
Appendix A

Appendix on complex numbers:

A.1 complex numbers

We begin with a review of several properties of complex numbers, their representation, and some of their basic
properties. The use of complex numbers, complex-valued functions, and functions of a complex variable will
prove essential for an understanding of the material in this text, so it is important that before proceeding with
the rest of this material, some basic notions are well understood. Without the ability to manipulate complex
numbers and functions, our treatment of discrete-time system theory would be much more cumbersome.

There are many ways in which complex numbers may be represented. Two representations that will be
used extensively in this text are the �rectangular� form and the �polar� form. The rectangular form, also
called the �Cartesian� form, represents a complex number z as an ordered pair of real numbers, usually
written

z = x+ jy

where x and y are real numbers, with x referred to as the �real part� of z and y referred to as the �imaginary
part� of z and j =

√
−1. We can write

x = <z and y = =z

to illustrate taking the �real part� and the �imaginary part� of the complex number z. In polar form, we can
write

z = rejθ,

where r > 0 is referred to as the magnitude of the complex number z and θ is the phase or angle of z. We
can then express these relationships as

r = |z|, and θ = ∠z,

and use Euler's relation
ejθ = cos(θ) + j sin(θ),

to relate the complex cartesian and polar representations as

r =
√
x2 + y2, and θ = arctan(y/x).

These relationships can be obtained by considering the real and imaginary parts of a complex number
as points in the complex (x, y) plane. Then the complex number can be thought of as a vector in the plane
from the origin to the point (x, y), with the magnitude of the vector being r and the angle formed from the
real line to the vector yielding θ, as in �gure A.1.

We see that by Euler's relation, we have

z = rejθ = (r cos(θ)) + j(r sin(θ))

and then we obtain
x = r cos(θ) and y = r sin(θ).
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Figure A.1: Vector representation of a complex number, relating the polar and Cartesian forms. Euler's
relation can be used to relate the real part and imaginary parts with the magnitude and phase.

We can similarly write √
x2 + y2 =

√
r2(cos(θ)2 + sin(θ)2) = r,

and
y

x
=
r sin(θ)

r cos(θ)
= tan(θ),

such that
θ = arctan(y/x).

Complex numbers are simply a useful tool that enables us to describe a wider class of equations than do
the real numbers alone. For example, if we consider the equation

x2 + 1 = 0,

and ask for what values of x does this equation have a solution? We �nd that when x takes on values from
the real numbers, then there are no solutions. However we can learn more about this equation, and about
equations involving higher order polynomials in x if we can introduce a solution to this equation. In order
to do so, we must now think of the function

f(x) = x2 + 1

not as a function over the reals, but rather as a function over a new number system - one for which a solution
to this equation exists. By creating this solution, and giving it the name j, we �create� a number that did
not exist in the reals, namely the square root of −1. By constructing a �eld of numbers over which our
algebraic structures behave as we have come to expect, based on the real numbers, we need to introduce
a way to add, subtract, and multiply complex numbers. In Cartesian form, we have that the sum of two
complex numbers can be written

(x1 + jy1) + (x2 + jy2) = (x1 + x2) + j(y1 + y2)

that is, to add two complex numbers, we simply can use real addition of the real parts and real addition of
the imaginary parts, separately to construct the real part and the imaginary part of the sum.

Multiplication of two complex numbers in Cartesian form can be written

(x1 + jy1)(x2 + jy2) = (x1x2 − y1y2) + j(x1y2 + x2y1),

where we can apply the distributive law of multiplication over addition, and use our newly formed relation
that j2 = −1. By using this relation, we can think of j as a variable, and apply the same algebraic
manipulations to complex numbers as we would to polynomials in the variable j, so long as once the algebraic
manipulations are completed, we agree to replace j2 with the number −1, and repeat this process until we
have exhausted all powers of j. We can then write the resulting complex number in Cartesian form by
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collecting the remaining terms without this variable, and call them the real part and those that contain the
variable become the imaginary part.

Suppose we use a di�erent notation for a complex number, such that

c = a+ ,b

Using this notation, the real number sitting next to the smiling face is the imaginary part of c and the real
number not sitting next to the smiling face is the real part of c. Now, pretend that c is a polynomial in the
�variable� ,. Then write:

c1 · c2 = (a1 + ,b1)(a2 + ,b2) = a1a2 + a1b2, + a2b1, + b1b2,2.

If we agree to replace ,2by −1,we have

c1 · c2 = (a1a2 − b1b2) + ,(a1b2 + a2b1)

which is the right answer! We agree to use j instead of ,, and everywhere j2appears we replace it with −1.
So, in this sense �j2 = −1� but j is just a notational aid.

A.2 Complex-valuled functions

Now that we have introduced complex numbers to our �eld of operation, we can now extend the notion of a
function to include the possibility of a function that takes on values from this complex �eld. Speci�cally, we
considered a function to be a mapping from an independent variable, say t to the real numbers, such that
f(t) = c, where c ∈ <. By simply extending this notion to include the possibiltiy that the function f(t) = z,
where z ∈ C,where C denotes the �eld of complex numbers, such that z = x+ jy, and x, y ∈ <

A.3 Complex variables

To this point, we have considered the independent variable in our functions to be taken from either the
integers or the reals. However, now that we have extended our �eld of operation to include the �eld of
complex numbers, it is only natural to consider extending the notion of a function from one that operates
not on just real-valued independent variables, but also, possibly, complex-valued variables. A complex
variable is simply a variable that can take on values from the �eld if complex numbers. So the variable
z = x+ jy is a complex variable and any function of z must be considered carefully, as it is now a function
of a complex variable and as such is considerably more complex than a function of a real variable.

A.4 Functions of a complex variable

We can now consider algebraic functions of complex variables by considering the functions as taking algebraic
operations on the complex numbers, again treating them as polynomials in j, and then reducing the resulting
expression into a single complex number after the algebraic operations are complete. For example, for the
function

f(z) = z2 + 1

we can simply write

f(x+ jy) = (x+ jy)2 + (1 + j0) = (x2 − y2 + 1) + j(2xy)

and see that the resulting value has both a real part and an imaginary part, each of which can be expressed
in terms of the real parts and imaginary parts of z. It is often useful to consider the function f(z) in terms
of its real part and imaginary part separately, so that each might more simply be written as a real-valued
function of two real-valued variables. Speci�cally, we have

f(z) = f(x+ jy) = u(x, y) + jv(x, y),
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where x and y are real-valued variables, and u and v are real-valued functions of two real-valued variables.
In this example, we have

f(z) = u(x, y) + jv(x, y) = (x2 − y2 + 1) + j(2xy),

u(x, y) = x2 − y2 + 1,

v(x, y) = 2xy.

Now the function f itself is complex valued, and notions of graphically displaying such functions is
no longer as simple as it was for real-valued functions. However we can simply plot the real part, u or the
imaginary part v of f(z), to graphically depict its behavior. Similarly, we could consider other representations
of the resulting complex number, such as its polar form, and plot the magnitude, |f |, and the phase, ∠f over
the complex (x, y) plane. As a result, we can then ask whether there is any (x+ jy) at which

f(x+ jy) = (0 + j0) = 0,

which is true if and only if <[f ] = =[f ] = 0, or if or if and only if |f | = 0.
We can check this:

f(x+ jy) = (x+ jy)2 + (1 + j0)

= (x2 − y2 + 1)︸ ︷︷ ︸
<{z}

+j (2xy)︸ ︷︷ ︸
=z

which equals (0 + j0) if and only if x = 0 and y = ±1, i.e. if z is a complex variable, then

f(z) = 0 at z = (0± 1j) , ±j.

If z = x+ jy is a complex variable, then we can plot |f(z)| as a surface over the x− y plane. It hits zero at
the points shown in �gureA.2.

We can similarly plot the phase of the function, i.e. we can plot ∠f(z), over the (x, y) plane as shown in
�gure A.3.

To simplify notation, and to accommodate a broad class of operations using complex numbers, we call
the �complex conjugate�, denoted z∗ , of a complex number z to represent the complex number that has the
same real part but an imaginary part with the opposite sign, i.e. for z = x+ jy, we have z∗ = x− jy, and
z∗ = re−jθ. As a result, we can compactly represent the relationship between the magnitude of a complex
number and the number itself, i.e. we have r2 = z∗z. We can also obtain (z + z∗) = 2x, and (z − z∗) = j2y.
Complex conjugation distributes over addition and multiplication (and division) of complex numbers, i.e.
(z1 + z2)∗ = z∗1 + z∗2 ,and (z1z2)∗ = z∗1z

∗
2 .

A.5 Complex Systems

Complex numbers are often used in real systems, even when only real-valued quantities exist in the constituent
components of the system itself. Applications such as digital communications (modems), radar, sonar, and
computed imaging systems are just a few applications where complex operations are computed using real-
valued constituent components.

Consider the linear shift-invariant system described by the �owgraph in �gureA.4.
where x[n] = xR[n]+jxI [n] and y[n] = yR[n]+jyI [n] are complex-valued sequences. We can draw a block

diagram that can implement the above system using real signals and real multipliers, adders and delays.
The �rst step is to realize that x[n] = xR[n] + jxI [n] and y[n] = yR[n] + jyI [n] are pairs of real-

valued sequences, i.e., the system above has two inputs xR[n] and xI [n] and two outputs yR[n]and yI [n].
The second step is to recall that complex multiplication and complex addition are de�ned in terms of real
multiplication and real addition, as described previously. We call the output of �rst multiplication, by 0+j2,
v[n] = vR[n] + jvI [n]. This multiplication is accomplished as

v[n] = j2(xR[n] + jxI [n]) = −2xI [n] + j2xR[n]
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Figure A.2: Magnitude of the function f(z) = z2 + 1,i.e. |z2 + 1|.
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Figure A.3: Phase of the function f(z) = z2 + 1,i.e. ∠f(z).
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Figure A.4: Representation of a complex-valued linear shift invariant system.
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Thus,

vR[n] = −2xI [n]

and

vI [n] = 2xR[n],

which is implemented as

Now, let w[n] be the output of the multiplication by 0− j . We see that w[n] can be computed as

w[n] =

(
1

3
− j 1

4

)
(yR[n− 1] + jyI [n− 1])

=
1

3
yR[n− 1] +

1

4
yI [n− 1] + j

(
−1

4
yR[n− 1] +

1

3
yI [n− 1]

)
.

Thus we have,

wR[n] =
1

3
yR[n− 1] +

1

4
yI [n− 1]

and

wI [n] = −1

4
yR[n− 1] +

1

3
yI [n− 1],

which can be implemented using the following �owgraph
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Now using that y[n] = v[n] +w[n], so that yR[n] = vR[n] +wR[n] and yI [n] = vI [n] +wI [n], we have the
complete block diagram implementation using only real-valued signals as shown in �gure A.5below.

The original block diagram is simply a concise way of representing this complicated system.
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Figure A.5: Flowgraph implementing the system of Figure A.4 using real-valued signals.

A.6 Complex Functions of Complex Variables

Recall that X(s), the Laplace transform as given by X(s) =
∫∞
−∞ x(t)e−stdt, is a complex function of a

complex variable. This has a number of important mathematical implications and can be developed in great
detail. In this text, however, we will keep our treatment of such functions brief and limited in scope. To
aid with the development of the z-transform for sequences, we will brie�y review some of the properties of
such complex functions. When we say that the function is a �complex function,� we simply mean that the
function takes on values in the complex numbers. That is has both real and imaginary parts, as well as
a magnitude and phase. Similarly, when we say that a function is a function of a complex variable, then
the argument of the function takes on values in the complex numbers. For example, consider the complex
function of the complex variable

f(z
↑
) = z

complex variable

which takes on values exactly equal to its argument. Now, since the function is complex, it has both real
and imaginary parts, and since its argument is complex, it also has both real and imaginary parts. As a
result, it is di�cult to conceptualize, or to plot, the whole function all at once. This is why we often look at
one real-valued property of f(z) at a given time, and since the variable is complex, then a single real-valued
property can be thought of as a surface over the complex plane. As the variable z takes on all possible
values, for which f(z)is de�ned, we can imagine a surface de�ned by, say, the real-part of f(z). We can now
describe the surfaces <f(z),=f(z), |f(z)|, and∠f(z) as surfaces over the 2-D complex z-plane.

Recall that
f(z) = z = x+ jy

so we have that the real-part satisi�es,
<f(z) = x

which de�nes a plane through y-axis of the complex z-plane with unit slope. This is shown in �gure A.6.
For the imaginary part, we have that

=f(z) = y

which de�nes a plane through x-axis with unit slope as shown in Figure A.7.
We can also consider the magnitude of the function, |f(z)|, which is non-negative and will always lie on

or above the complex plane as shown in Figure A.8. Note that for a given value of z, the magnitude is given
by

|f(z) =
√
x2 + y2.
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Figure A.6: The surface de�ned by the real-part of the function f(z) = z = x+ jy is shown as a plane over
the complex plane, intersecting complex plane along the y-axis, and linearly increasing as a function of x.
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Figure A.7: 2 The surface de�ned by the imaginary-part of the function f(z) = z = x + jy is shown as a
plane over the complex plane, intersecting the complex plane along the x-axis, and linearly increasing as a
function of y.
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Figure A.8: The surface de�ned by the magnitude of the function f(z) = z = x + jy is shown as a cone of
slope one over the complex plane, centered at the origin.

All values of z that take on the same magnitude would trace out a circle in the complex plane. As the
magnitude increases, the radius of the circle also increases. As a result, the surface de�ned by the magnitude,
|f(z)|, is an inverted cone, of slope one, centered at the origin.

Finally, the phase of the function is given by

∠f(z) = arctan

(
y

x

)
,

which de�nes a spiral ramp starting at +x-axis (which ∠z cuts through), and which ramps up in a counter
clockwise direction to the height π along the −x-axis. In the clockwise direction from the +x-axis, the
surface ramps down to the level −π along the −x-axis. This is shown in Figure A.9.

A real-valued function can be fully described by a plot of the values of the function along an axis describing
its independent variable. A complex-valued function of a complex variable can be fully described by the
surfaces de�ned by its real and imaginary parts. Similarly, it can be fully described by the surfaces de�ned
by its magnitude and phase.
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Figure A.9: The surface de�ned by the phase of the function f(z) = z = x + jy is shown as a spiral ramp
through the complex plane.


