
Rumor Source Obfuscation on Irregular Trees

ABSTRACT
Anonymous messaging applications have recently gained pop-
ularity as a means for sharing opinions without fear of judg-
ment or repercussion. These messages propagate anony-
mously over a network, typically defined by social connec-
tions or physical proximity. However, recent advances in
rumor source detection show that the source of such an
anonymous message can be inferred by certain statistical
inference attacks. Adaptive diffusion was recently proposed
as a solution that achieves optimal source obfuscation over
regular trees. However, in real social networks, the degrees
differ from node to node, and adaptive diffusion can be sig-
nificantly sub-optimal. This gap increases as the degrees
become more irregular.

In order to quantify this gap, we model the underlying
network as coming from standard branching processes with
i.i.d. degree distributions. Building upon the analysis tech-
niques from branching processes, we give an analytical char-
acterization of the dependence of the probability of detection
achieved by adaptive diffusion on the degree distribution.
Further, this analysis provides a key insight: passing a ru-
mor to a friend who has many friends makes the source more
ambiguous. This leads to a new family of protocols that we
call Preferential Attachment Adaptive Diffusion (PAAD).
When messages are propagated according to PAAD, we give
both the MAP estimator for finding the source and also an
analysis of the probability of detection achieved by this ad-
versary. The analytical results are not directly comparable,
since the adversary’s observed information has a different
distribution under adaptive diffusion than under PAAD. In-
stead, we present results from numerical experiments that
suggest that PAAD achieves a lower probability of detection,
at the cost of increased communication for coordination.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3486-0/15/06 ...$15.00.
http://dx.doi.org/10.1145/2745844.2745866.

Keywords
Anonymous Social Media; Rumor Spreading; Privacy

1. INTRODUCTION
People have a right to share their thoughts without fear

of political or economic repercussion. In cyberspace, free-
dom of expression often depends on a person’s ability to
remain anonymous—to one’s family, peers, or even govern-
ment. Several anonymous messaging apps have emerged and
evolved in recent years that allow users to post contents
anonymously – first-generation apps like Whisper [1] and
Yik Yak [2], second-generation ones like Secret [3](which is
now out of business) and third generation ones like Blind
[4]. These apps build upon an underlying connectivity net-
work between their users, representing a social graph or a
physical proximity graph, for instance. When a user posts
a message, the message spreads to the user’s neighbors, or
‘friends’, on the connectivity graph. If a friend approves the
message by ‘liking’ it, the message propagates to the friend’s
friends, and so forth, spreading over the network.

The centralized architecture of existing anonymous mes-
saging apps makes them vulnerable to deanonymization, since
authorship information is stored on central servers. Third
parties could access that information via hacking or govern-
ment subpoena. A distributed architecture enables users to
propagate messages directly to one another, circumventing
centralized storage.

Perhaps surprisingly, even under distributed architectures,
the source of a message can still be de-anonymized by global
adversaries performing statistical inference. Recent work in
rumor source detection shows that the spreading pattern it-
self reveals a great deal about the true message source [25,
23]. Existing platforms transmit messages to all neighbors
immediately upon approval (e.g. when a user clicks ‘like’).
There is local randomness in each message’s spread due to
the time it takes for a user to see the message, and un-
certainty regarding whether the user will like the message.
This random process is typically modeled by the standard
random diffusion process on graphs.

Rumor source detection algorithms, such as those pro-
posed in [25, 23], exploit the inherent symmetry in how ran-
dom diffusion propagates. In particular, it is shown in [25]
that if an adversary, who knows the underlying contact net-
work, observes which nodes received the message at a certain
time, the source can be identified with probability bounded
away from zero.

Under this vulnerability against statistical inference at-
tacks, a natural question is, “how can a platform designer



intervene with the spread of messages, in order to make ru-
mor source inference difficult?” In other words, how can we
add artificial delays on top of the natural human delays to
obfuscate the source?

This question was asked in a recent work [12], which pro-
poses a protocol called adaptive diffusion. This protocol
protects the author’s anonymity against the kinds of global
adversaries typically assumed in rumor source detection lit-
erature. Adaptive diffusion breaks the symmetry of random
diffusion by spreading messages faster in some directions
on the underlying graph than others (detailed description
in Section 2). It is shown in [12] that adaptive diffusion
achieves perfect obfuscation when: (a) the underlying con-
tact network is a regular tree, and (b) the adversary, who
knows the underlying contact network, also observes the
snapshot of who has seen the message at a certain point
in time. A protocol is said to achieve perfect obfuscation, if
it successfully hides among all nodes that have seen the mes-
sage. Precisely, this happens if the probability of the true
source being detected is 1/n when n nodes have received the
message at the time of the attack.

Although adaptive diffusion achieves the best possible source
obfuscation, the protocol design assumes a network that is
regular and cycle-free. The assumption of cycle-free (i.e.
tree-structured) network can be defended by observing that
a message’s spread on any connectivity graph will always be
a tree embedded in the true connectivity graph; we assume
here that that nodes cannot “be infected”, or receive the
message, more than once. In that sense, a tree-structured
connectivity graph is a worst-case scenario for the proto-
col designer, because the adversary automatically learns the
edges over which the message spread. On the other hand,
experimental results (Figures 6 and 7 and also in [12, Fig-
ure 8]) suggest that the performance of adaptive diffusion
degrades significantly on certain classes of irregular trees.

In this paper, we ask the fundamental question of how the
probability of detection depends on the topology of underly-
ing network, when the network is an irregular tree. A precise
characterization of the dependency will reveal why adaptive
diffusion fails on irregular trees, and provide a guideline for
designing novel spreading protocols that improve upon adap-
tive diffusion.

Model. We follow the setting introduced in [12] for mod-
eling anonymous messaging. At time t = 0, a single user
v∗ ∈ V starts to spread a message on a contact network
G = (V,E) where users and contacts are represented by
nodes and edges, respectively. We assume a discrete-time
system and model the delays due to user approval and inter-
mittent network access via a deterministic delay of one time
unit. Upon receiving the message, the messaging platform
can choose to send the message to any of its neighbors the
next time step, or add additional delay and wait. Therefore,
if we do not intervene with how the messages are spread,
then a message always propagates with a delay of one time
unit per hop. If the contact network is an infinite d-regular
tree, this process spreads to (d − 1)T nodes at time T , but
the source is trivially detected as the center of the snapshot.
The validity of this model is discussed in Section 5.

Adaptive diffusion is introduced in [12] for hiding the
source. The key idea is to add appropriate random delays
in order to break the symmetry of the spread. This protocol

is shown to achieve perfect obfuscation and is described in
the next section.

After T time steps, let VT ⊆ V , GT , andNT , |VT | denote
the set of infected nodes, the subgraph of G containing only
VT , and the number of infected nodes, respectively. At a
certain time T , an adversary observes the infected subgraph
GT (as well as the underlying connectivity graph G) and
produces an estimate v̂ of the source v∗ of the message (with
probability of detection PD = P(v̂ = v∗)).

There is a tradeoff between hiding the source and in-
creased delay. Assuming a d-regular tree, adaptive diffu-
sion spreads to (d− 1)T/2 nodes at time T , and it is shown
to achieve perfect obfuscation in [12]. We say a protocol
achieves a perfect obfuscation if the probability of source de-
tection for the maximum likelihood estimator conditioned
on n nodes being infected is upper bounded by

P
(
v̂ = v∗|NT = n

)
=

1

n
+ o
( 1

n

)
. (1)

However, the detection probability can be significantly
larger than 1/n when the degrees are not regular. To quan-
tify this gap, we analyze the average probability of detec-
tion when the underlying contact network is generated from
standard random irregular trees with i.i.d. degrees.

Contributions. We make the following contributions in
this paper:

• We quantify the sub-optimality of adaptive diffusion,
when the underlying contact network is a random ir-
regular tree generated from i.i.d. degree distribution.
We give an exact characterization of the detection prob-
ability, where the randomness is due to both the un-
derlying network and also the protocol. In the process
of the analyses, we prove a new concentration result
for an extremal value on a Galton-Watson tree, which
may be of independent interest.

• We give a general expression for the adversary’s max-
imum a posteriori (MAP) detection rule for a broad
class of protocols, that are generalizations of adaptive
diffusion.

• We introduce a family of protocols that we call pref-
erential attachment adaptive diffusion (PAAD). We
characterize the probability of detection for this class
of protocols. We present numerical experiments sug-
gesting that PAAD achieves better obfuscation than
adaptive diffusion.

Related Work. Anonymous communication dates back to
Chaum’s famous dining cryptographers’ (DC) problem [6].
However, most research has so far focused on anonymous
point-to-point communication, leading to the emergence of
Tor [11], Freenet [7], Free Haven [10], and Tarzan [14]. In
contrast, we study anonymous broadcast messaging. Anony-
mous broadcast communication has been studied extensibly
in the context of DC nets [6, 8, 28, 15, 16, 29]. Our work
differs from this body of work by considering: (a) a differ-
ent class of solutions, based on statistical spreading models
rather than cryptographic encoding, and (b) an arbitrary
network structure, instead of a fully connected network.

Within the realm of statistical message spreading mod-
els, the problem of detecting the origin of an epidemic or



the source of a rumor has been studied under the diffusion
model. Recent advances in [27, 26, 30, 24, 13, 18, 31, 21, 22,
20] show that it is possible to identify the source within a
few hops with high probability. Drawing an analogy to epi-
demics, we refer to a person who has received the message
as ‘infected’ and the act of passing the message as ‘spread-
ing the infection’. Just as infectious diseases often spread
radially about patient zero geographically, under diffusion,
the message spreads in a “ball” around the true source over
the network. Thus, the author is very close to the center of
that ball, making identification easy. Moreover, this is true
independent of the size of that ball.

Recently, [19] modeled the rumor spreading and source
identification problem as a “hide and seek” game. [19] stud-
ied optimal strategies for both the source and adversary un-
der tree networks from a game theoretic perspective, and
derived conditions under which a Nash equilibrium exists.
In a different context, [5] studies privacy aware network for-
mation games, where actions are adding/removing edges and
the reward is measured by the utility of having friends sub-
tracted by the loss in privacy.

Our problem formulation is closely related to the recent
work of [12] where adaptive diffusion was presented, and its
optimality under regular tree networks was shown. However,
[12] does not study the performance of adaptive diffusion
under irregular tree networks. In this work, we (a) prove
that adaptive diffusion is sub-optimal under irregular trees,
(b) characterize the sub-optimality gap, and (c) present a
new class of statistical spreading protocols that improves
over adaptive diffusion.

Outline. In Section 2, we describe adaptive diffusion pro-
tocol introduced in [12]. We then present our theoretical
analysis of adaptive diffusion over irregular random trees in
Section 3. Section 4 describes our proposed preferential-
attachment adaptive diffusion algorithm, and demonstrates
through simulation that it outperforms regular adaptive dif-
fusion on irregular random trees. We discuss some implica-
tions of this work and open questions in Section 5. We give
the proofs of the main results in Section 6 and in Appendix.

2. ADAPTIVE DIFFUSION
For completeness, adaptive diffusion is described in full

detail in the appendix (see Protocol 1). Adaptive diffu-
sion as introduced in [12] refers to a family of protocols
parametrized by d0, where d0 indicates the degree of the
regular tree network for which the protocol is customized.
Since we consider irregular trees in this paper, the parame-
ter d0 must be chosen; we set d0 =∞ throughout this paper.
First of all, this choice is universal, independent of the topol-
ogy of the underlying graph. Further, it has been suggested
via numerical experiments that this choice of d0 achieves a
performance close to the optimal choice (e.g. Figure 5 in
[12]). Henceforth, we refer to adaptive diffusion with the
choice of d0 =∞ as simply ‘adaptive diffusion’.

As illustrated in Figure 1, adaptive diffusion ensures that
at every even time step the infected subtree is a balanced tree
with the true source v∗ at one of the leaves. At even time
T , the infected balanced-tree has radius T/2 and the center
of this sub-tree is called the virtual source, denoted by vT .
Notice that two time steps are needed to spread the infection
from one balanced tree of radius T/2 rooted at vT to another
balanced tree of radius T/2 + 1 rooted at the next virtual

source vT+2, which is adjacent to vT . The odd time steps
are intermediate steps, necessary to make such transitions.
Since the propagation of the messages is fully described by
the dynamics of the virtual sources, adaptive diffusion only
needs to provide a (randomized) rule for choosing the virtual
source’s location at each (even) time.

at T = 1

v∗

v1

at T = 2

v2

at T = 3

v3

at T = 4

v4

Figure 1: A sample path of adaptive diffusion.

At time t = 0, the source v∗ chooses a neighbor to be
the next virtual source uniformly at random, and infects it.
Let v1 denote this new virtual source as shown in Figure
1. The next time step is spent spreading the infection one
more hop to appropriate neighbors, in order to maintain the
balanced tree of depth one rooted at the new virtual source,
which remains v2 = v1. In subsequent even time steps, a
new virtual source is chosen from one of the current virtual
source’s neighbor uniformly at random, excluding previous
virtual sources. The odd time steps are spent maintaining
the balanced infection structure.

3. ANALYSIS OF ADAPTIVE DIFFUSION
At a certain time T , the adversary attacks and observes

the set of infected nodes thus far. Given the snapshot at
time T , the underlying network, and the knowledge of what
protocol is used, the attacker performs statistical inference
to detect the source using maximum a posteriori (MAP) es-
timator. It is proved in [12] that adaptive diffusion achieves
(near) perfect obfuscation for regular trees. The key idea is
that, by construction, all leaves in the infection are equally
likely to have been the source, and there are as many leaf
nodes in the boundary as in the interior of the infection.

On irregular trees, adaptive diffusion is known to be sub-
optimal, and the gap depends on the underlying topology of
the irregular tree. In order to quantify this gap and char-
acterize the dependence on the underlying tree, we analyze
adaptive diffusion on the following model of a random tree
and provide rigorous analysis for the average case perfor-
mance, where the randomness is due to both the underlying
contact network as well as the protocol.

We assume adaptive diffusion spreads over a random ir-
regular tree according to a branching process with i.i.d. de-



grees according to some distribution D. Specifically, at time
t = 0, the source v∗ draws a degree dv∗ from D, and gener-
ates dv∗ child nodes. The source picks one of these neighbors
uniformly at random to be the new virtual source. The in-
fection spreads as per adaptive diffusion, and each infected
node draws its degree from D generating D − 1 new (unin-
fected) children nodes.

G2

v∗

v2G2G1

G1

v∗

v1

at T = 1 at T = 2

Figure 2: Example of the branching process modeling adap-
tive diffusion on irregular trees.

We denote the sub-tree of infected nodes as GT and the
branching tree generated at time T as GT . The structure
of the contact network outside of GT is independent of GT
conditioned on the uninfected neighbors ∂GT , where ∂GT
denotes the leaves of the tree GT . To ensure that the graph
grows indefinitely, we assume that the minimum degree of a
node is bounded below by two.

3.1 Probability of Detection Given a Snapshot
The adversary observes this random process at time T ,

i.e. GT , knowing that the interior GT are the infected nodes,
and estimates one of the leaf node as an estimate of the true
source which started the random process. The following
theorem analyzes the probability of detecting the true source
for any estimate v̂, given a snapshot GT .

Theorem 3.1. Under the above described random process
of adaptive diffusion, an adversary observes the snapshot GT
at an even time T > 0 and estimates v̂ ∈ ∂GT . For any
estimator v̂, the conditional probability of detection is

P(v̂ = v∗|GT ) =
1

dvT

∏
w∈φ(v̂,vT )
\{vT ,v̂}

1

(dw − 1)
, (2)

where vT is the center of GT , φ(v̂, vT ) is the (unique) path
from v̂ to vT , GT is the interior of GT which is the infected
sub-tree, and ∂GT is the set of leaves of GT .

A proof is provided in Appendix A. Intuitively, Equation
(2) is the probability that the virtual source starting from v̂
ends up at vT (up to some constant factor for normalization).
This gives a simple rule for the adversary to achieve the best
detection probability by computing the MAP estimate:

v̂
(T )
MAP ∈ arg max

v̂
P(v̂(T ) = v∗|GT ) . (3)

Corollary 3.2. Under the hypotheses of Theorem 3.1,
the MAP estimator in (3) can be computed as

v̂
(T )
MAP = arg min

v∈∂GT

∏
w∈φ(v,vT )
\{vT ,v}

(dw − 1) , (4)

achieving a conditional probability of detection

P(v̂
(T )
MAP = v∗|GT ) = max

v∈∂GT

1

dvT
∏

w∈φ(v,vT )
\{vT ,v}

(dw − 1)
. (5)

When applied to regular trees, this recovers known re-
sults of [12], which confirms that adaptive diffusion pro-
vides strong anonymity guarantees under d-regular trees.
But more importantly, Corollary 3.2 characterizes how the
anonymity guarantee depends on the general topology of
the snapshot. We illustrate this in two extreme examples: a
regular tree and an extreme example in Figure 3.

For a d-regular tree, where all nodes have the same degree,
the size of infection at even time T is the number of nodes
in a d-regular tree of depth T/2:

NT =
d(d− 1)T/2

d− 2
+

2

d− 2
. (6)

To achieve a perfect obfuscation, we want the probability of
detection to decay as 1/NT . We can apply Corollary 3.2 to
this d-regular tree and show the probability of detection is
((d − 1)/d)(d − 1)−T/2), which recovers one of the known
results in [12, Proposition 2.2]. This confirms that adaptive
diffusion achieves near-perfect obfuscation, up to a small
factor of (d− 1)/(d− 2).

On the other hand, when there exists a path to a leaf
node consisting of low-degree nodes, adaptive diffusion can
be sub-optimal, and the gap to optimality can be made ar-
bitrarily large. Figure 3 illustrates such an example. This
is a tree where all nodes have the same degree d = 5, ex-
cept for those nodes along the path from the center vT to
a leaf node v, including vT and excluding v. The center
vT has degree two and the nodes in the path have degree
three. Hence, the shaded triangles indicate d-regular sub-
trees of appropriate heights. The size of this infection is
NT = ((d− 1)T/2+1/(d− 2)2)(1 + o(1)). Ideally, one might
hope to achieve a probability of detection that scales as
1/(d − 1)T/2. However, Corollary 3.2 shows that the adap-

tive diffusion achieves probability of detection 1/2T/2, with
the leaf node v achieving this maximum in Equation (5).

Hence, there is a multiplicative gap of ((d − 1)/2)T/2. By
increasing d, the gap can be made arbitrarily large. On the
other hand, such an extreme topology is rare under the i.i.d
tree model.

vT
GT

v

Figure 3: An example of a snapshot emphasizing the sub-
optimality of the adaptive diffusion.



We want to emphasize that the results in [12] only use ele-
mentary proof techniques and only work for regular trees. In
comparison, we develop new proof techniques for the com-
binatorial problem of counting the number of instances that
can start from a leaf v and generate a snapshot GT .

3.2 Concentration of Probability of Detection
We showed that adaptive diffusion can be significantly

sub-optimal, for some topologies. A natural question is
“what is the typical topology for a graph resulting from the
random tree model?” Under the model introduced in the
beginning of Section 3, we give a concrete answer. Perhaps
surprisingly, we can characterize the typical topology as a
solution of a simple convex optimization.

We are interested in the following extremal value

ΛGT ≡ dvT min
v∈∂GT

∏
w∈φ(v,vT )
\{vT ,v}

(dw − 1) , (7)

which captures the topology of the snapshot. We want to
characterize the typical value of this function over random
tree GT resulting from the adaptive diffusion process.

Observe that the distribution of the balanced tree GT fol-
lows a simple branching process known as Galton-Watson
process. This is because GT resulting from adaptive diffu-
sion has the same distribution, independent of the location
of the source v∗. We consider a given degree distribution
D. We use D to denote both a random variable and its
distribution—the distinction should be clear from context.
The random variable D has support f = (f1, . . . , fη) associ-
ated with probability p = (p1, . . . , pη) such that the degree
of node v is i.i.d. with

dv =


f1 with probability p1 ,

...
...

fη with probability pη ,

(8)

where 2 < f1 < f2 < · · · < fη are integers and the positive
pi’s sum to one. We also assume D’s support set has at least
two elements, i.e., η ≥ 2.

It is not hard to show that the following branching process
has the same distribution over graphs as adaptive diffusion
starting from a leaf node v∗: at time T = 0 a root node,
which we denote as the virtual source vT , creates D off-
spring. At each subsequent even time step, each leaf node in
GT creates new offspring independently according to D − 1
(where we subtract one because each leaf is already con-
nected to its parent). This process is repeated until time
step T , which generates a random tree GT .

The following theorem provides a concentration inequality
on the extremal quantity ΛGT , which in turn determines the
probability of detection as provided by Corollary 3.2:

P(v̂
(T )
MAP = v∗|GT ) =

1

ΛGT
. (9)

Theorem 3.3. For an even T > 0, suppose a random tree
GT is generated from the root vT according to the Galton-
Watson process with i.i.d. degree distribution D, where f
and p are defined as in (8), then the following results hold:

(a) If p1(f1 − 1) > 1, for any positive δ > 0, there exists
positive constants CD,δ and C′D,δ that depend only on

the degree distribution and the choice of δ such that

P
(∣∣∣∣ log(ΛGT )

T/2
− log(f1 − 1)

∣∣∣∣ > δ

)
≤ e−CD,δT , (10)

for an even time T ≥ C′D,δ.

(b) If p1(f1 − 1) < 1, define the mean number of children:

µD ≡
η∑
i=1

pi(fi − 1) ,

and the set

RD =
{
r ∈ Sη | log(µD) ≥ DKL(r‖β)

}
, (11)

where Sη denotes the η-dimensional probability sim-
plex, DKL(·‖·) denotes Kullback-Leibler divergence, and
β is a length-η probability vector in which βi = pi(fi−
1)/µD. Further, define r∗ as follows:

r∗ = arg min
r∈RD

〈
r , log(f − 1)

〉
, (12)

where 〈r, log(f − 1)〉 =
∑η
i=1 ri log (fi − 1). Then for

any δ > 0, there exists positive constants CD,δ and
C′D,δ that only depend on the degree distribution D and
the choice of δ > 0 such that

P
(∣∣∣∣ log(ΛGT )

T/2
− 〈r∗, log(f − 1)〉

∣∣∣∣ > δ

)
≤ e−CD′,δT (13)

for an even time T ≥ C′D,δ.

A proof of this theorem is provided in Section 6. Putting it
together with (9), it follows that the probability of detection
concentrates around

− 2

T
log
(
P(v̂

(T )
MAP = v∗)

)
' 〈r∗ , log(f − 1)〉 ,

in case (b) and around log(f1 − 1) in case (a). Here ' indi-
cates concentration for large enough T . We want to empha-
size that r∗ can be computed using off-the-shelf optimiza-
tion tools, since the program in (12) is a convex program
of dimension η. This follows from the fact that the objec-
tive is linear in r and the feasible region is convex since KL
divergence is convex in r.

For example, if D is 3 w.p. 0.7 or 4 w.p. 0.3, then this
falls under case (a). The theorem predicts the probability

of detection to decay as (3− 1)−T/2. On the other hand, if

D =

{
2 with probability 0.3
3 with probability 0.7

,

then this falls under case (b) with µD = 1.7, β1 = 0.3/1.7,
and β2 = 1.4/1.7. In this case, the exponent is a solution of
the following optimization for r = [r, 1− r]:

minimize
r∈R

r log 1 + (1− r) log 2

subject to r log
1.7r

0.3
+ (1− r) log

1.7(1− r)
1.4

≤ log(1.7)

r ∈ [0, 1]

It follows that the optimal solution is r∗ ' [0.64, 0.36] and

the probability of detection decays as 2−0.36(T/2). Figure 4
confirms this theoretical prediction with numerical simula-
tions for these two examples.



Theorem 3.3 provides a simple convex program that com-
putes the probability of detection for any degree distribu-
tion. For random trees, this quantifies the gap between what
adaptive diffusion can guarantee and the perfect obfuscation
one desires. We define the rescaled log-multiplicative gap as

∆D ≡ 2

T
log

P(v
(T )
MAP = v∗)

1/E[|∂GT |]
,

where |∂GT | is the total number of candidates in a snapshot.

It is not difficult to show that E[|∂GT |] = µ
T/2
D , and it follows

that ∆D ' logµD − 〈r∗, log(f − 1)〉. For example, ∆D = 0
for regular trees, and ∆D = log2 2.3 − log2 2 = 0.20 for the
first example under case (a) and ∆D = log2 1.7−0.36 = 0.41
for the second example under case (b).

0 5 10 15
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radius of the infected sub-tree, T/2

−
(2
/
T

)
lo

g
2
(P

(v̂
=
v
∗
))

Figure 4: Simulated detection probability converges to the
theoretical prediction.

3.3 Simulation Results
The notation (3, 4) => (0.5, 0.5) in the legend of Figure 4

indicates that each node in the tree has degree 3 or 4, each
with probability 0.5. In this case, we have p1(f1 − 1) > 1.
This is case (a) in Theorem 3.3, and our analysis predicts
that the exponent is log2(f1 − 1) = 1. This is indicated by
a solid red line in Figure 4. For the other distribution with
support f = (2, 3) with probabilities p = (0.3, 0.7), we have
p1(f1 − 1) < 1. This is case (b) in the theorem, and the
analysis predicts that the exponent is 0.36 as we computed
in the previous section. This is indicated by a solid blue line.

In this plot, data points represent successive even timesteps
of adaptive diffusion—or equivalently, the radius of the in-
fected sub-tree. For both examples, we simulated adaptive
diffusion and used the MAP estimator in Equation (4) to
detect the source. The resulting average probability of de-
tection, averaged over 10, 000 trials, is plotted in Figure 4,
where the randomness is both in the protocol as well as the
underlying random tree. We observe that the empirical ex-
ponent − log(P(v̂ = v∗))/(T/2) converges to the theoretical
prediction, albeit slowly. The size of this experiment was
limited by computational considerations, since the graph
size grows exponentially in time.

3.4 Sketch of the Proof of Theorem 3.3
We provide a sketch of a proof of Theorem 3.3, first for

case (a). We suppose η = 2 to simplify the notation and

highlight the key insights. The random snapshot GT is
distributed according to T steps of Galton-Watson process
starting from the root node vT , with degree distribution
D. Note that vT is the center of GT and not the source of
the message. We want to prove that, with high probabil-
ity, there exists a path from the root vT to a leaf v which
(mostly) consists of nodes with degree f1, such that

min
v

∏
w∈φ(vT ,v)\{vT ,v}

(dw − 1) ' (f1 − 1)T/2−1 ,

where ' indicates that we allow for vanishing fraction of
nodes to deviate from the minimum degree f1.
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Figure 5: Pruning of a snapshot. We prune all descendants
of nodes with degree 3 that are more than c log(t0) hops
from the root, where t0 + c log t0 = T/2.

The main idea is to consider the sub-tree of GT where we
remove all nodes with degree f2 and also all its descendants.
First, if this pruned tree reaches the boundary at T/2, which
is referred to as surviving until T/2 time steps, then we know
that in the original GT there exists a path from the root to
a leaf consisting only of nodes with degree f1. Furthermore,
The pruned tree is also a Galton-Watson process, but with
a different degree distribution:

D̃ =

{
1 with probability p2 ,
f1 with probability p1 .

.

Under the assumption of case (a) that (f1 − 1)p1 > 1, we
know from standard analysis of branching processes [17]
that this pruned process survives for T/2 time steps with
a strictly positive probability for any T . By delaying the
pruning until an appropriately chosen O(log T ) time steps,
we can make this survival probability as large as we want.

In case (b), the same argument proves that the pruned
process will not survive, and there will not be a path of
minimum degree nodes reaching the boundary. We need to
relax the pruning, and allow r2 proportion of the nodes in a
path to have degree f2 for some r2 ∈ [0, 1]. We search over
all possible choices of r = [1− r2, r2] such that the process
barely survives while minimizing ΛGT :

minimize
r2∈[0,1]

(f1 − 1)(1−r2)T/2(f2 − 1)(r2)T/2

subject to P(survival) > 0

Note that we have the same objective as in (12), up to a
logarithm and scaling. The challenge in analyzing the con-
straint is that the pruned process is now dynamic, in the
sense that we do not fix the number of f2 nodes allowed in
any path (as we did in case (a), allowing zero f2 nodes), but
rather let this allowed number grow proportionally to the
tree depth. To analyze this dynamically-pruned process, we
define a multi-type branching process, where the type of a



node encodes the quantity we are interested in, namely the
product of degrees in the path from the root. We analyze all
possible pruning in this multi-type branching process, and
show that it survives if and only if the conditions in (11) is
satisfied. The complete proof is provided in Section 6.

4. PREFERENTIAL ATTACHMENT
Our analysis reveals that adaptive diffusion can be signif-

icantly sub-optimal, when the underlying graph degrees are
highly irregular. To bridge this gap, we introduce a family
of protocols we call Preferential Attachment Adaptive Dif-
fusion (PAAD). We analyze the performance of PAAD and
provide numerical simulations showing that PAAD improves
over adaptive diffusion when degrees are irregular.

The reason for this gap is that in typical random trees,
there are nodes that are significantly more likely to be the
source, compared to other typical candidate nodes. To achieve
near-perfect obfuscation, we want all candidate nodes to
have similar posterior probabilities of being the source. To
balance the posterior probabilities of leaf nodes, we suggest
passing the virtual source in favor of large-degree nodes. We
propose a new family of protocols base on this intuition, and
make this intuition precise in Theorem 4.1.

PAAD is based on adaptive diffusion, but we modify how
virtual sources are chosen. We parametrize this family of
protocols by a non-negative integer g. When a new virtual
source is to be chosen, instead of choosing uniformly among
its neighbors (except for the previous virtual source), the
new virtual source is selected with probability weighted by
the size of its g-hop neighborhood. Let Ng(v) denote the set
of g-hop neighbors of node v, and let Ng(v, w) denote the
same set, removing any nodes z for which w ∈ φ(z, v), where
φ(z, v) denotes the path between z and v. Then for instance,
if g = 1, then each time the virtual source is passed from vT
to vT+2, it is passed to a neighbor w ∈ N1(vT , vT−2) with
probability proportional to dw − 1:

P(vT+2 = w) =
dw − 1∑

w′∈N1(vT ,vT−2)(dw′ − 1)
.

For general g, the probability is proportional to the size
of the candidate w’s g-hop local neighborhood, excluding
those in the direction of the current virtual source vT . Each
virtual source vT chooses the next virtual source as follows:
for any node w ∈ N1(vT , vT−2),

P (vT+2 = w) =
|Ng(w, vT )|∑

w′∈N1(vT ,vT−2) |Ng(w′, vT )| .

PAAD encourages the virtual source to traverse high-degree
nodes. This balances the posterior probabilities, by strength-
ening the probability of leaf nodes whose path contain high-
degree nodes, while weakening those with low-degree nodes.

This intuition is made precise in the following theorem,
which analyzes the probability of detection for a given snap-
shot. Define the probability that the sequence of decisions
on choosing the virtual sources results in the path from a
source v to the current virtual source vT as

Q(GT , v) ≡
T/2∏
t=1

P(v2t = wt) ,

where φ(v, vT ) = (w0 = v, w1, w2, . . . , wT/2−1, wT/2 = vT ).
The specific probability depends on the choice of g and the

topology of the underlying tree. Note that the progression
of the virtual source now depends on g-hop neighborhood,
and we therefore define GT to included the current infected
subgraph GT and its (g + 1)-hop neighborhood.

Theorem 4.1. Suppose a node v∗ starts to spread a mes-
sage at time t = 0 according to PAAD, where the underlying
irregular tree is generated according to the random branching
process described in the beginning of Section 3. At a certain
even time T ≥ 0, an adversary observes the snapshot of the
infected subtree GT and computes a MAP estimate of the
source v∗. Then, the following results hold:

(a) The MAP estimator is

v̂MAP = arg max
v∈∂GT

dv Q(GT , v) (14)

where ∂GT denotes the leaves of GT .

(b) The conditional probability of detection achieved by the
MAP estimator is

P(v̂MAP = v∗|GT ) =
maxv∈∂GT dv Q(GT , v)∑

w∈∂GT
dw Q(GT , w)

(15)

The proof relies on the techniques developed to prove The-
orem 3.1, and is omitted due to space limitation. The exam-
ple from Figure 3 illustrates the power of PAAD. For this
class of snapshots, it is straightforward to show that un-
der adaptive diffusion, PADD = 2−T/2, whereas under 1-hop
PAAD,

PPAADD ≤ 2

(d− 1)T/2−1 − 1
.

Notice from these expressions that PPAADD scales as (d −
1)−T/2, which achieves perfect obfuscation, whereas regular

adaptive diffusion scales as 2−T/2.
This shows that there exist snapshots where PAAD sig-

nificantly improves over adaptive diffusion. However, such
examples are rare under the random tree model, and there
are also examples of snapshots where adaptive diffusion can
achieve a better obfuscation than PAAD. To complete the
analysis, we would like to show the analog of Theorem 3.3 for
PAAD. However, the observed snapshot is no longer gener-
ated by a standard Galton-Watson branching process, due to
the preferential attachment. The analysis techniques devel-
oped for Theorem 3.3 does not generalize, and significantly
new techniques appear to be needed for a technical analy-
sis. This is outside the scope of this manuscript; instead, we
show numerical simulations suggesting that PAAD improves
over adaptive diffusion.

4.1 Simulation Results
PAAD requires each virtual source to know some informa-

tion about its local neighborhood on the contact network;
in exchange, we observe empirically that it hides the source
better than traditional adaptive diffusion. Figure 6 shows
the probability of detection over graphs with a degree distri-
bution of support f = (2, 5) with probability p = (0.5, 0.5).
The results are averaged over 10,000 realizations of the ran-
dom graph and the spreading sequence. This plot shows
empirically that preferential attachment adaptive diffusion
exhibits better hiding properties than regular adaptive dif-
fusion, and that the benefit of preferential attachment in-
creases with the size of the neighborhood considered for



preferential attachment (e.g., one-hop vs. two-hop). Notice
that our lower bound on probability of detection is 1/|∂GT |
rather than 1/NT , as in [12]; this is because we constrain
the source to always be at one of the leaves of the graph, so
1/|∂GT | lower bounds the probability of detection.

Figure 7 computes the ratio of the observed probability
of detection to a lower bound on the probability of detec-
tion (i.e., 1/|∂GT |), for both adaptive diffusion (AD) and
one-hop PAAD. Empirically, we observe that the advantage
of PAAD is greater when the degree distribution is more
imbalanced (i.e., when fmax − fmin is large).
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Figure 6: Probability of detection of regular adaptive diffu-
sion compared to 1-, 2-, and 3-hop preferential attachment
adaptive diffusion (PAAD).
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Figure 7: Ratio of observed probability of detection to lower-
bound probability of detection, for a range of degree distri-
butions. PAAD has better anonymity properties than regu-
lar adaptive diffusion over random, irregular trees.

5. DISCUSSION
We characterize how the probability of detection depends

on the degree distribution of the underlying random tree,
when messages spread as per adaptive diffusion. This sug-
gests a novel family of protocols, we call preferential at-
tachment adaptive diffusion. We analytically calculate the
conditional probability of detection of this family of proto-
cols, and numerical results suggest that this improves over
adaptive diffusion.

Ideally, we would like to prove an upper bound on the
average probability of detection under adaptive diffusion:

P(v̂
(T )
MAP = v∗) =

∑
GT

P(GT )P(v̂
(T )
MAP = v∗|GT ) , (16)

averaged over all instances of the graphs. We conjecture
this has the similar scaling as the concentration result in
Theorem 3.3. The main challenge is in proving a sharper
concentration of ΛGT .

Proving a result analogous to Theorem 3.3 for PAAD
could potentially complete the search for optimal protocol.
Although the distribution of the snapshot can be modeled
by a multi-type branching process, it is an interesting open
question how to analyze the typical value of Q(GT , v).

6. PROOF OF THEOREM 3.3
To facilitate the analysis, we consider an alternative ran-

dom process that generates unlabeled graphs G′T according
to the same distribution as GT (i.e., the infected, unlabeled

subgraph embedded in U(G
(T )
D ) from the proof of Theorem

3.1). For a given degree distribution D and a stopping time
T , the new process is defined as a Galton-Watson process in
which the set of offsprings at the first time step is drawn from
D and the offsprings at subsequent time steps are drawn
from D − 1. At time t = 0, a given root node vT draws
its degree dvT from D, and generates dvT child nodes. The
resulting tree now has depth 1. In each subsequent time
step, the process traverses each leaf v of the tree, draws its
degree from D, and generates dv − 1 children. The random
process continues until the tree has depth T/2, since under
adaptive diffusion, the infected subgraph at even time T has
depth T/2. Because the probability of detection in Equation
(5) does not depend on the degrees of the leaves of GT , the
random process stops at depth T/2 rather than T/2+1. We
call the output of this random process G′T . The distribution
of G′T is identical to the distribution as the previous ran-
dom process imposed on GT , which follows from the proof
of Theorem 3.1. We therefore use GT to denote the resulting
output in the remainder of this proof.

Distribution D is a multinomial distribution with support
f = (f1, . . . , fη) and probabilities p = (p1, . . . , pη). Without
loss of generality, we assume 2 ≤ f1 < . . . < fη. Let µD
denote the mean number of children generated by D:

µD =

η∑
i=1

pi(fi − 1).

There are two separate classes of distributions, which we
deal with as separate cases.

Case 1: When p1(f1 − 1) > 1, we claim that with high
probability, there exists a leaf node v in ∂GT such that on
the unique path from the root vT to this leaf v, all nodes in
this path have the minimum degree f1, except for a vanishing
fraction. To prove this claim, consider a different graph HT
derived from GT by pruning large degree nodes:

1. For a fixed, positive c, find t0 such that T/2 = t0 +
c log(t0).

2. Initialize HT to be identical to GT .

3. For each node v ∈ HT , if the hop distance δH(v, vT ) ≤
c log(t0), do not modify that node.



4. For each node v ∈ HT , if the hop distance δH(v, vT ) >
c log(t0) and dv > f1, prune out all the children of v,
as well as all their descendants (Figure 5).

We claim that this pruned process survives with high
probability. The branching process that generates HT is
equivalent to a Galton-Watson process that uses distribu-
tion D − 1 for the first c log(t0) generations, and a different
degree distribution D′−1 for the remaining generations; D′

has support f ′ = (f1, 1), probability mass p′ = (p1, 1− p1),
and mean number of children µD′ = p1(f1 − 1).

Note that f1 ≥ 3 by the assumption that p1(f1 − 1) > 1.
Hence, the inner branching process up to c log t0 has proba-
bility of extinction equal to 0. This means that at a hop dis-
tance of t0 from vT , there are at least (f1− 1)c log(t0) nodes.
Each of these nodes can be thought of as the source of an
independent Galton-Watson branching process with degree
distribution D′ − 1. By the properties of Galton-Watson
branching processes ([17], Thm. 6.1), since µD′ > 1 by as-
sumption, each independent branching process’ asymptotic
probability of extinction is the unique solution of gD′(s) = s,
for s ∈ [0, 1), where gD′(s) = p1 s

f1−1 + (1 − p1) denotes
the probability generating function of the distribution D′.
Call this solution θD′ . The probability of any individual
Galton-Watson process going extinct in the first generation
is exactly 1 − p1. It is straightforward to show that gD′(s)
is convex, and gD′(1 − p1) > 1 − p1, which implies that
the probability of extinction is nondecreasing over succes-
sive generations and upper bounded by θD′ . Then for the
branching process that generates HT , the overall probability

of extinction (for a given time T ) is at most θ
(f1−1)c log t0

D′ .
Increasing the constant c therefore decreases the probabil-
ity of extinction. If there exists at least one leaf at depth
T (i.e., extinction did not occur), then there exists at least
one path in HT of length t0 − c log t0 in which every node
(except possibly the final one) has the minimum degree f1.
This gives

log(ΛHT )

T/2
≤ t0 log(f1 − 1) + c log(t0) log(fη − 1)

t0 + c log(t0)
(17)

≤ log(f1 − 1) +
c log t0
t0

log
fη − 1

f1 − 1
, (18)

with probability at least 1− θ(f1−1)c log t0

D′ = 1− θt
c log(f1−1)
0
D′ =

1− e−CD′ t0 , where CD′ = log(θD′) and the upper bound in
(17) comes from assuming all the interior nodes have maxi-
mum degree fη. Since HT is a subgraph of a valid snapshot
GT , there exists a path in GT from the virtual source vT
to a leaf of the tree where the hop distance of the path is
exactly T/2, and at least t0 nodes have the minimum degree
f1. Since the second term in (18) is o(t0), the claim follows.
The lower bound log(ΛHT )/(T/2) ≥ log(f1 − 1) holds by
definition. Therefore, for any δ > 0, by setting T (and con-
sequently, t0) large enough, we can make the second term in
(18) arbitrarily small. Thus, for T ≥ C′D,δ, where C′D,δ is a
constant that depends only on the degree distribution and
δ, the result holds.

Case 2: Consider the case when p1(f1 − 1) < 1. By
the properties of Galton-Watson branching processes ([17],
Thm. 6.1), the previous pruned random process that gener-
ated graphs HT goes extinct with probability approaching
1. This implies that with high probability there is no path
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Figure 8: Pruning of a snapshot using multiple types. In this
example, the distribution D allows nodes to have degree 2
or 3. We take t0 = 2 and r = 0.5, so all descendants of
nodes with type rt0 = 1 are pruned.

from the root to a leaf that consists of only minimum degree
nodes.

Instead, we introduce a Galton-Watson process with mul-
tiple types, derived from the original process. Our approach
is to assign a numeric type to each node in GT according
to the number of non-minimum-degree nodes in the unique
path between that node and the virtual source. If a node’s
path to vT contains too many nodes of high degree, then we
prune the node’s descendants. The challenge is to choose
the smallest pruning threshold that still ensures the pruned
tree will survive with high probability. Knowing this thresh-
old allows us to precisely characterize ΛGT for most of the
instances.

To simplify the discussion, we start by considering a spe-
cial case in which D allows nodes to take only two values of
degrees, i.e., η = 2. We subsequently extend the results for
η = 2 to larger, finite values of η. With a slight abuse of a
notation, consider a new random process HT derived from
GT by pruning large degree nodes in the following way:

1. For a fixed, positive c, find t0 such that T/2 = t0 +
c log(t0).

2. Initialize HT to be identical to GT .

3. For each node v ∈ HT , if the hop distance δH(v, vT ) ≤
c log(t0), do not modify that node, and assign it type
0.

4. For each node v ∈ HT , if the hop distance δH(v, vT ) >
c log(t0), assign v a type ξv, which is the number of
nodes in φ(w, v)\{v} that have the maximum possible
degree f2, where w is the closest node in HT to v such
that δH(w, vT ) ≤ c log(t0) (Figure 8).

5. Given a threshold r ∈ (0, 1), if a node v has type ξv ≥
rt0, prune out all the descendants of v. For example,
in Figure 8, if t0 = 2 and the threshold is r = 0.5, we
would prune out all descendants of nodes with ξv ≥ 1.

We show that for an appropriately-chosen threshold r,
this pruned tree survives with high probability. By choosing
the smallest possible r, we ensure that ΛHT consists (in all
but a vanishing fraction of nodes) of a fraction r nodes with
maximum degree, and (1 − r) of minimum degree. This
allows us to derive the bounds on log(ΛHT )/(T/2) stated in
the claim, which hold with high probability.

Let k ≡ rt0. The process that generates HT is equivalent
to a different random branching process that generates nodes



in the following manner: set the root’s type ξvT = 0. At time
t = 0, the root vT draws a number of children according
to distribution D, and generates dvT children, all type 0.
Each leaf generates type 0 children according to child degree
distribution D − 1 until c log(t0) generations have passed.
At that point, each leaf v in this branching process (which
necessarily has type 0) reproduces as follows: if its type
ξv > k, then v does not reproduce. Otherwise, it either
generates (f1 − 1) children with probability p1, each with
state ξv, or it generates (f2 − 1) children with probability
p2, each with state ξv +1. This continues for t0 generations.
Mimicking the notation from Case 1, we use D′ to denote
the distribution that gives rise to this modified, multi-type
random process (in the final t0 generations); this is a slight
abuse of notation since the branching dynamics are multi-
type, not defined by realizations of i.i.d. degree random
variables.

Lemma 6.1. Consider a Galton-Watson branching pro-
cess with child degree distribution D − 1, where each node
has at least one child with probability 1, and µD−1 > 1.
Then the number of leaves in generation t, Z(t), satisfies the
following:

Z(t) ≥ eC`t

with probability at least 1 − eC
′
`t, where both C` and C′` are

constants that depend on the degree distribution.

We omit the proof due to space limitations. The first c log(t0)
generations ensure that with high probability, we have at
least eC` log t0 independent multi-type Galton-Watson pro-
cesses originating from the leaves of the inner subgraph;
this follows from Lemma 6.1. Here we have encapsulated
the constant c from the first c log(t0) generations in the con-
stant C`. For example, in Figure 8, there are 3 independent
Galton-Watson processes starting at the leaves of the in-
ner subgraph. We wish to choose r such that the expected
number of new leaves generated by each of these processes,
at each time step, is large enough to ensure that extinc-
tion occurs with probability less than one. For brevity, let
α ≡ p1(f1 − 1) and let β ≡ p2(f2 − 1). Let x(t) denote the
(k+ 1)-dimensional vector of the expected number of leaves
generated with each type from 0 to k in generation t. This
vector evolves according to the following (k + 1) × (k + 1)
transition matrix M :

x(t+1) = x(t)


α β

. . .

. . . α β
0


︸ ︷︷ ︸

M

.

The last row of M is 0 because a node with type k does not
reproduce. Since the root of each process always has type
0, we have x(0) = e1, where e1 is the indicator vector with
a 1 at index 1 and zeros elsewhere.

Let Z(t) denote the expected number of new leaves created
in generation t. This gives

E[Z(t)] = e1M
t
1
ᵀ
(k+1), (19)

where ᵀ denotes a transpose, and 1(k+1) is the (k+1) all-ones
vector. When t < k, this is a simple binomial expansion of

(α+ β)t. For t ≥ k, this is a truncated expansion up to k:

E[Z(t)] =

k∑
i=0

(
t

i

)
αt−iβi. (20)

We seek the necessary and sufficient condition on r for
non-extinction, such that (1/t) log(E[Z(t)]) > 0. Consider a
binomial random variable W with parameter β/(α + β) =
β/µD and t trials. Equation (20) implies that for large t,

E[Z(t)] = (α+ β)t P(W ≤ k). (21)

= µtD exp
{
− tDKL

(
r ‖ β

µD

)
+ o(t)

}
, (22)

by Sanov’s theorem [9]. Here DKL(r‖β/µD) denotes the
Kullback-Leibler divergence between the two Bernoulli dis-
tributions defined by r and β/µD, such thatDKL(r‖β/µD) =
(1 − r) log((1 − r)/(α/µD)) + r log(r/(β/µD)). We wish to

identify the smallest r for which (1/t) log(E[Z(t)]) is bounded
away from zero. Such an r is a sufficient (and necessary)
condition for the multi-type Galton-Watson process to have
a probability of extinction less than 1. To achieve this, we
define the following set of r such that Eq. (22) is strictly
positive, for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖β/µD) + ε

}
, (23)

Suppose we now choose a threshold r ∈ Rα,β(ε). This is
the regime where the modified Galton-Watson process with
threshold r has a chance for survival. In other words, the
probability of extinction θD′ is strictly less than one. Pre-
cisely, θD′ is the unique solution to s = gD′(s), where gD′(s)
denotes the probability generating function of the described
multi-type Galton-Watson process. Using the same argu-
ment as in Case 1, we can construct a process where the
probability of extinction is asymptotically zero. Precisely,
we modify the pruning process such that we do not prune
any leaves in the first c log(t0) generations. This ensures

that with high probability, there are at least eC` log(t0) inde-
pendent multi-type Galton-Watson processes evolving con-
currently after time c log(t0), each with probability of ex-
tinction θD′ . Hence with probability at least 1 − e−2CD′ t0

(for an appropriate choice of a constant CD′ that only de-
pends on the degree distribution D′ and the choice of r), the
overall process does not go extinct.

Our goal is to find the choice of r with minimum product
of degrees log(ΛGT )/(T/2) that survives. We define r1 as
follows:

r1 ≡ arg min
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2).

Since Rα,β(ε) is just an interval and we are minimizing a
linear function with a positive slope, the optimal solution
is r1 = infr∈Rα,β(ε) r. This is a choice that survives with
high probability and has the minimum product of degrees.
Precisely, with probability at least 1 − e−CD′T , where CD′
depends on D′ and ε, we have that

log(ΛGT )

T/2
≤ 〈[1− r1, r1], log(f − 1)〉+

c log(t0)

t0
log (f2 − 1)



where we define the standard inner product 〈[1−r1, r1], log(f−
1)〉 , (1− r1) log(f1 − 1) + r1 log(f2 − 1). It follows that

log(ΛGT )

T/2
− 〈[1− r∗, r∗], log(f − 1)〉 ≤

(r1 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f2 − 1) (24)

By setting ε small enough and t0 large enough, we can make
this as small as we want. For any given δ > 0, there exists
a positive ε > 0 such that the first term is bounded by δ/2.
Further, recall that T/2 = c log(t0)+ t0. For any choice of ε,
there exists a tD′,ε such that for all T ≥ tD′,ε the vanishing
term in Eq. (22) is smaller than ε. For any given δ > 0, there
exists a positive tD′,δ such that T ≥ tD′,δ implies that the
second term is upper bounded by δ/2. Putting everything
together (and setting ε small enough for the target δ), we
get that

P
( log(ΛGT )

T/2
≥ 〈[1− r∗, r∗], log(f − 1)〉+ δ

)
≤ e−CD′,δT

(25)

for all T ≥ C′D′,δ, where CD′,δ and C′D′,δ are positive con-

stants that only depend on the degree distribution D′ and
the choice of δ > 0.

For the lower bound, we define the following set of r such
that Eq. (22) is strictly negative:

Rα,β(ε) =
{
r | log(µD) ≤ DKL(r‖β/µD)− ε

}
. (26)

Choosing r ∈ Rα,β(ε) causes extinction with probability ap-

proaching 1. Explicitly, P(Z(t) 6= 0) is the probability of

non-extinction at time t, and P(Z(t) 6= 0) ≤ E[Z(t)]. By
Equation (22), we have

E[Z(t)] ≤ et(log(µD)−DKL(r‖β/µD)+o(t))

where log(µD) − DKL(r‖β/µD) ≤ −ε. The probability of

extinction is therefore at least 1− E[Z(t)] ≥ 1− e−t(ε+o(t)).
So defining

r2 ≡ arg max
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2),

we have

log(ΛGT )

T/2
≥ 〈[1− r2, r2], log(f − 1)〉+

c log(t0)

t0
log(f1 − 1)

with probability at least 1− e−CD′,2T where CD′,2 is again
a constant that depends on D′ and ε. It again follows that

log(ΛGT )

T/2
− 〈[1− r∗, r∗], log(f − 1)〉 ≥

(r2 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f1 − 1) , (27)

where r2−r∗ is strictly negative. Again, for any given δ > 0,
there exists a positive ε > 0 such that the first term is lower
bounded by −δ/2, and for any choice of ε, there exists a tD′,ε
such that for all T ≥ tD′,ε the vanishing term in Eq. (22) is
smaller than ε. Note that this ε might be different from the
one used to show the upper bound. We ultimately choose
the smaller of the two ε values. For any given δ > 0, there
exists a positive tD′,δ such that T ≥ tD′,δ implies that the
second term is lower bounded by −δ/2. Putting everything

together (and setting ε small enough for the target δ), we
get that

P
( log(ΛGT )

T/2
≤ 〈[1− r∗, r∗], log(f − 1)〉 − δ

)
≤ e−CD′,δT

(28)

for all T ≥ C′D′,δ, where CD′,δ and C′D′,δ are positive con-

stants that only depend on the degree distribution D′ and
the choice of δ > 0. This gives the desired result.

We now address the general case forD with support greater
than two. We follow the identical structure of the argument.
The first major difference is that node types are no longer
scalar, but tuples. Each node v’s type ξv is the (η−1)-tuple
listing how many nodes in the path φ(w, v) \ {v} had each
non-minimum degree from f2 to fη, where w is the closest
node to v such that δH(w, vT ) ≤ c log(t0). Consequently,
the threshold r = [r1, . . . , rη−1] is no longer a scalar, but
a vector-valued, pointwise threshold on each element of ξv.
We let k = [k1 = r1t0, . . . , kη−1 = rη−1t0] denote the time-
dependent threshold, and we say k < ξv if ki < (ξv)i for
1 ≤ i ≤ η− 1. The matrix M is no longer second-order, but
a tensor. Equation (19) still holds, exceptM is replaced with
its tensor representation. For brevity, let α = p1(f1−1) and

βi = pi+1(fi+1 − 1). Let β̃ =
∑η−1
i=1 βi. Hence, Equation

(20) gets modified as

E[Z(t)] =

k1∑
i1=0

. . .

kη−1∑
iη−1=0

(
t

i1, . . . , iη−1

)
αt−β̃βi11 . . . β

iη−1

η−1 .

(29)
Now we consider a multinomial variable W with parame-

ters βi/µD for 1 ≤ i ≤ η−1 and t trials. As before, equation
(29) can equivalently be written as

E[Z(t)] = µtD P(W ≤ k)

= µtD exp
{
− tDKL

(
r ‖
(
β

µD

))
+ o(t)

}
,(30)

where β/µD denotes elementwise division. HereDKL(r‖β/µD)
denotes the Kullback-Leibler divergence between the two
generalized Bernoulli distributions defined by r and β/µD,
such thatDKL(r‖β/µD) = (1−

∑
ri) log((1−

∑
ri)/(α/µD))+∑

i ri log(ri/(βi/µD)). Once again, we wish to obtain bounds
on P(W ≤ k). As before, we define the following set of r
such that Eq. (30) is strictly positive, for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖

(
β

µD

)
) + ε

}
, (31)

We now choose a threshold r ∈ Rα,β(ε). Using the same
argument as before, we can construct a process where the
probability of extinction is asymptotically zero. We again
do not prune any leaves in the first c log(t0) generations.
This ensures that with high probability, there are at least
eC` log(t0) independent multi-type Galton-Watson processes
evolving concurrently after time c log(t0), each with prob-
ability of extinction θD′ . Hence with probability at least
1 − e−2CD′ t0 (for an appropriate choice of a constant CD′
that only depends on the degree distribution D′ and the
choice of r), the overall process does not go extinct.

We define r1 analogously to the η = 2 case:

r1 ≡ arg min
r∈Rα,β(ε)

〈r, log(f − 1)〉 ,



where we now define 〈r, log(f − 1)〉 ≡ (1 −
∑
i ri) log(f1 −

1) +
∑η−1
j=1 rj log(fj+1 − 1). Therefore with probability at

least 1− e−CD′T , where CD′ depends on D′ and ε, we have
that

log(ΛGT )

T/2
≤ 〈r1, log(f − 1)〉+

c log(t0)

t0
log (fη − 1) .

It follows that

log(ΛGT )

T/2
− 〈r∗, log(f − 1)〉 ≤

η−1∑
j=1

((r1)j − r∗j ) log

(
fj+1 − 1

f1 − 1

)
+
c log(t0)

t0
log (fη − 1) .

(32)

By setting ε small enough and t0 large enough, we can make
this as small as we want. For any given δ > 0, there exists a
positive ε > 0 such that each term in the summation in (32)
is bounded by δ/η. Further, recall that T/2 = c log(t0) + t0.
For any choice of ε, there exists a tD′,ε such that for all
T ≥ tD′,ε the vanishing term in Eq. (22) is smaller than
ε. For any given δ > 0, there exists a positive tD′,δ such
that T ≥ tD′,δ implies that the second term of (32) is upper
bounded by δ/η. Putting everything together (and setting
ε small enough for the target δ), we get that

P
( log(ΛGT )

T/2
≥ 〈r∗, log(f − 1)〉+ δ

)
≤ e−CD′,δT (33)

for all T ≥ C′D′,δ, where CD′,δ and C′D′,δ are positive con-

stants that only depend on the degree distribution D′ and
the choice of δ > 0. Similar analysis proves the lower bound:

P
( log(ΛGT )

T/2
≤ 〈r∗, log(f − 1)〉 − δ

)
≤ e−CD′,δT (34)

for all T ≥ C′D′,δ.This gives the desired result.
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APPENDIX

Protocol 1 Adaptive Diffusion [12]

Input: contact network G = (V,E), source v∗, time T , de-
gree d

Output: set of infected nodes VT
1: V0 ← {v∗}, h← 0, v0 ← v∗

2: v∗ selects one of its neighbors u at random
3: V1 ← V0 ∪ {u}, h← 1, v1 ← u
4: let N (u) represent u’s neighbors
5: V2 ← V1 ∪N (u) \ {v∗}, v2 ← v1

6: t← 3
7: for t ≤ T do
8: vt−1 randomly selects u ∈ N (vt−1) \ {vt−2}
9: h← h+ 1

10: vt ← u
11: for all v ∈ N (vt) \ {vt−1} do
12: Infection Message(G,vt,v,Vt)
13: if t+ 1 > T then
14: break
15: Infection Message(G,vt,v,Vt)

16: t← t+ 2

17: procedure Infection Message(G,u,v,Vt)
18: if v ∈ Vt then
19: for all w ∈ N (v) \ {u} do
20: Infection Message(G,v,w,Gt)

21: else
22: Vt ← Vt−2 ∪ {v}

A. PROOF OF THEOREM 3.1
We first analyze the probability of detection for any given

estimator (see Eq. (39)); we then show that the estimator
in (4) is a MAP estimator, maximizing this probability of
detection. Finally, we show that using the MAP estimator
in (4) gives the probability of detection in Eq. (5).

We begin with some definitions. Consider the following
random process, in which we fix a source v∗ and generate a

(random) labelled tree G
(t)
D for each time t and for a given

degree distribution D. At time t = 0, G
(t)
D consists of a

single node v∗, which is given a label 1. The source v∗

draws a degree d1 from D, and generates d1 child nodes,
labelled in order of creation (i.e., 2 through d1 + 1). At the
next time step, t = 1, the source picks one of these neighbors
uniformly at random to be the new virtual source and infects
that neighbor. According to Protocol 1, each time a node
v is infected, v draws its degree dv from D, then generates

dv−1 labelled child nodes. So at the end of time t = 1, G
(1)
D

contains the source and its uninfected neighbors, as well
as the new virtual source and its uninfected neighbors. An

example of G
(2)
D is shown in Figure 9 (left panel) with d1 = 3

and virtual source at node 3. Grey nodes are infected and
white nodes are uninfected neighbors. Note that the node

labelled 1 is always exactly one hop from a leaf of G
(t)
D for all

t > 0; also, nodes infect their neighbors in ascending order

of their labels. The leaves of G
(t)
D represent the uninfected

neighbors of infected leaves in standard adaptive diffusion
spreading over a given graph. Define Ω(t,D) as the set of all
labelled trees generated at time t according to this random
process.

2G

2

3

1

74 2 9

(2)
DG

5 6

Figure 9: One realization of the random, irregular-tree
branching process. Although each realization of the random

process G
(t)
D yields a labelled graph, the adversary observes

GT and GT , which are unlabelled. White nodes are unin-
fected, grey nodes are infected.
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Figure 10: L(G2) for the snapshot G2 illustrated in Figure
9. Boxes (a) and (b) illustrate the two families partitioning
L(G2).

At some time T , the adversary observes the snapshot of
infected subgraph GT . Notice that we do not need to gen-
erate the entire contact network, since GT is conditionally
independent of the rest of the contact network given its one-
hop neighbors. Hence, the we only need to generate (and
consider) the one hop neighbors of GT at any given T . We
use GT to denote this random graph that includes GT and
its one hop neighbors as generated according to the previ-
ously explained random process. Notice that the adversary
only observes GT , which is an unlabelled snapshot of the in-
fection and its one hop neighbors (see Figure 9, right panel).
We refer to the leaves of GT as ‘infected leaves’, denoted by
∂GT , and the leaves of GT as ‘uninfected leaves’ denoted by
∂GT . Define

L(GT ) ≡ {G̃ ∈ Ω(T,D) | U(G̃) = GT },

i.e., the set of all labelled graphs (generated according to the
described random process) whose unlabelled representation

U(G̃) is equal to the snapshot GT . Figure 10 illustrates
L(GT ) for the graph G2 in Figure 9.

We define a family CGT ,v ⊆ L(GT ) as the set of all la-
belled graphs whose labeling could have been generated by
a breadth-first labeling of GT starting at node v ∈ ∂GT .
Here, a breadth-first labeling is a valid order of traversal for
a breadth-first search of GT starting at node v. We restrict
v to be a valid source for an adaptive diffusion spread—that
is, it is an infected leaf in ∂GT . Note that a BFS labeling
starting from two different nodes on the unlabelled tree can
yield the same labelled graph. In Figure 10, boxes (a) and
(b) illustrate the two families contained in L(G2).



Let P(CG,v) ≡ P(G
(T )
D ∈ CG,v) denote the probability that

the labelled graph G
(T )
D with snapshot GT is generated from

a node v. From the definition of the random process for
generating labelled graphs, we get

P(CGT ,v) =

 ∏
w∈GT

PD(dw)


︸ ︷︷ ︸

degrees of G

Q(GT , v)︸ ︷︷ ︸
virtual sources

|CGT ,v|︸ ︷︷ ︸
count of

isomorphisms

(35)

where PD(d) is the probability of observing degree d under
degree distribution D, and

Q(GT , v) =
1v∈∂GT

dv
∏
w∈Φv,vT \{v,vT }

(dw − 1)

is the probability of passing the virtual source from v to
the virtual source vT given the structure of GT , where Φv,vT
is the unique path from v to vT in GT . Eq. (35) holds
because for all instances in CGT ,v, the probability of the
degrees of the nodes and the probability of the path of the
virtual source remain the same.

The probability of observing a given snapshot GT is pre-

cisely P(G
(T )
D ∈ L(GT )). Notice that CGT ,v partitions L(GT )

in to family of labelled trees that are generated from the
same source. This give the following decomposition:

P(G
(T )
D ∈ L(GT )) =

∑
v∈CGT

P(CGT ,v), (36)

where we define CGT as the set of possible candidates of the
source that generate distinct labelled trees, i.e.

CGT ≡ {v ∈ GT |CGT ,v 6= CGT ,v′ ∀ v
′ ∈ CGT , v

′ 6= v} . (37)

Notice that this set is not unique, since there can be multiple
nodes that represent the same family CGT ,v. We pick one of
such node v to represent the class of nodes that can generate
the same family of labelled trees. We use this v to index
these families and not to denote any particular node in ∂GT .

Consider an estimate of the source v̂(GT ). In general,
v̂(GT ) is a random variable, potentially selected from a set
of candidates. We define detection (D) as the event in which

v̂(GT ) = v1(G
(T )
D ); i.e., the estimator outputs the node that

started the random process. We can partition the set of
candidate nodes ∂GT , by grouping together those nodes that
are indistinguishable to the estimator into classes. Precisely,
we define a subset of nodes indexed by v ∈ CGT ,

χGT ,v ≡ {v
′ ∈ ∂GT |CGT ,v = CGT ,v′} . (38)

For a given snapshot, there are as many classes as there are
families. In Figure 10, the class associated with family (a)
has one element—namely, the node labeled ‘1’ in family (a).
The class associated with family (b) contains two nodes: the

the probability of detection given a snapshot is

P(D|GT ) =
P
(
G

(T )
D ∈ L(GT ) ∧D

)
P(G

(T )
D ∈ L(GT ))

. (39)

=

∑
v∈CGT

P(CGT ,v)P
(
D
∣∣G(T )

D ∈ CGT ,v
)

∑
v∈CGT

P(CGT ,v)
(40)

node labeled ‘1’ in family (b), and the node labeled ‘5’ in
the rightmost graph of family (b), since both nodes give rise
to the same family.

We consider, without loss of generality, an estimator that
selects a node in a given class with probability P(v̂(GT ) ∈
χGT ,v). Notice that |χGT ,v| denotes the number of (indistin-
guishable) source candidates in this class. From Eq. (36),

where P(D|G(T )
D ∈ CGT ,v) = P(v̂(GT ) ∈ χGT ,v)/|χGT ,v|. We

use the following observation:

Lemma A.1.

P(CGT ,v)/|χGT ,v|∑
v′∈CGT

P(CGT ,v′)
=

1

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
. (41)

Proof of this lemma is omitted due to space limitations.
Substituting Equation (41) into Equation (40), we get that

P(D|GT ) =
∑

v∈CGT

P(v̂(GT ) ∈ χGT ,v)

dvT
∏

w∈φ(v,vT )\
{v,vT }

(dw − 1)
.

Since each term of this summation is bounded by

P(v̂(GT ) ∈ χGT ,v)

dvT
∏

w∈φ(v,vT )\
{v,vT }

(dw − 1)
≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
,

and
∑
v∈CGT

P(v̂(GT ) ∈ χGT ,v) = 1, it must hold that

P(D|GT ) ≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT )
\{v,vT }

(dw − 1)
.

This upper bound on the detection probability is achieved
exactly if we choose weight P(v̂(GT ) ∈ χGT ,v) = 1 for the
class(es) minimizing the product

∏
w∈φ(v,vT )\{v,vT }

(dw−1),
i.e.,

v̂(GT ) = arg min
v∈∂GT

∏
w∈φ(v,vT )
\{v,vT }

(dw − 1).
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