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Private Communication vs. Secure Communication

The fundamental limits of digital communication are well understood
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Private Communication vs. Secure Communication

Secure communication is a fairly mature technology
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Private Communication vs. Secure Communication

The fundamental limits of privacy have not been explored yet
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Private Communication vs. Secure Communication

We study the fundamental trade-off between privacy and utility
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Does Privacy Matter? [Greenwald 2014]

“If you’re doing something that you don’t want other people to know,
maybe you shouldn’t be doing it in first place”

“Privacy is no longer a social norm!”
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Recent Privacy Leaks

From anonymous faces to social security numbers
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Recent Privacy Leaks

Deanonymizing Netflix data
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Recent Privacy Leaks

Deanonymizing Netflix data, identifying personal genomes, etc.
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Privacy is a fundamental human right!
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The Ultimate Protection

“The future of privacy is lying”

randomizing = systematic lying
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Privacy via Plausible Deniability [Warner 1965]

Have you ever used illegal drugs?

say yes answer truthfully

7 / 1



Privacy via Plausible Deniability [Warner 1965]
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Q: privatization mechanism

instead of X = x, share Y = y w.p. Q (y|x)

Q : |X | × |Y| stochastic mapping
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The Local Privacy Model [Duchi, et. al., 2012]

1X

2X

1
Y

2Y

Clients

Privatization
Q

Privatization
Q

Data Analyst

clients receive a service if they share their data

clients do not trust data analysts
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Inference of Information

X ∈ X = {0, 1} Y ∈ YPrivatization
Q

X : input alphabet

Y: output alphabet

Given Y = y and Q, detect whether X = 0 or X = 1
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Inference of Information

given Y = y and Q, detect whether X = 0 or X = 1

two types of error: false alarm and missed detection

S0: X̂ = 0

S1: X̂ = 1

Y: output alphabet

PFA = P (Y ∈ S1|X = 0) and PMD = P (Y ∈ S0|X = 1)
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Inference of Information

Case 1: Q1
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Inference of Information

Case 2: Q2
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Inference of Information

FAP

MDP

FAP

MDP

R1 R2

if R2 ⊂ R1, Q2 guarantees more privacy

9 / 1



Local Differential Privacy

Q is ε-locally differentially private iff for all x, x′ ∈ X and y ∈ Y

e−ε ≤ Q(y|x)

Q(y|x′)
≤ eε

ε controls the level of privacy

ε ↓ =⇒ more private

ε ↑ =⇒ less private
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Local Differential Privacy
Q is ε-locally differentially private iff for all x, x′ ∈ X

PFA + eεPMD ≥ 1

eεPFA + PMD ≥ 1

FAP

MDP

Rε RQ
1

1+eε

1
1+eε

Qis ε-DP iff RQ ⊆ Rε for all x, x′ ∈ X
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Privacy vs. Utility

the more private you want to be, the less utility you get

there is a fundamental trade-off between privacy and utility

maximize
Q

U(Q)

subject to Q ∈ Dε

U(Q): application dependent utility function

Dε: set of all ε-locally differentially private mechanisms
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Summary of Results

Binary data: |X | = 2

The Binary Randomized Response

w.p. 1
1+eε lie w.p. eε

1+eε answer truthfully

optimal for all ε

optimal for all U(Q) obeying the data processing inequality
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Summary of Results
k-ary data: |X | = k > 2

Locally Differentially Private Mechanisms

Staircase Mechanisms

Binary Mechanism (BM)

Randomized Response (RM)

staircase mechanisms are optimal for all ε and a rich class of utilities

BM and RR are optimal in the high and low privacy regimes
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CASE 1: BINARY DATA
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Utility Functions

X ∈ X Y ∈ Y Z ∈ ZQ W

Utility functions obeying the data processing inequality:

T = Q ◦W =⇒ U (T ) ≤ U (Q)

further randomization can only reduce utility

note that Q ∈ Dε =⇒ T ∈ Dε
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Data Processing Inequality (DPI)

X ∈ X Y ∈ Y Z ∈ ZQ W

T = Q ◦W =⇒ RT ⊆ RQ

FAP

MDP

RQ
RT
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Converse to DPI [Blackwell 1953]

FAP

MDP

RQ
RT

RT ⊆ RQ =⇒ ∃ W s.t. T = Q ◦W

X ∈ X Y ∈ Y Z ∈ ZQ W
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Main Result [Kairouz, et. al., 2014]
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eε

1+eε

FAP

MDP

RQBRR
= Rε1

1+eε

1
1+eε

∀ε, ∀Q ∈ Dε: RQ ⊆ RQBRR
=⇒ ∃ W s.t. Q = QBRR ◦W

=⇒ ∀U obeying the data processing inequality: U(Q) ≤ U(QRR)

The binary randomized response is optimal
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CASE 2: k-ARY DATA
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Information Theoretic Utility Functions

|X | = k > 2

we focus on a rich class of convex functions

maximize
Q

U (Q) =
∑
y∈Y

µ(Qy)

subject to Q ∈ Dε

Qy: the column of Q corresponding to Q(y|·)
µ: any sublinear function

Includes all f-divergences, mutual information, etc.
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Statistical Data Model

1 ~X P

2 ~X P

1 ~
Y

M


2
~

Y

M 

Clients

Privatization
Q

Privatization
Q

Data Analyst ̂

Analyst interested in statistics of data rather than individual samples

Xi’s are independently sampled from Pν , ν ∈ Λ

privatized data: Yi ∼Mν = Pν ◦Q
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f -Divergences

For some convex function f such that f(1) = 0:

Df (M0||M1) =
∑
Y

(P T1 Qy)f(P T0 Qy/P
T
1 Qy)

=
∑
Y
µ (Qy)

P Tν Qy =
∑
X Q(y|x)Pν(x)

µ (Qy) = (P T1 Qy)f(P T0 Qy/P
T
1 Qy)

KL divergence Dkl(M0||M1)

total variation ‖M0 −M1‖TV

minimax rates and error exponents
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Binary Hypothesis Testing

n data providers: user i owns Xi ∈ X
Xi’s are independently sampled from Pν , ν ∈ {0,1}

1 ~X P

2 ~X P

1 ~
Y

M


2
~

Y

M 

Clients

Privatization
Q

Privatization
Q

Data Analyst
ˆ {0,1} 

Given {Yi}ni=1, detect whether ν = 0 or ν = 1

Chernoff-Stein’s lemma: PFA ≈ e−nDkl(M0||M1)

for sufficiently small ε, Dkl(M0||M1) ≈ ε2Dkl(P0||P1)
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Information Preservation

X ∼ P Y ∼M = P ◦QPrivatization
Q

Mutual Information between X and Y :

I (X;Y ) =
∑
Y

∑
X
P (x)Q (y|x) log

(
Q (y|x)∑

X P (x)Q (y|x)

)
=

∑
Y
µ (Qy)

µ (Qy) =
∑
X P (X = x)Q (y|x) log

(
Q(y|x)∑

X P (x)Q(y|x)

)
for small ε, I (X;Y ) ≈ 1

2 maxS⊆X {P (S)P (Sc)}ε2
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Staircase Mechanisms

Recall that:
Q is ε-locally differentially private iff for all x, x′ ∈ X and y ∈ Y

e−ε ≤ Q(y|x)

Q(y|x′)
≤ eε

ε controls the level of privacy

ε ↓ =⇒ more private

ε ↑ =⇒ less private
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Staircase Mechanisms

Q is a staircase mechanism if for all x, x′ ∈ X and y ∈ Y:

Q(y|x)

Q(y|x′)
∈
{
e−ε, 1, eε

}

Locally Differentially Private Mechanisms

Staircase Mechanisms

Binary Mechanism (BM)

Randomized Response (RM)
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Examples of Staircase Mechanisms

y = 0

1

x = 1 2 3 4 5

eε

1+eε

1
1+eε

QT = 1
1+eε

[
eε eε 1 eε 1
1 1 eε 1 eε

]

Binary Mechanism

y = 1

2

3

4

x = 1 2 3 4

eε

3+eε

1
3+eε

QT = 1
3+eε


eε 1 1 1
1 eε 1 1
1 1 eε 1
1 1 1 eε



Randomized Response
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Main Results [Kairouz, et. al., 2014]

∀ U (Q) =
∑

y∈Y µ(Qy):

maximize
Q

U (Q) = maximize
Q

U (Q)

subject to Q ∈ Dε subject to Q ∈ Sε
Sε: set of all staircase mechanisms with |Y| ≤ |X |

staircase mechanisms are optimal

no gain in larger output alphabets

there are finitely many staircase mechanisms

For a given U , how do we find the optimal staircase mechanism?
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Main Results [Kairouz, et. al., 2014]

∀ U (Q) =
∑

y∈Y µ(Qy):

maximize
Q

U (Q) = maximize
θ∈R2k

µT θ

subject to Q ∈ Sε subject to S(k)θ = 1

θ ≥ 0

µ : 2k-dimensional vector with µi = µ(S
(k)
i )

S(3) =

1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε
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Main Results [Kairouz, et. al., 2014]

∀ U (Q) =
∑

y∈Y µ(Qy):

maximize
Q

U (Q) = maximize
θ∈R2k

µT θ

subject to Q ∈ Sε subject to S(k)θ = 1

θ ≥ 0

finite dimensional linear program of size 2k

computationally expensive if k is large

do we really need to solve the problem?
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Binary Mechanisms

y = 0

1

x = 1 2 3 4 5

eε

1+eε

1
1+eε

maps k-ary inputs to binary outputs
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Binary Mechanisms

A deterministic binary mapping followed by a randomized response

∀ S ⊆ X :

0

1

0

1

1
1+eε

1
1+eε

eε

1+eε

eε

1+eε

X ∈ S =⇒ Ỹ = 0

X ∈ Sc =⇒ Ỹ = 1

X ∈ X Ỹ

a highly quantized version of the original data
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Optimality of Binary Mechanisms

f -divergences:

QB(0|x) =

{ eε

1+eε if P0(x) ≥ P1(x)
1

1+eε if P0(x) < P1(x)

QB(1|x) =

{ eε

1+eε if P0(x) < P1(x)
1

1+eε if P0(x) ≥ P1(x)

∀ P0,P1, ∃ ε(P0, P1) > 0 such that ∀ε ≤ ε(P0, P1), QB is optimal

∀ε, QB is optimal for total variation distances

28 / 1



Optimality of Binary Mechanisms

Mutual Information:

S∗ ∈ arg max
S⊆X

P (S)P (Sc)

QB(0|x) =

{ eε

1+eε if x ∈ S∗
1

1+eε if x /∈ S∗

QB(1|x) =

{ eε

1+eε if x /∈ S∗
1

1+eε if x ∈ S∗

∀P , ∃ ε(P ) > 0 such that ∀ε ≤ ε(P ), QB is optimal
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Randomized Response

y = 1

2

3

4

x = 1 2 3 4

eε

3+eε

1
3+eε

maps k-ary inputs to k-ary outputs
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Randomized Response

w.p. |X |−1
|X |−1+eε lie w.p. eε

|X |−1+eε answer truthfully

lie = choose another character in X uniformly at random

can be viewed as a k-ary extension to the binary randomized response
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Optimality of Randomized Response

KL Divergence:

QRR(y|x) =

{
eε

|X |−1+eε if y = x
1

|X |−1+eε if y 6= x

∀ P0,P1, ∃ ε(P0, P1) > 0 such that ∀ε ≥ ε(P0, P1), QRR is optimal

note that QRR does not depend on P0 and P1
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Optimality of Randomized Response

Mutual Information:

QRR(y|x) =

{
eε

|X |−1+eε if y = x
1

|X |−1+eε if y 6= x

∀P , ∃ ε(P ) > 0 such that ∀ε ≥ ε(P ), QRR is optimal

note that QRR does not depend on P
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Big Picture

local differential privacy is crucial for data collection applications

we studied a broad class of information theoretic utilities

we provided explicit constructions of optimal mechanisms
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Big Picture

local differential privacy is crucial for data collection applications

we studied a broad class of information theoretic utilities

we provided explicit constructions of optimal mechanisms
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Big Picture

local differential privacy is crucial for data collection applications

we studied a broad class of information theoretic utilities

we provided explicit constructions of optimal mechanisms
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Private Multiparty Computation (PMC)

2
~Y

M

1 ~Y
M


Communication Network Clients

Privatization
Q

4 ~X P

Privatization
Q

3 ~X P

Clients

1 ~X P Privatization
Q

2 ~X P Privatization
Q

3
~Y

M

4 ~
Y

M


“Differentially Private Multi-party Computation: Optimality of
Non-Interactive Randomized Response

Peter Kairouz, Sewoong Oh, and Pramod Viswanath, 2014”
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PMC: Main Results

2
~Y

M

1 ~Y
M


Communication Network Clients

Privatization
Q

4 ~X P

Privatization
Q

3 ~X P

Clients

1 ~X P Privatization
Q

2 ~X P Privatization
Q

3
~Y

M

4 ~
Y

M


for binary data: use the simple binary randomized response

no cooperation needed!

for k-ary data: problem unsolved
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Going Forward

private green button

private genome sharing app

private Google chrome (RAPPOR)
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Thank You
Questions?
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