcript}$ 





#### GENERAL REPRESENTATION



#### MULTI-PARTY DIFFERENTIAL PRIVACY

$$x = x_1 \underbrace{x_2 \bullet \bullet \bullet x_k}_{P_{x,\tau}} \quad P_{x,\tau} = \mathbb{P}(\tau \mid x) \quad \xrightarrow{\tau = \text{transcript}}$$

$$e^{-\varepsilon_i} \leq \frac{\mathbb{P}(\tau \mid x_i = 0, x_{-i})}{\mathbb{P}(\tau \mid x_i = 1, x_{-i})} \leq e^{\varepsilon_i}$$

 $x_{-i} = (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_k)$ 

#### CAN'T SAY MUCH EVEN IF...



#### all parties but one collude to figure out a party's bit

#### FUNCTION ESTIMATION



#### FUNCTION ESTIMATION



#### ACCURACY-PRIVACY TRADEOFF



$$ACC_{ave} \equiv \frac{1}{2^k} \sum_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}} [w_i(f_i(x), \tilde{f}_i(\tau, x_i))]$$

average over all possible inputs

## ACCURACY-PRIVACY TRADEOFF

 $\underset{P,\tilde{f}_i}{\text{maximize}} \quad \text{ACC}_{\text{ave}}(P, w_i, f_i, \tilde{f}_i),$ 

subject to P and  $\tilde{f}_i$  are row-stochastic matrices P satisfies the differential privacy constraints for all parties

heterogeneous privacy levels across users

- each party possesses a single bit
- the functions can vary from one party to the other
- the accuracy metrics can vary from one party to the other
- Interactive & non-interactive mechanisms

#### OUR RESULT

non-interactive mechanisms are optimal



#### OUR RESULT

Warner's randomized response is optimal



## NON-BINARY DATA



#### METADATA PRIVACY



[Best Paper Award at SIGMETRICS 15, SIGMETRICS 16]

#### first fully distributed, truly anonymous social network

## THANK YOU!

#### A VERY BIG THANK YOU!





## A VERY BIG THANK YOU!





#### Sewoong Oh

#### Pramod Viswanath

## A VERY SPECIAL THANK YOU!



#### A VERY SPECIAL THANK YOU!



## SELFIE EVERYONE?