
11.1 

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson 
University of Illinois Chapter 11 
 
DIGITAL FILTER DESIGN 
 
FIR Design Methods 
 
1) Windowing 
 
 a) Truncation 
 b) General windowing 
 
2) Frequency Sampling ~ will cover later in connection with the DFT 
 
3) Computer-Aided Optimization 
 
 a) Parks - McClellan (√) ~ widely used 
 b) Linear Programming 
 
 
1a) Truncation 
 
 Illustrate by example. 
 
 Suppose we want a LPF with frequency response: 
 

−π π
ω

D(ω)

ωc  
 

 We might choose the filter coefficients {hn} to be 
 

  dn = 
1

2π
D(ω) ejωn dω

–π

π

∫   =  
1

2π
1 ejωn dω

–ωc

ωc

∫ =
ωc
π

sinc ωc n  

 
 (Then frequency response Hd(ω) = DTFT {dn}[ ] = D(ω) exactly.) 
 
 Look at the dn: 
 



11.2 

�
���

�������
�
�

�
�

������ �������
����

�
�

��
�����
��
��
��� ����

n

dn

 
 
This sequence is infinite in length and noncausal.  So, let’s choose (assume N odd, for now): 
 

 hn = 
d

n– N–1
2

0 ≤ n ≤ N –1

0 else

 
 
 

 

 

���
������

�
�

��
��
��
���
�

�
�
����
�

n

hn

N-1N-1
2  

 
If N is large, then hn consists of all the larger values of dn and 
 

 Hd(ω) ≈ D(ω) e
– jω N –1

2
 . 

 
But this approximation is poor in the following sense.  The frequency response will look like: 
 

π

“Gibbs Phenomenon”

ω
–π

Hd(ω)

 
 
 

The ripples are due to the Gibbs’ phenomenon.  Get tall ripples at sharp transitions.  As N 
increases, ripples become narrower and more numerous, but the heights of the ripples nearest the 
discontinuity remain large.  We will soon develop our own explanation for why this occurs.  For 
now, it is worth noting that the DTFT 
 



11.3 

 dn e–jωn
n= –∞

∞
∑   

is actually a Fourier series expansion of D(ω).  We had not thought of the DTFT in this way 
before, because there was no advantage in doing so.  Here, though, we note that Hd(ω) is 
obtained by truncating this Fourier series (i.e., choosing hn = d

n– N–1
2

 for 0 ≤ n ≤ N – 1.) 

 
Gibbs and other mathematicians studied truncation of Fourier series and showed that ripples will 

occur around locations where the periodic function is discontinuous.  These ripples can be made 

narrower and to bunch up around the points of discontinuity by taking N larger.  However, a 

larger N does not reduce the heights of the ripples! 

 
How can we reduce the ripple heights? 
 
1b) General Windowing 
 
Given D(ω) and the corresponding infinite-length {dn}, choose the coefficients {hn}n=0

N –1 to be 
(again, assume N odd for now): 

 
hn = wn d

n– N–1
2

        0 ≤ n ≤ N – 1 

 
where wn = 0, n ∉ [0, N – 1], is a window sequence that gently tapers to zero. 
 
For truncation we used 
 

 wn =  
1 0 ≤ n ≤ N – 1
0 else

 
 
 

 

 
which does not taper gently to zero.  Smoother windows can lead to much lower ripple. 
 
An example of a good window is the Hamming window: 
 

 wn = .54 – .46 cos 
2πn
N –1

 
 

 
 ,   0 ≤ n ≤ N – 1. 

 
This is plotted below 
 



11.4 

wn

N–1 n  
 
How does the window choice affect the frequency response of the designed filter {hn}n=0

N –1 ? 
 
Let 
 
 gn = d

n– N–1
2

 . 

 
Then: 
 

 

hn = wn gn

desired u.p.r. after shifting

window
coeffs. of designed FIR filter  

 
In the frequency domain this corresponds to: 
 
 Hd(ω) = wn gn

n
∑  e–jωn 

 

   = wn
1

2π
Gd(θ)

–π

π

∫
n
∑ ejθn dθ  e–jωn 

 

   = 
1

2π
Gd(θ) wn e–jn (ω–θ)

n
∑

–π

π

∫ dθ 

 

   = 
1

2π
Gd(θ

–π

π

∫ ) Wd(ω–θ) dθ          (*) 

 
Notice that this has the form of a convolution.  Since the integrand is periodic and we integrate 
over only a single period, this is called a periodic convolution. 
 



11.5 

Since our goal is to have Hd(ω) ≈ Gd(ω), we see from (*) that we would like 
 
 Wd(ω) = 2π δ(ω) 
 
But, Wd(ω) = 2π δ(ω)  ⇒ 
 

 wn = 
1

2π
2πδ(ω) e jωn dω =1          for all n

–π

π

∫  

 
⇒ wn is not a window sequence! 
 

wn nonzero only on n ε [0, N –1] results in (at best) either: 
 

 i) Wd(ω) is a narrow pulse around ω = 0, but has high sidelobes. 
 
or 
 

 ii) Wd(ω) is wider around the origin but the sidelobes are lower. 
 
  So, we have a tradeoff. 
 
From (*) we see that the ripple in Hd(ω) is caused by integrating the product of Gd and Wd as the 
ripples in Wd are shifted across the discontinuity of Gd.  Likewise, the width of the transition 
band for Hd will depend on the width of the mainlobe (center lobe) of Wd.  We conclude: 
 

High sidelobes of Wd ⇒ Large ripple in Hd. 
Wide center lobe of Wd ⇒ Wide transition band in Hd. 
 
Our goal is to achieve moderately low sidelobes and a moderately narrow transition width in Wd 
simultaneously. 
 

What does Wd(ω) look like for some common windows? 
 
Truncation 
 

Wd (ω)  = 1 e– jωn
n=0

N–1
∑  = 

sin
N
2

ω

sin 1
2

ω
 

 



11.6 

Plot on log scale: 

Triangular (Bartlett): 
 

n

wn

N-1  
 

Wd (ω)  = 
sin

N + 1
4

ω

sin 1
2

ω

2

 

 
Plot on log scale: 
 
 

0

-20

-40

-60

-80

-100
0 0.2π 0.4π 0.6π 0.8π π

–13dB

2π
N



11.7 

0

-20

-40

-60

-80

-100
0 0.2π 0.4π 0.6π 0.8π π

–25 dB
20

lo
g 1

0
W

d
(ω

)

4π
N+1  

 
From this plot, we see that the triangular window has a mainlobe that is twice as wide as that of 
the rectangular window, but the highest sidelobe is reduced by 12 db. 
 
Hamming: 
 

 wn = .54 – .46 cos 
2πn
N –1

 
 

 
  0 ≤ n ≤ N – 1 

 
 
Plot of Wd (ω)  on a log scale: 
 

0

-20

-40

-60

-80

-100
0 0.2π 0.4π 0.6π 0.8π π

– 41dB

20
lo

g 1
0

W
d

(ω
)

4π
N  

 
 
From this plot, we see that the Hamming window has essentially the same mainlobe width as the 
triangular window, and sidelobes that are reduced an additional 16 dB to –41 dB.  Thus, the 



11.8 

Hamming window is preferred over the triangular window.  Comparing the Hamming window to 
the truncation window, we see that the highest sidelobe is reduced by 28 dB (more than a factor 
of 10) at the expense of increasing the mainlobe width by a factor of 2. 
 
Best window:  Kaiser 
 

 wn = Io β 1 – n –
N – 1

2
 
 

 
 

N –1
2

 
  

 
  

2 

 
 

 

 
 
1/ 2 

 
 
 

 

 
 
 

           0 ≤ n ≤ N – 1 

 
Io is the zeroth-order modified Bessel function of the first kind: 
 

 Io(x) = 
1
π

0

π

∫ e±xcosθ dθ = 
1
π

0

π

∫ cosh (x cosθ) dθ 

 
The choice of β affects the tradeoff between the mainlobe width and sidelobe heights.  β is user 
specified. 
 
The Kaiser window can achieve slightly narrower mainlobe with the same sidelobe height as 
Hamming window. 
 
 
 



11.9 

Typical Frequency Responses Using Window Design 

 

If the desired magnitude response is 

 

π ωωc

Gd(ω)

 

then the frequency response of a truncation design may look like: 
 

 

ωc
π

truncation

transition band

ω

H
T
d

(ω) = Gd(ω) ∗ W
T
d

(ω)

 

and the frequency response of a Hamming design will look like: 

 

ωc
π

Hamming

ω

H
H
d

(ω) = Gd(ω) ∗ W
H
d

(ω)

 
 
So, Hamming widens the transition band by a factor of two, but greatly reduces ripple. 
 



11.10 

Note: The actual filter design procedure is 
 

   hn = wn gn         0 ≤ n ≤ N – 1. 
 
The above Fourier-domain concepts are to help us visualize the resulting Hd(ω). 

 
Now, so far we have considered only the case with N odd, where we defined 
 
 gn = d

n– N–1
2

 

 
where D(ω) is the desired Hd(ω). 
 
How do we find gn if N is even?  Answer:  Select gn as shown in the following procedure, which 
works for both N odd and N even. 

 
 

General Window Design Procedure 
 
To design a generalized linear phase hn{ }n=0

N–1 with Hd(ω)  ≈ D(ω) do this: 
 

 1) Let Gd(ω) = D(ω)e
– jN–1

2
ω

 
 
 2) Find gn = DTFT–1 Gd(ω)[ ] 
 

 3) Let hn = wn gn . 
 

Notes:  
 1) For N odd this procedure gives gn = d

n– N–1
2

 as before.  For N even, steps 1) and 

2) give {gn} as an interpolated set of values lying between 
 

d
n– N

2

 
 
 

 
 
 

 and 
 

d
n– N–2

2

 
 
 

 
 
 

. 

 
 2) We wish to know whether Hd(ω), designed via the window method, will have 
generalized linear phase.  The answer is ordinarily yes, since {hn} will be symmetric or 
antisymmetric if {wn} is symmetric and {gn} is either symmetric or antisymmetric. 

 

FIR Window Design Examples 

Example 
Design generalized linear-phase, low-pass FIR filters having coefficients hn{ }29

n=0  and cutoff  

ωc = 
π
4  using the window design procedure with both truncation and Hamming windows. 



11.11 

 

Solution 

 

Gd(ω) = D(ω)e
– jN–1

2
ω

 

 

  = 
e

– j
29
2

ω
ω ≤ π

4
0

π
4

< ω ≤ π

 

 
 

  
 

 

⇒  gn = 
1

2π
e–j 29

2
ω ejωn dω

–π
4

π
4

∫  

 

  = 
1

2π
e

jω(n– 29
2

)

j n – 29
2

 
 

 
 

π

4
–π

4

 

 

  = 
sin

π
4

n –
29
2

 
 

 
 

π n – 29
2

 
 

 
 

 

 

  = 
1
4

 sinc 
π
4

n –
29
2

 
 

 
 

 
  

 
   

 

Now, for truncation hn  =  wn gn with wn = 
1 0 ≤ n ≤ 29

0 else

 
 
 

. 

So: 

 

   hn =
1
4

sinc
π
4

n –
29
2

 
 

 
     0 ≤ n ≤ 29  



11.12 

 

For the Hamming window design we have 

 

   hn = .54 – .46 cos
2πn
29

 
 

 
 

1
4

sinc
π
4

n –
29
2

 
 

 
     0 ≤ n ≤ 29 

 

Example 
 
Design generalized linear phase high-pass FIR filters having coefficients hn{ }n=0

60
 and cutoff 

ωc = 
2π
3

 using the window design procedure with both truncation and Hamming windows. 

 

Solution 
 

  Gd(ω) = 
e– j30ω 2π

3
≤ ω ≤ π

0 ω <
2π
3

 

 
 

 
 

 

 

⇒  gn = 
1

2π
Gd(ω)

–π

π

∫ e jωn dω  

          �	
 

   periodic with period = 2π 

 

  = 
1

2π
Gd(ω)

0

2π

∫ e jωn dω  (*) 

 

  = 
1

2π
e–j30ω ejωn dω

2π
3

4π
3

∫  (❑  ) 

 

  = 
e jω(n–30)

2πj(n – 30)

4π

3
2π

3

 (∆) 



11.13 

 

  = 
1

2πj(n – 30)
  e

j4π
3

(n–30)
– e

j2π
3

(n–30) 

 
 

 

 
  

 

  = 
1

2πj(n – 30)
 ejπ(n–30)  e

jπ
3

(n–30)
– e

–jπ
3

(n–30) 

 
 

 

 
   

 
  = 

1
2πj(n – 30)

(–1)n 2 j sin
π
3

(n – 30)  
 
  = (–1)n 

1
3

 sinc 
π
3

(n – 30)  

 
So, using a truncation window gives: 
 

   hn = (–1)n 1
3

sinc
π
3

(n – 30)    0 ≤ n ≤ 60  

 
and applying a Hamming window gives: 
 

   hn = .54 – .46cos
2πn
60

 
 

 
 

(–1)n 1
3

sinc
π
3

(n – 30)     0 ≤ n ≤ 60 

 
Notes: 
1) Since Gd(ω) is nonzero on two subintervals of –π ≤ ω < π for the high-pass case, it can 
save algebra if we use periodicity to rewrite the inverse DTFT as in (*) across the interval 
0 ≤ ω ≤ 2π.  This trick is straightforward if N is odd.  For N even, however, there are two 
extra things to think about.  First, in view of the table on p. 35.8, we should use an odd-
symmetric design with Type 2 generalized linear phase.  Second, for N even, the slope of the 
phase, – N–1

2
, is noninteger and the phase will take a jump of π at ω = π.  Thus, Gd(ω) 

seemingly will have two different forms on the interval 0 ≤ ω ≤ 2π.  See the next example for 
details. 

 

2) Since the denominator of (∆) is zero at n = 30, we cannot presume that (∆) follows from 

(❑ ) at n = 30.  Thus, we must be careful to check that our expressions for {hn} hold at n = 

30.  Our final expression for gn, which follows from (∆), gives: 
 

  g30 = (–1)30 • 
1
3

 • 1 = 
1
3

 

 Evaluating (❑ ) at n = 30 gives 

 



11.14 

  g30 = 
1

2π
4π
3

–
2π
3

 
 

 
 
 • 1 = 

1
3

 

 

 which agrees with (∆).  Thus, our expressions for hn are valid for 0 ≤ n ≤ 60. 

 
Now, let’s change N in the previous example from N = 61 to N = 62 and see how the algebra 

associated with the design changes for N even. 

Example 

 

Design a generalized linear phase high-pass FIR filter having coefficients hn{ }n=0
61

 and cutoff 

ωc = 
2π
3

 using the window design procedure with a Hamming window. 

 

Solution 

 

A filter with real-valued unit-pulse response satisfies Gd (ω) = Gd
∗(–ω).  Thus, for an 

antisymmetric design with Type 2 generalized linear phase, we have 

 

 Gd(ω) = 

e
j π

2
–61

2
ω 

 
  

 
 2π

3
≤ ω < π

0 ω <
2π
3

e
j –

π
2

–
61
2

ω 
 
  

 
 

–π < ω ≤ – 2π
3

 

 

 
 

 

 
 

 

  

  = 

j e
–j61

2
ω 2π

3
≤ ω < π

0 ω <
2π
3

–j e
–j61

2
ω

–π < ω ≤ – 2π
3

 

 

 
 

 

 
 

 (*) 

 
 



11.15 

As in the last example we can write 
 
 

 gn = 
1

2π
Gd(ω) e jωn dω

2π
3

4π
3

∫  (**) 

 
 
Equation (*) specifies Gd(ω) on |ω| < π.  To find Gd(ω) for π < ω < 

4π
3

  consider 

 
Gd(ω)

–π –2π
3

2π
3

π 4π
3

2π ω

Gd(ω) = –j e
–j 61

2
ω

in here
Gd(ω) = j e

–j 61
2

ω

in here
Gd(ω) = Gd(ω–2π)

= j e
–j 61

2
ω

= –j e
–j 61

2
(ω–2π)

  

So, Gd(ω) in (**) maintains the same form across the full range of integration in (**) and we 

have 
 

 gn = 
1

2π
je

– j61
2

ω
e jωn dω

2π
3

4π
3

∫  

 

  = 
e

jω n– 61
2

 
 
  

 
 

2π n – 61
2

 
 

 
 

4π

3
2π

3

 

 

  = 
1

2π n – 61
2

 
 

 
 

e
j4π

3
n– 61

2
 
 
  

 
 

– e
j2π

3
n–61

2
 
 
  

 
  

 
 

 

 
  

 



11.16 

  = 
1

2π n – 61
2

 
 

 
 

e
jπ n–61

2
 
 
  

 
 

e
jπ
3

n–61
2

 
 
  

 
 

– e
– jπ

3
n– 61

2
 
 
  

 
  

 
 

 

 
  

 

  = 
1

2π n – 61
2

 
 

 
 

(–1)n 2sin
π
3

n –
61
2

 
 

 
 

 
  

 
   

 
  = (–1)n  

1
3

sinc
π
3

n –
61
2

 
 

 
  

 

Applying the Hamming window gives 
 
 
 hn = .54 – .46 cos

2πn
61

 
 

 
 
(–1)n 1

3
sinc

π
3

n –
61
2

 
 

 
  0 ≤ n ≤ 61 

 

 

      
Example   
 
Window design of bandpass filter.  Find hn{ }n=0

N–1 so that Hd(ω)  approximates 

 
D(ω)

1

–π π
–ωo – ωc

–ωo + ωc

ωo – ωc

ωo

ωo + ωc

ω

 
For lowpass filter had dn = 

ωc
π  sinc ωc n.  By modulation property, here for BP case we expect 

dn ≈ cosωo n( ) ωc
π sinc ωc n[ ] .  Let’s see: 

 

 dn = 
1

2π
1ejωn dω

–ωο–ωc

–ωο +ωc

∫  + 
1

2π
1ejωn dω

ωο –ωc

ωο +ωc

∫  

 

  = 
e jωn

2πjn
  

–ωo + ω c

–ωo – ωc
  +  

e jωn

2πjn
  

ωo + ωc

ωo – ωc
 



11.17 

 

  = 
e jn(–ωo +ωc) – e jn(–ωo –ωc ) + ejn(ωo +ωc) – e jn(ωo –ωc)

2πjn
 

 
  = 

1
2πjn

e–jnωo e jnωc – e– jnωc( )+ ejnωo e jnωc – e–jnωc( )[ ] 

 

  = 
1

πn
e– jnωo sinωcn + ejnωo sin ωcn[ ] = 

sinωcn
πn

 2 cos ωo n 

 

  = 2 cosωon( )ωc
π

sinc ωc n         ← what we expected. 

 

Now, to design hn{ }N – 1
n = 0  with linear phase, need to incorporate shift to give: 

 

  gn = 2cosωo n –
N –1

2
 
 

 
 

ωc
π

sinc ωc n –
N – 1

2
 
 

 
     0 ≤ n ≤ N – 1 

 

Windowed coefficients are then 

 
  hn = wn gn      0 ≤ n ≤ N – 1     ~ coefficients for FIR filter where wn is a Hamming or 

other window. 

 
In MATLAB, the command to design FIR filters using the window method is called fir1. 
 
 



11.18 

Parks-McClellan 
 
Parks and McClellan developed a computer program for solving the following problem: 
 
Define the error 
 

 

E( ) W( )[D( ) R( )]ω ω ω ω= −

Hd ( ) = R( )e
j

N 1
2ω ω

α ω− −





0
2

 or 
π

arbitrary
weighting

desired
response

from

 
 
Let ωp, ωs be the passband and stopband cutoff frequencies so that D(ω) might look like: 
 

ω
πωsωp

1.0

D(ω)

 
 

Ordinarily D(ω) is unspecified on ωp < ω < ωs because we are not concerned with the precise 
shape of Hd(ω) or R(ω) in this transition band. 
 
The Parks-McClellan algorithm finds hn{ }n=0

N–1
 that minimizes 

 
 max E(ω)  
 0 ≤ ω ≤ ωp  
 ωs ≤ ω ≤ π                            
 
This error measure is called the minimax or Chebyshev error norm. 
 
In the standard P-M algorithm, W(ω) can be selected to have one value, Wp, on the passband and 
another, Ws, on the stopband.  Frequently, Ws is chosen larger than Wp so that the designed filter 
will have a smaller stopband error than passband error. 
 
The program user specifies: 



11.19 

 
 N, ωp, ωs, Wp, and Ws 
 
The designed filter has equiripple behavior: 
 

1.0

π
δs

Hd(ω)

1 ± δp

ωp ωs  
 
How are the ripple heights related to Wp and Ws? 
 
Answer:  They satisfy δp Wp = δs Ws. 
 

Thus,   
δp
δs

 = 
Ws
Wp

 . 

 
What filter order is required to meet given specifications? 
 
Answer:  It has been found empirically that 
 

 N ≈ 
–10log10 δp δs( )–13

2.324 ωs – ω p( )  

 
Note: The filter order is not too sensitive to δp, and δs.  But, N is inversely proportional to the 

transition bandwidth!  Halving the transition bandwidth doubles the required filter 
length! 

 
All students will get experience with the Parks-McClellan algorithm in a Matlab assignment. 
 
Linear Programming 



11.20 

 
Linear programming is a fairly general optimization algorithm that can solve the Parks-
McClellan problem and many others.  LP is slower, but its generality can be exploited to 
incorporate time-domain or additional frequency-domain constraints. 
 
For example, it is possible to eliminate ripple in the passband by constraining the derivative of 
R(ω) to be ≤ 0 in the passband. 
 
The result is a monotone decreasing response in the passband, with ripple remaining in the 
stopband: 
 

ωsωp

H(ω)

π

1.0

ω
 

 
Incorporating the monotone passband constraint increases the required filter order slightly. 
 
In MATLAB, the command to design FIR filters using the P-M method is called remez. 
 
 
 
Frequency Sampling FIR Filter Design 
 
Given Gd(ω) ~ desired frequency response with linear phase 
 

Idea:  Choose Hd(ω) to agree with Gd(ω) at ω = 
2π
N

 m,  0 ≤ m ≤ N – 1. 

 

Take hn{ }n=0
N–1 to be DFT–1 Gd

2πm
N

 
 

 
 

 
 
 

 
 
 m=0

N–1 

 
 

 

 
 , i.e.,  

 

nm
hn =

1

N
Gd

m=0

N–1

∑ 2π
N

m




 e

j
2π
N 0 ≤ n ≤ N –1

 

 
 

(FS) 

 
 



11.21 

Using hn{ }n=0
N–1 as our FIR filter coefficients will give a frequency response Hd(ω) satisfying 

 

 Hd(ω) = Gd(ω) at ω = 
2πm

N
         0 ≤ m ≤ N – 1 

   
 actual desired 
 
Why? 
 

 Hd (ω)
ω= 2π

N m
 = DFT hn{ }[ ] 

 

   = DFT DFT–1 Gd
2π
N

m 
 

 
 

 
 
 

 
 
 

 
  

 
  

 

  
 

   

    
   by (FS) 
 

   = Gd 
2π
N

m 
 

 
              ✔  

 

But in general Hd(ω) ≠ Gd(ω) for ω ≠ 
2π
N

 m. 

 
This approach can be too simplistic. 
 
 
Example 
 

Let Gd(ω) be an ideal LPF with linear phase and delay 
N – 1

2
. 

 

π 2π

Gd(ω)

2π
N

ω

 
 



11.22 

Using (FS), will produce an Hd(ω) that agrees with Gd(ω) at the points shown above.  The 
resulting Hd(ω) might look like: 
 

π 2π

Hd(ω)

agrees with Gd(ω) at
uniformly spaced
points, but can have
large ripple.

ω

 
 
 
There is a modified frequency sampling design procedure that works better.  In the modified 
procedure, one or more frequency samples in the filter’s transition band are left unconstrained as 
free variables.  The values of these free variables are then selected via linear programming to 
minimize some measure of ripple.  This results in a wider transition band, but lower ripple, as 
suggested in the figures below. 
 
 

variable transition sample
that can be selected to
minimize ripple.

⊗

Gd(ω)

ω

 
 

 



11.23 

wider transition
band, lower ripple.

⊗

Hd(ω)

ω  
 
 

Note:  If you take Gd(ω) to have zero phase, the designed Hd will still pass through the correct 

samples of Gd, but the response will be terrible off the grid ω = 
2πm

N
.  Hoping for zero phase 

(no delay) in a causal filter is a pipe dream! 
 
Example 
 
Use the frequency sampling method to design a linear-phase HPF hn{ }n=0

60 , with cutoff ωc = .6π. 
 
Solution 
 

N = 61 ⇒ phase = – 
N – 1

2
 ω = –30 ω 

 

⇒ Gd(ω) = 

0 0 ≤ ω < .6π

e– j30ω .6π ≤ ω ≤ 1.4π

0 1.4π < ω ≤ 2π

 

 
 

 
 

 

 

⇒ Gd 



2πm

61    =  

0 0 ≤ m ≤18

e– j302π
61m 19 ≤ m ≤ 42

0 43 ≤ m ≤ 60

 

 
 

 
 

 

 

Now, {hn} is the inverse DFT of Gd
2πm
61

 
 

 
 

 
 
 

 
 
 

 as given by 

 
 

 hn  =  
1
61

Gd
2πm
61

 
 

 
 

m=0

60
∑ ej 2π

61 nm 

 



11.24 

  = 
1
61

e–j302π
61 m e j2π

61 nm

m=19

42
∑  

 

  = 
1
61

ej 2π
61(n–30)m

m=19

42
∑   

 
   effect of linear phase is to circularly shift the {hn} since replacing  
   n–30 with <n – 30>61 does not change this equation 
     
 

  = 
1
61

e j 2π
N (n–30)(k+19)

k=0

23
∑  

   

  k = m – 19 
 

  =  
1

61
ej 2π

61(n–30)19 1 – e j 2π
61(n–30)24

1 – ej 2π
61(n–30)

 

 
 

  =  

1
61

ej2π
61(n–30)31

e j2π
61 (n–30)

•
e– j2 π

61 (n–30)12 – ej 2π
61(n–30)12

e–j π
61(n–30) – ej π

61(n–30)
 

 
 

  =  
1
61

ejπ(n–30)
–2 jsin

2π
61

(n – 30)12 
 

 
 

–2jsin π
61

(n – 30) 
 

 
 

 

 

  =  
1
61

(–1)n
sin 24

π
61

(n – 30) 
 

 
 

sin π
61

(n – 30) 
 

 
 

      0 ≤ n ≤ 60 

    ����	���
 

    sampled periodic sinc 
 
 
Here, the factor (–1)n makes this a high-pass filter rather than a low-pass filter.  Since this term 

multiplies a periodic sinc, which is similar to a sinc, we expect that the resulting frequency 



11.25 

response will not be too different from that obtained using the window design procedure with a 

truncation window. 

 

Let’s next consider the design of a low-pass filter hn{ }n=0
N–1 where N is even.  This example will 

be more complicated than the previous one in two respects.  First, since N is even, the formula 

for Gd(ω) will take two different forms on 0 ≤ ω < 2π.  Second, since this is a low-pass filter, 

there will be two separate bands where Gd(ω) is nonzero on 0 ≤ ω < 2π. 
 
Example 
 

Frequency sampling design of hn{ }n=0
21 , linear-phase LPF with ωc = 

π
2

. 

 
Solution 
 

 N = 22 ⇒ phase = – 
N – 1

2
 ω = 

–21
2

 ω 

 

⇒ Gd(ω) = 
e– j 21

2 ω ω ≤ π
2

0 π
2

< ω ≤ π

 

 
 

  
 

 

But, for a frequency sampling design, we need samples of Gd(ω) on ω ε [0, 2π).  For N even, 

with N – 1
2

 noninteger, we must be careful!  Consider the phase of Gd(ω).  Here for clarity, we 

will not wrap the phase inside the interval (–π, π) and will instead show its linear extension. 
 
 



11.26 

5π
2

–π
2

π–π 2π
ω

∠ Gd(ω)

–21π
4

–21π
4

π
2

3π
2

 
   Gd(ω) = e– j 21

2 ω  in here  Gd(ω) = e– j 21
2 (ω–2π) 

 

       = ejπ e– j 21
2 ω  

 

       =  –e– j 21
2 ω  

      in here 
      Note:  Minus sign doesn’t 
      occur if N is odd. 
 
So: 
 

     Gd(ω) = 

e– j 21
2 ω 0 ≤ ω ≤

π
2

0
π
2

< ω <
3π
2

–e– j 21
2 ω 3π

2
≤ ω ≤ 2π

 

 

 
 

 

 
 

 

 
 

⇒ Gd 
2πm
22

 
 

 
  = 

e– j 21
2

2 πm
22( ) 0 ≤ m ≤ 5

0 6 ≤ m ≤16

–e– j 21
2

2 πm
22( ) 17 ≤ m ≤ 21

 

 

 
 

 

 
 

 

 



11.27 

Thus, 
 

 hn = 
1
22

e–j 21
2

2πm
22( )

m=0

5
∑ ej2π

22 mn +
1
22

– e–j21
2

2πm
22( )

m=17

21
∑ ej 2π

22 mn  

 

  = 
1
22

ej 2π
22 n– 21

2( )m
m=0

5
∑ –

1
22 m=17

21
∑ ej 2π

22 n–21
2( )m   

 
 
Making the change of variable A = m – 22, the second sum can be rewritten as 
 

 
  

ej 2π
22 n– 21

2( )A+22( )

A= –5

–1
∑ =

A= –5

–1
∑ ej 2π

22 n– 21
2( )A e– j21π

= –1
� 	 
  

 
Thus, 
 

 hn = 
1
22

e j2π
22 n– 21

2( )m
m= –5

5
∑  

 

  = 
1
22

e j 2π
22 n–21

2( )(k–5)

k=0

10
∑

 

  
 k = m + 5  
 

  = 
1
22

ej2π
22 n–21

2( )(–5) 1 – ej2π
22 n–21

2( )11

1 – e j2π
22 n– 21

2( )  

 

  = 
1
22

e–j10π
22 n–21

2( ) e j 2π
22 n–21

2( )11
2

ej2π
22 n– 21

2( )1
2

•
– j2 sin

11π
22

n –
21
2

 
 

 
 

– j2 sin π
22

n – 21
2

 
 

 
 

  

 
 

  = 
1
22

sin
π
2

n –
21
2

 
 

 
 

sin π
22

n – 21
2

 
 

 
 

     0 ≤ n ≤ 21 

 
 
Thus, hn is a sampled, periodic sinc, which is similar to the sinc-type design that would have 
resulted from a window design using a truncation window. 
 



11.28 

In general, the formula for the coefficients of either an FIR LPF or HPF, designed using the 
frequency sampling technique, are given by 
 

 LPF: hn = 
1
N

sin γ
π
N

n –
N – 1

2
 
 

 
 

 
 

 
 

sin π
N

n – N – 1
2

 
 

 
 

 
 

 
 

 

 

 HPF: hn = (–1)n 
1
N

sin γ
π
N

n –
N – 1

2
 
 

 
 

 
 

 
 

sin π
N

n – N – 1
2

 
 

 
 

 
 

 
 

 

 

where γ is the number of samples Gd
2πm

N
 
 

 
 , 0 ≤ m ≤ N – 1, that are nonzero (number of 

samples in the passband). 
 
 


