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ECE 410 DIGITAL SIGNAL PROCESSING D. Munson 
University of Illinois Chapter 10 
 
Classes of Digital Filters 
 
FIR – Finite impulse response; 
  {hn} finite in length 
 
IIR – Infinite impulse response; 
  {hn} infinite in length 
 
 
FIR Filter Structures 
 
hn = a0, a1, a2, … , aN–1, 0, 0, …{ } 
 

⇒ H(z) = an
n= 0

N –1
∑  z–n 

 
TF is a polynomial in z–1  
      
Direct Form Structure: 
 

z-1z-1 z-1

a0

xn

yn

a1 a2 aN–2 aN–1

+

 
 
Due to the arrangement of the delays, this is also called a transversal filter or tapped delay-line 
filter. 
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The implementation of a transfer function is not unique.  The transfer function describes only the 
input-output properties of the system.  For any transfer function, there are an infinite number of 
possible realizations of that transfer function.  For example, consider the transpose-form 
structure. 
 
Transpose Form: 
(obtained by reversing all flows) 
 

z-1 z-1

a0a1aN-2aN-1

xn

+ ynz-1 + +
 

 
This structure has the same transfer function as the Direct Form structure and is very commonly 
used. 
 
Advantage:  Easier to fully parallelize.  No adder tree at output as in Direct Form. 
 
FIR filters are nearly always implemented nonrecursively as in the above diagrams.  
Theoretically, though, FIR filters can be recursive, as shown in the following example. 
 
Example 
 
Disguise the FIR transfer function as a rational function with non-unity denominator: 
 
 H(z) = a0 + a1 z–1 + a2 z–2 
 

  = 
1 + z–1

1 + z–1    a0 + a1 z–1 + a2 z–2( ) 

   
  for example 
 

  = 
a0 + z–1 a0 + a1( )+ z–2 a1 + a2( )+ a2 z–3

1+ z –1  

 
⇒ Y(z) 1+ z –1[ ]= [NUM] X(z) 
 
⇒  Y(z) = –z–1 Y(z) + [NUM] X(z) 
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Filter structure: 
 

z-1

a0

a0+a1

a1+a2

a2

-1

z-1

ynxn

z-1

z-1

+

 
 
This is a recursive structure (yn depends directly on yn-1) that realizes the transfer function H(z). 
 
 
IIR Filter Structures 
 
Transfer functions of IIR filters are not polynomials.  We consider rational TF’s.  IIR filters must 
be recursive (otherwise they would require an infinite number of adders, multipliers, and delays). 
 
Consider a 2nd-order case: 
 

 H(z)= 
a0 + a1 z–1 + a2 z–2

1 + b1 z–1 + b2 z–2  
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Direct Form 1 structure: 
 
 

a0 ynxn

z-1

z-1

a1

a2

z-1

z-1

+

- b1

- b2

 
Can also implement using a Direct Form 2 structure: 
 
 

z–1

z–1

a0

a1

a2

–b1

–b2

xn yn+ +

 
 
 

We showed earlier that this structure has the same transfer function H(z) as the Direct Form 1 
structure. 
 
IIR filters are always recursive.  FIR filters are implemented in nonrecursive form. 
 
Implementation of Higher-Order Digital Filters 
 
(Order of filter = max {degree (Num), degree (Den)} = # delays required for a 
Direct Form 2 implementation) 
 
High-order direct-form filters can have large error at the output due to multiplication roundoff.  
Also, the actual Hd(ω) may deviate considerably from the desired due to coefficient rounding. 
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Cascaded or parallel second-order sections exhibit smaller error than direct form.  Also, splitting 
into lower-order sections can make filter easier to parallelize (e.g., second-order filter on a chip). 
 
Cascade Form: 
 

 H(z) = 
a0 + a1 z–1 +…+ aN z–N

1 + b1 z–1 +…+ bN z–N  

 

 = 
a0 zN + a1zN–1 +… + aN
zN + b1 zN–1 + …+ bN

 

 
Write as: 
 

 H(z) = a0 
z – zi
z – pii=1

N
∏  

 
Since ai, bi are real, if pi is complex, there must be some pk = pi

∗ . 
 
Pair up poles and zeros so that (assume N is even) 
 

 H(z) = a0 Hi(z)
i=1

N /2
∏  

where 

 Hi(z) = 
  

(z – zk) (z – z )
(z – pm) (z – pn)

 

 
is a second-order filter section with z  = zk

∗  and pn = pm
∗  . 

 
Pair up complex conjugates so that all multiplier coefficients of the second-order sections are 
real,  so filter can use real arithmetic.  (If zk is real, then pair up with any real z ; similarly for 
poles.) 
 
 
For instance, suppose you factor H(z) and find two poles are 
 
 pm = 1 + j,  pn = 1 – j 
 
Then pair these poles together in the same Hi(z) so that: 
 

 Hi(z) = 
  

(z – zk) (z – z )
z – (1+ j)[ ] z – (1 – j)[ ]

 

 
 = 

  

(z – zk ) (z – z )
z2 – z – j z – z + j z + (1+ j) (1– j)
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=
(z – zk)(z – z )

z2 – 2z + 2

real filter coeffs.  
 
 
H(z) implemented in cascade form looks like: 
 
 

X(z) Y(z)a0 H1(z) H2(z) H   (z)N
2

…
 

 
where each Hi(z) is a second-order section.  If N is odd, then one of the above sections will be a 
first-order filter. 
 
Parallel Form: 
 
Expand H(z) in a PFE: 
 

 
H(z)

z
 = 

A
z

 + 
B1

z – p1
 + … + 

BN
z – pN

 

 

⇒  H(z) = A + 
B1 z

z – p1
 + … + 

BN z
z – pN

 

 
Again, pair up complex poles. 
 
If pk=   p

∗  then know that Bk =   B
∗  so that 

 
Bk z

z – pk
 + 

  

B z
z – p

 = 
  

B∗ z
z – p∗  + 

  

B z
z – p

 

 

 = 
  

B∗ z(z – p ) + B z(z – p∗)
z – p∗( )(z – p )

 

 

 = 
  

z2 B∗ + B( )– z B∗ p + B p∗( )
z2 – z p∗ + p( )+ p p∗  

 coeffs. are all real 
Parallel realization (assume N is even): 
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 H(z) = A + Hi(z)
i=1

N /2
∑  

where 
 

 Hi(z) = 
a1i z2 + a2iz

z2 + b1i z + b2i
 

 

  = 
a1i + a2i z–1

1 + b1i z–1 + b2i z–2  

 
are second-order sections.  Note that, due to the form of the numerator, each of these second-
order sections requires one fewer multiplication than for cascade form. 
 
Implementation: 
 
 

X(z)

H1(z)

H2(z)

HN/2(z)

A

Y(z).

.

.

.

+

 
 

 
If N is odd, then one of the above filter sections will be first-order.
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Example 
 

Suppose        H(z) = 
z4 +1

z4 –
1

16

 . 

 
a) Draw a cascade structure of two second-order sections implementing H(z). 
 
b) Repeat a), but for parallel form. 
 

Solution 
 

a) H(z) = 
z – e

jπ
4

 

 
  

 
 z – e

–j π
4

 

 
  

 
 z + e

jπ
4

 

 
  

 
 z + e

– j π
4

 

 
  

 
 

z – 1
2

 
 

 
 z + 1

2
 
 

 
 z – j

2
 
 

 
 z + j

2
 
 

 
 

 

 

  = 
z2 – 2 cos

π
4

 
 

 
 z +1

z2 –
1
4

    
z2 + 2 cos

π
4

 
 

 
 z +1

z2 + 1
4

 

 

  = 
z2 – 2 z +1

z2 –
1
4

   
z2 + 2 z + 1

z2 + 1
4

 

 

  = 
1 – 2 z–1 + z–2

1– 1
4

z–2
   

1+ 2 z–1 + z–2

1 + 1
4

z–2
 

 
 Using direct-form-2 second-order sections, the cascade structure is 
 

 

1
4

z–1

1
4

xn yn

√2–

z–1

z–1

z–1

√2

–
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b) 
H(z)

z
 = 

z4 +1

z z – 1
2

 
 

 
 z + 1

2
 
 

 
 z – j

2
 
 

 
 z + j

2
 
 

 
 

 

 

  = 
A
z

 + 
B1

z – 1
2

 + 
B2

z + 1
2

 + 
B3

z – j
2

 + 
B4

z + j
2

 

 
⇒ H(z) = A + 

B1 z

z – 1
2

 +  
B2 z

z + 1
2

 +  
B3 z

z – j
2

 +  
B4 z

z + j
2

 

 

  = A + 
B1 + B2( ) z2 +

1
2

B1 – B2( ) z

z – 1
2

 
 

 
 z + 1

2
 
 

 
 

 + 
B3 + B4( ) z2 +

j
2

B3 – B4( ) z

z – j
2

 
 

 
 z + j

2
 
 

 
 

 

 

  = A + 
B1 + B2( )+

1
2

B1 – B2( ) z–1

1 – 1
4

z–2
 + 

B3 + B4( )+
j
2

B3 – B4( )z–1

1+ 1
4

z–2
 

 
Using direct-form-2 second-order sections, the parallel structure is 

 

yn

A

xn

1
4

B1+B2

z–1

z–1

(B1–B2)1
2

1
4

B3+B4

z–1

z–1

(B3–B4)j
2

–
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Note:  In this diagram, A and the Bi are the coefficients in the PFE.  B4 is the complex conjugate 
of B3, so all multiplier values are real.  Both the cascade and parallel structures will implement 
the original transfer function H(z), and will generally do so with less error due to finite register 
length than a 4th-order direct-form implementation. 
 
 
 
Generalized Linear Phase Filters 
 
 
Linear Versus Generalized Linear Phase 
 
Will say Hd(ω) is linear phase if 
 
 Hd(ω) = Hd(ω)  e–jωM 
   
  nonnegative 
 
Fact: 
 
A digital filter doesn’t usually have exactly linear phase. But is easy to design FIR filters having 
what we will call generalized linear phase.  Are two types. 
 
Type 1: 
 
 Hd(ω) = R(ω) e–jωM 
   ↑ 
  real, but not nonnegative 
 
Type 2: 
 
 Hd(ω) = R(ω) ej(α–ωM) 
 
with α ≠ 0. 
 
We will see that generalized linear phase corresponds to having linear phase over the passband. 
 
 
FIR Versus IIR Filters 
 
Advantage of FIR:  Easy to design with generalized linear phase (linear phase over passband). 
 
Advantage of IIR:  Can’t have exactly linear phase or generalized linear phase, but IIR can often 
meet Hd(ω)  specification with a much lower order filter. 
 
Generalized Linear Phase Property of FIR Filters 
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Type 1 Generalized Linear Phase 
 
Theorem: 
 
An FIR filter with real-valued unit pulse response hn{ }n=0

N–1
 has Type 1 generalized linear phase 

with Hd(ω) = R(ω) e–jωM iff 
 

 hn = hN–1–n  
n = 0, 1, … ,

N
2

– 1 (N even)

n = 0, 1, … ,
N – 1

2
(N odd)

 

 
 

 
 

 

 

where M = 
N – 1

2
 and R(ω) is real and even. 

 
Picture: 

n

hn

 
 
Proof:   
 
We give the proof in one direction only.  Assuming filter coefficients with even symmetry, we 

show that Hd(ω) has the stated form.  Now, assume N is odd.  Let M = 
N – 1

2
 .  Given hn = hN–1–

n , show that Hd(ω) has Type 1 generalized linear phase. 
 

 Hd(ω) = 
n= 0

N –1
∑ hn e–jωn 

 

   = hn e–jωn + hM e– jωM
n=0

M–1
∑  + hn e–jωn

n=M+1

N–1
∑  

 

   = e–jωM hM + hn e– jω(n–M)
n=0

M–1
∑ + hn e– jω(n–M)

n=M+1

N–1
∑

 

  
 

   (❑ ) 
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Now, making the change of variable n = N–1–k and using M = 
N – 1

2
, the second sum in (❑ ) can 

be written as 
 

  hN–1–k e– jω (M–k)
k= M–1

0
∑  

 
Thus, 
 

 Hd(ω) = e–jωM  hM + hn e– jω (n–M) + hN–1–n e– jω(M–n)( )
n=0

M–1
∑

 

  
 

   (❑❑ ) 

 
and using hN–1–n = hn, we have 
 

 Hd(ω) =  e–jωM hM + 2 hn cosω(n – M)
n=0

M–1
∑

 

  
 

   

      

     ∆
=

R(ω) ~ real valued 

Note: 
 
 Hd(ω)  = R(ω)  
 

 ∠Hd(ω) = 
–ωM ω : R(ω) > 0{ }

–ωM ± π ω : R(ω) < 0{ }

 
 
 

        (∆) 

  ↑ 
  –1 = e±jπ 
 
(∆) ⇒ phase is linear except where R(ω) changes sign, in which case the phase jumps by π. 
 
This implies that a generalized linear-phase filter has linear phase over the passband since 
 

R(ω) can’t change sign in
passband since |Hd(ω)| = |R(ω)|
≠ 0 in passband

–π π ω

|Hd(ω)| = |R(ω)|
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To prove the theorem in the other direction, start with 
 
 Hd(ω) = R(ω) e–jωM . 
  ↑ 
  real and even 
 
Then can show hn = hN–1–n . 
 

Note:  If N is even then we still take M = 
N – 1

2
 and the proof is nearly the same as above. 

 
Phase characteristic of a generalized linear phase FIR filter: 
 

plot starts here assuming R(0) > 0;
if R(0) < 0 then plot starts at π

π

–π

π ω

slope = –M

| |Hd(ω)

jumps of 2π or
π in stopband;
not linear in stopband

only jumps of
2π in passband

 
 
In the next lecture, we will consider Type 2 generalized linear phase: 
 
 Hd(ω) = R(ω) ej(α–ωM) 
  ↑ 
  real, odd 
 
with α ≠ 0.  
In this case, for a filter hn{ }n=0

N–1 and α ≠ 0, can show must have α = 
π
2

 and have odd coefficient 

symmetry, i.e., 
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 h(n) = –h(N–1–n)   

and   ∠Hd(ω) = 

π
2

– ωM ω : R(ω) > 0{ }

–π
2

– ωM ω : R(ω) < 0{ }

 

 
 

 
 

 

with M = 
N – 1

2
 for N even and N odd. 

 
Picture: 
 

hn

n

 
 
 
Type 2 Generalized Linear Phase 
 
This type of generalized linear phase corresponds to antisymmetric (odd), rather than symmetric 
(even) filter coefficients. 
 
Theorem: 
 
An FIR filter with real-valued unit pulse response n=0

N –1
hn{ }  has Type 2 generalized linear phase 

with Hd(ω) = R(ω) e
j(π

2
–ωM)

 iff 
 
 hn = – hN–1–n 
 

where M = 
N – 1

2
 and R(ω) is real and odd.   

 
Proof: 
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We give the proof in one direction only.  Assuming filter coefficients with odd symmetry, we 

show that Hd(ω) has the stated form.  Now, assuming N is odd and taking M = 
N – 1

2
 we have 

from before: 
 

 Hd(ω) = e–jωM  hM + (hn e– jω(n–M) + hN–1–n e –jω(M–n) )
n=0

M–1
∑

 

  
 

       (❑❑ ) 

 
Given that hn = – hN–1–n we must have hM = 0.  Can see this pictorially: 
 

hn

M n

 
 
Obviously, we cannot have odd coefficient symmetry unless hM = 0. 
 
Now, setting hM = 0 and using hN–1–n = – hn in (❑❑ ), we have 
 

 Hd(ω)  =  e–jωM  hn
n=0

M–1
∑ e– jω(n–M) – ejω(n–M)( )

 

  
 

   

 

   = e–jωM (–j2)  hn
n=0

M–1
∑  sinω(n–M) 

 

   = e
j(π

2
–ωM)

  –2 hn sinω(n – M)
n=0

M–1
∑

 

 
 

 

 
  

         
     = R(ω), which is real and odd 
 
So, for the antisymmetric coefficient case, we have Hd(ω)  = R(ω)  , but now R(ω) is a linear 
combination of sines (odd) instead of cosines (even) and  
 

 ∠Hd(ω)  =  

π
2

– ωM {ω : R(ω) > 0}

–π
2

– ωM {ω : R(ω) < 0}
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To prove the theorem in the other direction, start with 
 

 Hd(ω) =  R(ω) e
j π

2
–ωM 

 
  

 
 
 

        ↑ 
    real and odd 
 
Then can show hn = – hN–1–n . 
 

Note: If N is even instead of odd, we still take M = 
N – 1

2
 and the proof is nearly the same as 

above. 
 
 
Example 
 
Determine whether a filter with the unit-pulse response 
 
  
 {hn} = {1, –1, 1} 
    ↑ 
 
has generalized linear phase, and if so, whether it has linear phase. 
 
Note:  Linear phase ⇒ generalized linear phase, but not vice versa. 
 
Solution 
 
hn is symmetric about its midpoint ⇒ Have Type 1 generalized linear phase.  To check whether 
we have linear phase, we must find the phase of the frequency response: 
 
 Hd(ω) =  1 – e–jω + e–j2ω  
 
   =  e–jω  (ejω – 1 + e–jω) 
       ↑ e–jωM where M = 1 in this example 
 
   =  e–jω (2 cosω–1)      
    R(ω) 
 
We see that R(ω) changes sign on –π < ω < π.  Thus, we know that this filter does not have 
linear phase.  Let’s find the phase: 
 

 ∠Hd(ω) =  
–ω {ω : 2 cosω – 1 > 0}

–ω + π {ω : 2 cosω – 1 < 0}
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Thus, for |ω| < π we have 
 

 ∠Hd(ω) = 
–ω ω < π

3
–ω + π π

3
< ω < π

 

 
 

  
. 

This is obviously not linear because ∠Hd(ω) takes jumps of π at ω = ± 
π
3

. 

π

−π

−π π
ω

∠ Hd(ω)

 
 

Summary:  In this example, ∠Hd(ω) is generalized linear phase but it is not linear phase. 
 
Example 
 
Changing the previous example to 
 

 hn{ }=
1
4

, –1,
1
4

   
   

 

 
results in a filter that not only has generalized linear phase — it also has linear phase.  Students 
are encouraged to work this out as an exercise. 
 
Example 
 
Determine whether Hd(ω) corresponding to 
 
  hn{ } = {–1, 3, 1} 
 
has generalized linear phase. 
 
Solution 
 
At first it appears that this filter might have Type 2 generalized linear phase.  However, this is 
not the case because the middle coefficient is nonzero.  Let’s examine Hd(ω): 
 
 Hd(ω) = –1 + 3e–jω  + e–j2ω 
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  = e–jω –e jω + 3 + e –jω( ) 
 

  = e–jω 3 – j2sinω( ) 
 

Notice that this cannot be put in the form e
j(π

2
–ωM) 

R(ω) where R(ω) is real.  The nonzero 
middle coefficient prevents this! 
 
Example 
 
Determine whether Hd(ω) corresponding to 
 
 hn{ } = {1, –1} 
 
has generalized linear phase and linear phase. 
 
Solution 
 
Hd(ω) has Type 2 generalized linear phase since hn is antisymmetric.  Find the phase of Hd(ω) to 
check whether we have linear phase: 
 
 Hd(ω) = 1 – e–jω 
 

   = e
– jω

2 e
j ω

2 – e
–j ω

2
 

 
  

 
  

 

   =  e
– jω

2
 2 j sin 

ω
2

 
 

   = e
j(π

2
–

ω
2
)
  2 sin 

ω
2

 

        
        R(ω) 
 
Here R(ω) is odd, so it must change sign at ω = 0.  This implies that we do not have linear phase.  
Let’s find the phase: 
 

 ∠Hd(ω) =  

π
2

–
ω
2

ω : sin
ω
2

> 0   
   

–
π
2

–
ω
2

ω : sin
ω
2

< 0   
   

 

 
 

 
 

 

 
Thus, for |ω| < π we have 
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 ∠Hd(ω) =  

π
2

–
ω
2

0 < ω < π

–
π
2

–
ω
2

–π < ω < 0

 

 
 

 
 

 

 
This is clearly not linear, as shown in the following plot. 
 

π

−π

−π π
ω

∠ Hd(ω)

 
 
Since R(ω) will be odd for any antisymmetric filter, we conclude that filters with antisymmetric 
coefficients cannot have linear phase. 
 
Example   
 
Given 
 
 hn = {1, 1} 
  ↑ 
 
does Hd(ω) have generalized linear phase?  How about linear phase? 
 
Solution 
 
Because of coefficient symmetry, Hd(ω) has Type 1 generalized linear phase.  To check linear 
phase, look at: 
 
Hd(ω) = 1 + e–jω 
   

  = e
– jω

2 e
j ω

2 + e
– jω

2
 

 
  

 
  

  = e
– jω

2 2cos
ω
2

 

      
     R(ω) 
 
Here R(ω) does not change sign on –π < ω < π and we have 
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   ∠Hd(ω) = – 
ω
2

       |ω| ≤ π 

 
⇒ Strictly linear phase. 
 
Of course, ∠Hd(ω) is periodic outside |ω| < π. 
 
We have: 
 

   Hd(ω)  = 2 cos 
ω
2

    |ω| ≤ π 

 

   ∠Hd(ω) = – 
ω
2

  |ω| ≤ π 

 
So: 

−2π 2π
ω

2

−π π

|Hd(ω)|

 
 

π

−2π 2π
ω

π
2

−π
2

−π

−π π

∠ Hd(ω)

 
 
Here we do have jumps of π at ω = odd multiples of π, but we will still call this linear phase.   
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Impact of Coefficient Symmetry on Realizable Frequency Responses 
 
Depending on whether hn{ }n=0

N–1
 are symmetric or antisymmetric, and N is even or odd, there can 

be restrictions on the types of filters that can be realized. 
 
 
Example 
 
If N is even (number of coefficients is even) and hn{ }n=0

N–1
 are symmetric, then you can’t realize 

a high-pass filter!  Why not?  Because, for this case Hd(π) = 0, so that ω = π can’t be in the 
passband for this type of filter.  Let’s show this. 
 
For N even and hn symmetric, we have 
 
 H(z) = h0 + h1 z–1 + h2 z–2 + … + h2 z–(N–3) + h1 z–(N–2) + h0 z–(N–1) . 
 
Then 
 
 Hd(π) = H(–1) = h0 – h1 + h2 – … – h2 + h1 – h0 = 0 
 
 
In practice, it pays to be aware of these types of constraints, but the problem is easily resolved.  
For example, in designing a high-pass filter with symmetric coefficients, we would simply take 
N to be odd. 
 
Let’s now address this problem in more generality by considering some short FIR filters to see 
what restrictions exist on Hd(0) and Hd(π) as a function of coefficient symmetry and the value 
of N. 
 
 
 Hd(ω) = a0 + a1 e–jω + a1 e–j2ω + a0 e–j3ω  (even symmetry, N even) 
 

 ⇒ 
Hd (0) = 2a0 + 2a1

Hd (π) = 0

 
 
 

 

 
 
 Hd(ω) = a0 + a1 e–jω + a2 e–j2ω + a1 e–j3ω + a0 e–j4ω (even symmetry, N odd) 
 

 ⇒ 
Hd(0) = 2a0 + 2a1 + a2

Hd (π) = 2a0 – 2 a1 + a2

 
 
 

 

 
 
 Hd(ω) = a0 + a1 e–jω – a1 e–j2ω – a0 e–j3ω  (odd symmetry, N even) 
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 ⇒ 
Hd (0) = 0

Hd (π) = 2a0 – 2a1

 
 
 

 

 
  

Hd(ω) = a0 + a1 e–jω + 0 e–j2ω – a1 e–j3ω – a0 e–j4ω (odd symmetry, N odd) 
 

 ⇒ 
Hd (0) = 0

Hd (π) = 0

 
 
 

 

 
 
In general, we conclude 
 

Symmetry N Unrealizable Filters 

even even high-pass, bandstop 
even odd no restriction 
odd even low-pass, bandstop 
odd odd low-pass, high-pass, bandstop 

 
 
Notice that a bandstop filter has its stopband located between 0 and π and therefore has 
passbands centered at both ω = 0 and ω = π.  Thus, if either a lowpass or highpass filter 
cannot be realized, this implies that a bandstop filter cannot be realized. 
 

 

 

 

 

 


