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4 Overview of Discrete-time Signal Processing

1.1 DSP overview:

This is a textbook covering the topic of discrete-time signal processing. The tremendous advances in in-
tegrated circuit technologies over the last few decades have enabled a remarkable revolution in the way in
which we measure and process information. The types if information, or the “signals” as we call them, that
we have interest in processing can range widely from measurements of our environment, such as tempera-
ture, rainfall, geophysical or siesmic data, to signals governing man-made machines of interest, such as the
velocity of a moving vehicle, or the controller modulating signals to the fuel injectors within our cars, to
purely man-made sources of information, such as radio or television signals, or the MP3 encoding of recorded
music.

The abstract concept of a signal is that of a measurement of a quantity of interest that is indexed by
an associated reference axis. Most often, we will refer to this reference axis as the “time” axis for the signal
and refer to these as signals that vary as a function of time. For example, within an analog circuit, we may
measure the voltage across a given resistor within the circuit fabric and label this “signal” v,.(t) to denote
that this is the voltage v of a particular resistor r taken at a particular point in time ¢t. As time varies, the
voltage may be plotted against the independent variable ¢ to produce a voltage vs. time plot, where we
typically assume that negative time is to the left, and positive time to the right. For most signals of interest,
there is a common notion of a reference time, t = 0, such that signals may be plotted with this reference
time in the center, so long as the reference time is known to those interpreting the graph.

Another example of a signal may be the sequence of closing prices of the Dow Jones Industrial Averages
(DJIA) as reported daily from the New York Stock Exchange. Unlike the resistor voltage example, the
sequence of prices will be indexed by an integer reference axis indicating the specific day in a sequence of
days at which the index closed at a particular value. We may write p[n], to denote the closing price of the
DJIA on the n**day of trading, referenced to some common day n = 0. Note that while the resistor voltage
vy (t) could be referenced to any time ¢ taking on any real value, the price p[n] can only be referenced to n
taken as an integer. We refer to signals whose index ¢ can take on any real value as continuous-time signals,
since the “time” signal is assumed to be available over a continuum of values t. We refer to signals whose
index n can only take on values from the integers, i.e. only discrete values, as discrete-time signals. While
this text is largely about discrete-time signal processing, that is the processing and analysis of discrete-
time signals, we will also be interested in understanding how similar properties of continuous-time signals
relate to discrete-time signals, when the discrete-time signals themselves are related in a direct way to a
continuous-time signal. A common means for this to occur is through the notion of sampling.

When you play a song through your MP3 player, you are processing a discrete-time recording of music,
which is stored as samples of the music signal in the memory on your player. Your player then converts this
set of samples into a continuous-time electrical signal which is then transduced into an acoustic signal that
you hear through your headphones. This is the process of converting a discrete-time signal into a continuous-
time signal, which is done because our auditory processing system (our ears) want continuous-time signals.
However the microprocessors and digital circuitry on your MP3 player work best with discrete-time samples
of the music that can be stored sequentially in the memory on your device. Similarly, when the MP3 file
was created, a continuous-time version of the music (either from a magnetic tape recording, or a live studio
performance) was processed such that it could be sampled in time and stored digitally to be used by your
MP3 player. This process of conversion from a continuous-time signal to a discrete-time signal is called
sampling, and in its simplest form we could take the signal v,.(t) and create a discrete-time signal from it by
simply recording the values at a periodic rate f; = 1/T, called the sampling rate to produce the discrete-
time signal v.[n] = v,.(nT), which is precisely what is done on modern digital sampling oscilloscopes. If
the sampling rate is sufficiently fast, then when plotted on the oscilloscope, the signal v[n] with a properly
normalized time axis will be virtually indistinguishable from the continuous-time signal v, (t). Of course the
notion of “sufficiently fast” will depend heavily on the content of the signal v,.(t), but we are getting ahead
of ourselves, and will return to this notion again shortly, and then again more carefully when we revisit
sampling in later chapters.

This enables us to define or adopt some notation that will be convenient to use throughout this text. We
will denote a continuous-time signal using the round braces notation we just employed for the resistor voltage,
namely, z.(t), for a continuous-time signal z. Note that the term “analog” is often used synonymously to
the term “continuous time,” however there is an important difference between the two. A contunuous-time
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Figure 1.1: Discrete-time signal processing in an analog world. Note that in the “analog world” both the
independent “time” variable is continuous as are the possible values of the signal z,(¢). In the “discrete-time”
world, after the C/D converter, the independent time variable n is now discrete, however the amplitudes
z[n] may still take on real-valued quantities. If the discrete-time processing takes place on a digital signal
processor or standard microprocessor, then the discrete-time signal would need to also be a digital signal,
i.e. its amplitude must also be quantized to a finite precision using a finite-precision analog-to-digital (A /D)
converter.

signal is one for which the indepdendent variable (¢ in the case of z.(¢) ) takes on any value in a continuum,
i.e. any real number. An analog signal is one for which the values of the signal can take on any level within
a continuum, i.e. z.(t) € . Note that a continuoous-time signal could be an analog signal, if both ¢ and
x.(t) can take on values from the reals. However a discrete-time signal z[n] could also be an analog signal,
if its values can be arbitrary real numbers. The term “digital” referrs to signals that have been quantized
such that their values must lie within a finite set, as could be represented in digital form, using a binary
representation. Most of the signals we will be interested in for this text will be discrete-time analog signals,
since we will not consider effects of numerical quantization, that is the effects of forcing the signals z[n] to
only take on values that can be represented using a binary representation with a finite number of bits. For
simplicity, we will simply refer to these as discrete-time signals.

Discrete-time signals will be denoted using the square braces notation used for the DJTA prices, namely,
discrete-time signal x will be denoted z[n]. In both the discrete-time and continuous-time cases we will
refer to the independent variables ¢ and n as the “time axis” though in some cases this may be something
different such as the position of a vehicle along a track, or of the reading head along a magnetic tape, or
the index labeling of the n*’sheep to be sheared at a wool processing plant. While many examples of such
discrete-time signals exist in which the independent axis is not simply a time variable, a vast majority of
discrete-time signal processing is undertaken for the case when a continuous-time signal or measurement
is sampled, and then processed digitally by a special purpose piece of hardware, to produce a new set of
discrete-time output signals and these new output signals are then converted to continuous-time signals for
use in our “continuous-time, analog world”, as indicated in Figure 1.1.

In the figure, we note that many signals of interest in our “analog world” (where both time and amplitude
can be taken from the real numbers) are indeed continuous in nature, our notion of time itself is indeed
continuous and many such signals are indexed with respect to time. However, for a variety of reasons,
it is more practical to build processors for these signals out of digital electronics, and therefore, we need
discrete-time representations of signals. Much of this course will take you through the steps necessary to
fully understand (and hopefully to build!) systems of the sort depicted in Figure 1.1. In the figure, note
that the signals of interest begin within the analog world to the left, with the signal of interest x(¢). This
signal is then processed using a “continuous-to-discrete” converter or “C/D” converter for short. In simple
terms, the C/D converter simply samples the signal x(t) at equally spaced samples, spaced T' seconds apart
in time to produce the discrete-time signal z[n] = z(nT'). We mentioned earlier that the necessary sampling
rate f; = 1/T at which the C/D converter must operate was dependent upon the makeup of the signal x(¢).
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6 Overview of Discrete-time Signal Processing
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Figure 1.2: A continuous time (CT) filter processing the continuous-time signal x(t) to produce the
continuous-time output y(t).

We will elaborate on this a bit here, and in more detail later. You may recall from a course on continuous
signals and systems the concept of the frequency content of continuous-time signals, as developed by Fourier
through what we now call the Fourier series representation of periodic signals and the Fourier transform
for aperiodic signals. For a large class of signals z(t), we can define the following two expressions, which
together make up what is referred to as the continuous-time Fourier transform (CTFT) representation for
aperiodic signals,

z(t) = % 7 X (w)ed“tdw
Xw) = 7m(t)ej“tdt.

We refer to the signal X (w) as the Fourier transform of the signal x(t). The first relation above is called the
Fourier transform synthesis equation, as it depicts the “recipe” or formula for synthesizing the signal x(¢) out
of the class of periodic complex exponential sequences e/t = cos(wt) + j sin(wt), where j = v/—1. When the
signal X (w) satisfies | X (w)| = 0 for |w| > B, then we say that the signal z(t) is “band limited” to F' = B/2w
Hz, since there is no energy in the signal outside of the range from —B < w < B. We refer to twice the
highest frequency in z(t) as the Nyquist frequency, i.e. 2F, which is also equal to the total width of the
frequency band (or band width) of the signal, when you include the negative and the positive frequencies.
When the C/D converter used in Figure 1.1satisfies (1/7") > 2F, then it is possible to exactly recover the
signal x(t) from its samples. Namely, we can directly compute

o0

w(ty=Y" x[n]sinc(%(t —nT)), (1.1)

— 00

where the “sinc” function is defined as

sin(t)
—=, t#0
sinc(t) = i 7

1 t=0.

In practice, we sample slightly faster than 2F, i.e. smaller values of T, to ensure that we can capture all
of the information in the signal z(t). The equation given in (1.1)is precisely the process that is undertaken
in an ideal D/C, or discrete-to-continuous converter, as depicted in figure (1.1), in order to construct the
signal y(t) from the discrete-time signal y[n], just prior to the signal y(¢) being sent back out into the analog
world. Note that we could process the signals directly within the analog world. This is precisely what
analog electronics is for and this is a huge industry. However, as the processing that is desired becomes more
complex, the capacitors, inductors, and resistors, and transistors, and diodes, and other circuit components
depicted in Figure (1.2) become increasingly difficult to design and manufacture and become more expensive.

The alternative to processing such signals while leaving them within the analog world, is to sample them,
and process them in discrete-time, as depicted in Figure (1.3). The discrete-time (DT) filter shown in the
figure depicts the process of mathematically manipulating the samples in z[n], which essentially comprises
multiplication, addition and movement through storage registers.

As we will see in later chapters, often such discrete-time operations can be described by what are known as
difference equations operating on the signals x[n] and y[n], much like the governing equations for continuous-
time filters can often be described in terms of differential equations. An example of such a difference equation
might be

yln] = bozx[n] + byzn — 1] + - -+ + byz[n — N,
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Figure 1.3: Discrete-time filtering alternative to the continuous-time filtering of a continuous-time signal.

where, since the output y[n]| can be computed directly from samples of the input, the difference equation is
called “non recursive”. This is in contrast to a recursive implementation that might take the form

yln] = ary[n — 1] + azy[n — 2| + - - - + any[n — N|, +boz[n] + biz[n — 1] + -+ - + byrz[n — M],

where the coefficients brand agare selected to produce the desired relationship between the input x[n] and
output y[n].

The term DSP is often used to describe “digital signal processing” which describes not only discrete-
time signal processing, but also the additional step of quantizing the output of the ideal C/D converter
to create a “digital signal” which is not only a discrete-time signal, but one that is also capable of being
represented by a fixed number of bits. The additional step of quantization that takes place within the C/D
converter is something that we will explore in more detail in later chapters. However for now, we will choose
to ignore these bits of detail. Some more sophisticated forms of DSP that have impacted the technology
you use regularly, include telecommunications, in which the modulation, coding, echo cancellation and line
equalization is done nearly completely in discrete-time in modern systems. Speech processing uses analysis
and synthesis methods for low bit-rate speech transmission over cellular and other communications links,
speech recognition systems are sophisticated digital algorithms that process sampled and digitized speech.
Image processing that takes place for HD video and other digital image and multimedia applications, raging
from coding for video conferencing, digitization and compression in digital cameras and camcorders (such as
those on the mobile telephone in your pocket), fax transmission, HDTV, digital video recorders (DVRs), and
image archiving; noise removal; deblurring; and object recognition. DSP has a massive footprint in consumer
electronics from CD/DVD players, to Digital Satellite TVs, HD-DVRs, cellular phones, MP3/MP4 players.
It’s nearly impossible to find consumer electronics to do not contain DSP these days. Modern medical
imaging is largely based on discrete-time signal processing technology, including the pervasive computed
tomography (CT) and magnetic resonance imaging (MRI) - even X-ray technology uses an array of detectors
to construct a digital representation of the received radiation, so X-ray films are as much a part of the past
as film-based cameras, 8 track tapes, film-based movie cameras and more.

Digital representation and processing is often preferred over direct analog/continuous-time processing for
three (or more) main reasons. First, discrete-time systems are more versatile — sophisticated processing, time
varying and adaptive filtering, nonlinear processing, multidimensional signals (especially image processing)
can all be captured with relative ease in such systems. Second, the guaranteed accuracy, as determined by
the register lengths (number of bits) used to perform the computations, and not by the non-ideal integrated
circuit components, including resistors capacitors, inductors, operational amplifiers, and other components
whose performance is not only not ideal, but will vary over time and with temperature. Finally digital
implementations are often smaller, cheaper, lower power, thanks in large part to the incredible scaling of
integrated microelectronics through the process known as “Moore’s Law”, whereby such integration densities
nearly double every 18 months. Due to speed limitation of analog-to-digital converters and computers,
digital signal processing was initially employed (during 1960s) in application areas having low-bandwidth
signals, such as telephone quality speech (approximately 3 KHz bandwidth). The practical frequency range
for digital processing has increased vastly over the years and continues to climb. As an example, digital
signal processing is now commonly employed in radar, where sampling rates may be tens or even hundreds
of megahertz. Optical communications links are starting to use digital signal processing with sampling rates
in excess of 50G H z! Note that here we use the units of Hz to represent samples-per-second, in addition to
its more common meaning of cycles-per-second. This slight abuse of notation is common in the discrete-time
signal processing industry and one with which we all must live.
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8 Overview of Discrete-time Signal Processing

1.2 Continuous-time (CT) signals

While the class we will refer to as continuous-time signals is defined by properties of the independent time
axis, t, we can further break down this class of signals into subclasses that will be useful in various contexts.
For example, we refer to finite-length continuous-time signals, as signals z(¢) for which the independent time
axis is only defined over a finite interval, i.e., z(t),t € [0, 1], as might be convenient for measurements taken
within a specific time interval, or for which the signals are not present outside of the interval of interest.
For example, x(t) might correspond to the temperature of the water column in the ocean from the surface,
t = 0 to the ocean bottom at, say, ¢t = 25 meters, for a shallow water environment. It does not make sense
to consider the temperature as existing outside of this region, since there is no ocean outside this region at
this location in the ocean.

Having defined finite-length signals, we can similarly define infinite-length signals as those for which the
time axis of interest, or over which the signals of interest are defined is indeed infinite, i.e. z(t),t € R.
Finally, we can also define continuous-time periodic signals as infinite-length signals for which the following
relationship holds z(t) = z(t 4+ P) for some value of P € R. We refer to the minimum value of P > 0 for
which this relationship holds as the “fundamental period” or just the “period” of the periodic signal.

1.3 Discrete-time (DT) signals

We can repeat this exercise for discrete-time signals as well. While the class we will refer to as discrete-time
signals is defined by properties of the independent time axis, n, we can further break down this class of
signals into subclasses. Once again, we refer to finite-length discrete-time signals, as signals x(t) for which
the independent time axis is only defined over a finite interval, i.e. ,z[n],n € [0, N], as might be convenient
for a finite set of measurements, or for which the signals are not present outside of the interval of interest.
Once again, z[n] might correspond to the number of words on the n'* page of a specific book that only has
N pages. It does not make sense to consider pages that do not exist!

Having defined finite-length signals, we can similarly define infinite-length discrete-time signals as those
for which the time axis of interest, or over which the signals of interest are defined is indeed infinite, i.e.
z[n],n € Z, where Z refers to the set of integers. Finally, we can also define discrete-time periodic signals
as infinite-length signals for which the following relationship holds z[n] = z[n + P] for some value of P € Z.
We refer to the minimum value of P > 0 for which this relationship holds as the “fundamental period” or
just the “period” of the periodic signal. We will return to the concept of discrete-time and continuous-time
periodic signals in Chapter 2.
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