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IIR Filter Design 
 
1) Based on Analog Prototype 
 
 a) Impulse invariant design 
 b) Bilinear transformation (✓ )  ~  widely used 
 
2) Computer-Aided Optimization 
 
  
Designs in category 1) proceed by first designing an analog filter having a frequency response 
with the desired shape, and then “transforming” it to a digital filter.  To use these design 
methods, we must first learn just a bit about analog filter design. 
 
Elements of Analog Filter Design 
 
Notation: 
 

 HL(s) = ha (t)
–∞

∞

∫  e-st dt          (Laplace transform) 

 
⇒ Ha(Ω) = HL(jΩ)          (Fourier transform) 
 
Consider only lowpass Butterworth, Chebyshev, and elliptic (Cauer) filters. 
 
For each of these types of filters, HL(s) is found indirectly from a specified Ha (Ω) 2. 
 
We need HL(s) because, later, this is what will be transformed into H(z). 
 
 
For Butterworth, Chebyshev, and elliptic filters, Ha (Ω) 2 has the form: 
 
   Ha (Ω) 2 = M(Ω2) = 

1
1 + F(Ω2)

 

    ↑ 
   rational with 
   real coeffs. 
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How do we get HL(s) from Ha (Ω) 2 ?  That is, how do we find HL(s) satisfying 
 
 HL( jΩ) 2  =  Ha (Ω) 2 = M(Ω2)? (*) 
 
Answer: 
 

1) First find poles and zeros of M(–s2) where s is a complex variable.  Since M has real 
coefficients and is a function of s2, the poles and zeros will have symmetry around both 
the real and imaginary axii. 

 
2) Take HL(s) to be the left-half-plane pole factors (for stability) and left-half-plane zero 

factors (for smallest delay, called “minimum phase”). 
 
 

 But, does this work? 
  
 Need to show  
 
  HL( jΩ) 2  = M(Ω2) (1) 
 
 Have: 
 

  

HL(s) HL(–s) = M(–s2)

LHP factors

RHP factors

 
 
 
which implies  
 
  HL(jΩ) HL(–jΩ) = M(Ω2)   
 
So, (1) will be true if 
 
  HL(–jΩ) = H ∗

L(jΩ) (2) 
 
This follows, though, because the poles and zeros of HL(s) are symmetric around the real axis, 
and therefore occur in complex-conjugate pairs.  For any pole pair or zero pair (s–p) (s–p*) in 
HL(s), we have 
 

 (s – p) (s – p∗)s = – jΩ  = (–jΩ–p) (–jΩ–p*) = [(jΩ–p*) (jΩ–p)]* = (s – p)(s – p∗) s = jΩ
 
 

 
 

∗
 

 
which proves (2), and therefore (1). 
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Example 
 

 Ha (Ω) 2 = M(Ω2) = 
1

1 + Ω2  

 
Find HL(s). 
 
 
We have 
 

 M(–s2) = 
1

1 – s2  

 
   = 

1
(1 – s)(1 + s)

 

   �	
 
    LHP factor 
 

⇒    HL(s) =
1

s +1
 
 

 
 

 

 
Let’s check to see if Ha (Ω) 2  = above M(Ω2): 
 
   Ha (Ω) 2 =  HL( jΩ) 2   
 

  = 
1

jΩ +1

2
  =  

1
jΩ +12  

 

  = 
1

Ω2 +1
   =  M(Ω2) ✔  

 
Example   

Suppose M(Ω2) =  
2 + Ω2

1 + Ω4     (not for a B, C, or E filter!) 

 
Then 
 

          M(-s2)  =  
2 – s2

1 +s4  . 

 

 = 
2 – s( ) 2 + s( )

(s + γ
↑

)(s + γ*)(s – γ)(s – γ*)
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              γ = e
jπ
4 =

1+ j
2

 

 
 
Pole-zero diagram: 

 
 

⇒ Take HL(s) = 
2 + s

(s + γ )(s + γ∗)
       (LHP factors) 

 
 Can check that HL( jΩ) 2  = M(Ω2)  . 
 
M Ω2( ) for B, C, and E Filters  
 
Butterworth 
 
M(Ω2) = 

1
1 + F(Ω2)

 with F(Ω2) = Ω2n for nth-order filter 

 
Result: 
 

1.0

.5

1.0 Ω

monotone ~ no ripple

M(Ω2) = Ha (Ω)
2

 
 

M(Ω2) = .5 at Ω = Ωc = 1.0.  For a general cutoff frequency Ωc, use F(Ω2) = 
Ω
Ωc

 

 
  

 
 

2n
 . 
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Here, we are defining the cutoff frequency to be the value of Ω where Ha (Ω) 2 is reduced to one-
half its maximum height, or correspondingly, Ha (Ω)  reaches 1 2  times its maximum value.  
This definition of cutoff frequency is common, particularly for smooth frequency responses that 
contain little or no ripple. 
 
Optimality:  This M(Ω2) has maximum # of derivatives = 0 at the origin for its order.  Thus, the 
response is very flat across lower frequencies. 
 
Can show poles of M(–s2) = HL(s) HL(–s) are equally spaced on the unit circle.  This fact helps 
in factoring M(–s2). 
 
Chebyshev 
 
F(Ω2) = ε2 C 2

n(Ω) 
 

where ε is a real constant chosen by the designer and Cn(•) is the nth-order Chebyshev 
polynomial: 
 

 Cn(Ω) = 
cos n cos–1(Ω)( ) Ω ≤1

cosh ncosh–1(Ω)( ) Ω >1

 
 
 

 

 

with 
 

  cosh t =  
et + e–t

2
 

 

Can show: 
 
 C0(Ω) = 1, C1(Ω) = Ω, C2(Ω) = 2Ω2 – 1,  
 
and that there is a recursion relation: 
 
 Cn+1(Ω) = 2Ω Cn(Ω) – Cn–1(Ω) 
 
Result: 
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1.0

1.0

1
1+ ε2

Ω

M(Ω2) = Ha (Ω)
2

 
 

For this type of filter, the cutoff frequency is defined to be the value of Ω where Ha (Ω) 2 first 

drops below 1/(1+ ε2) or, correspondingly, Ha (Ω)  first drops below 1 1 + ε2 . 
 

This is a “Type 1” Chebyshev filter.  Its response is equiripple in the passband and monotone 
decreasing in the stopband.  It has a narrower transition band than a Butterworth filter. 
 

Tradeoff:  Smaller ε gives smaller passband ripple but a wider transition band. 
 

Poles of M(–s2) = HL(s) HL(–s) lie on an ellipse. 
 

There is also a “Type 2” Chebyshev filter that has a monotone response in its passband and 
equiripple behavior in its stopband. 
 

Elliptic 
 

 F(Ω2) = ε2 J 2
n(Ω) where Jn is the Jacobi elliptic function. 

 

The defining formulas for Jn are so cumbersome that they are not presented here. 
 

Result: 
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Ω

1.0

Ωp
Ωs

M(Ω2) =  Ha(Ω) 2

δs

1 – δp

 
 

The response is equiripple in both the passband and stopband. 
 

Elliptic filters are optimal in the sense that for a given n, δp, δs, Ωp, the transition bandwidth  
Ωs - Ωp is the smallest possible. 
 

∠Ha(Ω) for B, C, and E filters is reasonably linear till you get near the edge of the passband, 
where it can be quite nonlinear. 
 

The phase response is closest to linear for B, then C.  Elliptic is worst. 
 

All-pass filters are sometimes cascaded onto elliptic filters to compensate for the nonlinear phase 
of elliptic filters. 
 

All-pass filters have Ha (Ω)  = constant and the coefficients are chosen to shape ∠Ha(Ω) in a 
desired way. 
 
 
 
Bilinear Transformation 
 
 Start with analog prototype HL(s). 
 
 Take  

  H(z) = HL(s)
s=α1–z–1

1+z–1

 

 
α is a real positive constant that we will be able to choose to control the cutoff frequency of 
the digital filter. 
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 s = α 
1 – z–1

1 + z–1  is a bilinear transformation (BLT) of the z-plane to the s-plane.  For 

example, the point zo maps to the point so as shown below. 
 

Im(z)
z-plane

zo
π
4

Re(z)

zo = e jπ4

s-plane

so = jα tan 
π
8

Re(s)

α

Im(s)

 
 

 To see this, note: 
  

 so = α 
1 – z –1

o

1 + z –1
o

 = α 
1 – e– jπ4

1 + e– jπ4
 = α 

e– j π
8

e– j π
8

ej π
8 – e –j π

8

e jπ8 + e– j π
8

 

 

  = α 
2jsin

π
8

2 cos π
8

 = j α tan 
π
8

 

So, if we design a digital filter using the BLT, then H(zo) = Hd
π
4

 
 

 
  will have the same value as 

HL(so) = Ha α tan
π
8

 
 

 
  . 

 
We must have a much broader understanding than this, however.  Questions: 
 
 i) Stable HL(s) ⇒ stable H(z)? 
 
 ii) How is Hd(ω) = H e jω( )related to HL(s)? 
 
Answer i) by considering a point s = so and determining what z it gets mapped to. 

BLT mapping is s = α 
1 – z–1

1 + z–1  

 
⇒ s 1 + z–1( ) = α 1 – z–1( ) 
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⇒ z–1 s + α( ) = α – s 
 

⇒ z = 
α + s
α – s

 

 
So, a point so = σo + j Ωo. 
 
gets mapped to: 
 

 zo =  
α + σo + jΩo
α – σo – jΩo

 (*) 

 
i.e., H(zo) = HL(so). 
 
From (*) 
 

 zo  = 
α + σo( )2 + Ωo

2

α – σo( )2 + Ωo
2

 

 
 

 

 
 

1/ 2

 

 
So:  

 zo

< 1 σo < 0
= 1 σο = 0
> 1 σο > 0

 

 
 

  
 

 
giving: 
 
 a) Left-half s-plane is mapped inside the unit circle in the z-plane. 
 
 b) Right-half s-plane is mapped outside the unit circle in the z-plane. 
 
 c) Imaginary axis in s-plane is mapped onto the unit circle in the z-plane. 
 
Note: 
 
a) ⇒ stable HL (s) results in stable H(z)[ ] 

 
c) ⇒ Hd (ω) = H(e jω) depends only on HL(jΩ) = Ha (Ω)[ ] 

 
What is the relationship between Hd(ω) and Ha(Ω)?  Hd(ω) is given by 
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 Hd(ω) = H(ejω) = HL(s)
s=α1–e– jω

1+e– jω

 

 
Note: 
 

 α 
1 – e– jω

1 + e– jω  = α 
e– jω / 2

e– jω / 2
ejω / 2 – e– jω / 2

e jω / 2 + e–jω / 2  

 

  = α 
2jsin

ω
2

2 cos ω
2

 = j α tan 
ω
2

 

 
So, 
 

 Hd (ω) = HL (s)
s= jα tan

ω
2  

 

 
Since Ha(Ω) = HL(jΩ) we have 
 
 

 Hd (ω) = Ha α tanω
2

 

 
 

 

 
                  (❑ ) 

 
 
This equation tells us exactly how, when using the bilinear transformation design method, the 
frequency response of the designed digital filter will depend on the frequency response of the 
analog prototype. 
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Pictorial interpretation of (❑ ):   
 

α  tanω
2

ω-π π

Hd(ωo) = Ha(Ωo)
Ωo

ωo

 
 

 
So, Hd(ω) takes on exactly the same set of values as Ha(Ω), but there is a squashing of the 
analog frequency axis, according to the above curve.  This mapping is nonlinear, and it has to be, 
since the infinite-length analog frequency axis –∞ < Ω < ∞ is mapped onto the finite-length 
interval –π < ω < π.  Because of this, Hd(ω) won't look like Ha(Ω) in general.  It will be a 
warped version.  This effect is sometimes called “frequency warping.” 
 
Example 
 
Applying the BLT to an analog prototype having frequency response: 
 
 

Ω

Ha(Ω)

•  •  •  •
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results in: 
 

π

Hd(ω)

ω
 

 
In general, to design Hd(ω) having a desired shape, we would need to design Ha(Ω) so that after 
application of the BLT, the frequency warping produces the desired Hd(ω).  Thus, we would 
need to “prewarp.” 
 
Let the desired Hd(ω) be D(ω). 
 

(❑ ) ⇒ want Ha α tan
ω
2

 
 

 
  = D(ω) 

⇒  Ha(Ω) = D 2tan−1 Ω
α

 
 

 
        (∆) 

 
If we could design HL(s) to satisfy (∆), the BLT, would then give 
 
 Hd(ω) = D(ω) . 
 
This is problematic, however.  The design of HL with a general shape will require computer 
optimization.  Thus, we may as well design Hd directly, using computer optimization. 
 
Fortunately, for LPF’s, BPF’s and HPF’s, there is no such problem.  For these kinds of filters, 
frequency warping just affects the cutoff frequencies, e.g., 
 

Ω
–π π ω

BLT

Ωc ωc

Ha (Ω) Hd(ω)

 
From (❑ ): 
 

 Ωc = α tan
ωc
2

        (❑❑ ) 
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So, we can simply pick Ωc to give the desired ωc.  Equivalently, if Ha(Ω) is normalized to 
Ωc = 1, we can choose α in the BLT to give the desired ωc. 
 
This suggests two alternative, but equivalent, design procedures: 
 
 1. a) Choose α arbitrarily, say α = 1. 
 
  b) Then design the analog prototype to have cutoff Ωc given by (❑❑ ). 
 
  c) Apply the BLT. 
 
 
 2. a) Use an analog prototype with Ωc. 
 
  b) Choose α to give the desired ωc. 
 
   From (❑❑ ),  
 

    α = Ωc cot 
ωc
2

 
 

 
  

 
   so that the BLT method becomes 
 

    H(z) = HL(s) 
s = Ωc cot

ωc
2

 
1–z–1

1+z–1

 

 
Analog prototype filters are usually designed with normalized cutoff frequencies Ωc = 1.0.  In 
this case, the bilinear transformation method of design reduces to 
 
 
 

     H(z) = HL(s)
s= cot

ω c
2

1–z–1

1+z–1
                 (BLT) 

 
 
    
In this course, we will use the second option, with Eq. (BLT), to perform the bilinear 
transformation method of design. 
 
 
Example 
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Design a first-order Butterworth digital filter with ωc = 
π
4

 , using the BLT method 

 
Solution: 
 
First, find the analog prototype: 
 

Ha (Ω) 2 = B(Ω2) = 
1

1 + Ω2  

 

B(–s2)  =  
1

1 – s2  =  
1

1 – s
  •  

1
1 + s

 

 
Pole locations: 

    
 
Take LHP factor for HL(s): 
 

 HL(s)  =  
1

s +1
 

 
Apply (BLT): 
  

   H(z) =  
1

s +1 s=cot π
8

1–z –1

1+z–1
 

     ↑ 
     2.4142 
 

⇒   H(z) =  
1

2.4142
1– z–1

1+ z–1 +1
 

 

   =  
1 + z–1

2.4142 (1– z–1) +1 + z–1  

 

   =  
1 + z–1

3.4142 – 1.4142 z–1  
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   =    
.2929 + .2929 z–1

1 – .4142 z–1  

 
Now, since H(z) resulted from a BLT design using an analog prototype filter with Ha (0)  = 1 
and Hd(∞)  = 0, we know 
 
 Hd(0)  = Ha (0)  = 1     and     Ha (π)  = Ha (∞)  = 0 
 

Furthermore, since the digital cutoff is 
π
4

, we should have 
 

   Hd
π
4

 
 

 
  = 

1
2

 

 
Thus, Hd(ω)  should look like 
 

1.0

0.707

π
4

π

Hd(ω)

ω

  
The correctness of the values of Hd(ω)  at ω = 0, π can be easily verified from the transfer 
function H(z).  Note that 
 
 Hd(0) = H(ej0) = H(1) = 

.2929 + .2929
1 – .4142

 = 1.0 
 
 Hd(π) = H(ejπ) = H(–1) = 

.2929 – .2929
1 – .4142

 = 0 
 
For ω ≠ 0 or π we can always evaluate the magnitude response via the lengthier calculation 
 

Hd(ω)  = 
.2929 + .2929 e –jω

1 – .4142 e– jω  

 

  = 
.2929 + .2929cosω( )2 + .2929sinω( )2

1 – .4142 cosω( )2 + .4142sinω( )2
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Finally, a plot of ∠Hd(ω) would show that the phase is nearly linear for |ω| < 
π
4

 and becomes 

more nonlinear for |ω| ≈ 
π
4

 and larger. 

 
Example 
 

Similar to previous example, but now design a second-order Butterworth digital filter with 

ωc = 
π
4

. 

 
To find analog prototype, note 
 

 Ha (Ω) 2 = M(Ω2) = 
1

1 + Ω4  

 
 
 

⇒ B(–s2) = 
1

1 + s4  
1

e
π
4

j

e
j 3π

4

e
–j 3π

4 e
–j π

4

 
 
Left-half-plane poles are used for HL(s): 
 
 HL(s) = 

1

s – ej 3π
4

 
 

 
 s – e–j 3π

4
 
 

 
 

 = 
1

s2 + 2 s +1
 

 
 

 
H(z) = HL(s)

s=cot
π
8

1–z–1

1+z–1
 

 

  = 
1

2.4142( )2 1 – z–1( )2

1+ z–1( )2
+ 2.4142 2 1 – z–1

1+ z–1
+ 1

 

 

  = 
(1 + z–1)2

(2.4142)2 (1 – 2z–1 + z–2) + 2.4142 2 (1– z–2 ) + (1 + 2z–1 + z–2 )
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  = 
1+ 2z–1 + z–2

10.23 – 9.66z –1 + 3.41z–2  

 

  = 
0.098 + 0.196z–1 + 0.098z–2

1– 0.944 z–1 + 0.333z–2    

 
Now, once again, from the shape of the analog prototype Ha(Ω) we know 
 

 Hd(0) = 1,    Hd
π
4

 
 

 
  = 

1
2

 ,  Hd(π)  = 0 

 
However, for the second-order filter, the frequency response makes a sharper transition around 

ωc = 
π
4

 and looks like 

 

1.0

0.707

π
4

π

Hd(ω)

ω

 
 
The phase ∠Hd(ω) will again be quite linear across the passband and more nonlinear across the 
stopband. 
 
Let’s try to get a better feel for the BLT mapping by considering one further example. 
 
Example 
 
Suppose that an analog prototype filter HL(s) has the frequency response 
 

Ha (Ω)

–3 –2 –1 1 2 3 Ω

2

1
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and that the bilinear transformation is used to produce a digital filter with H(z) = HL(s)s=1–z –1

1+z –1
. 

Sketch Hd(ω) .  Label all critical frequencies and amplitudes. 
 
 
Solution 
 
Hd(ω) is a squashed version of Ha(Ω), described by 
 

 Hd(ω)  = Ha α tan
ω
2

 
 

 
  = Ha tan

ω
2

 
 

 
  

 

Thus, the value of Hd(ω) equals the value of Ha(Ω) at Ω = tan 
ω
2

.  So a feature (e.g., jump) in 

Ha(Ω) that occurs at Ω = Ω0 will occur in Hd(ω) at 
 
 ω0 = 2 tan–1 Ω0 
 
The interesting features in Ha(Ω) occur at Ω0 = 1, 2, and 3.  In addition let’s also consider 
Ω0 = 1.5.  The corresponding ω0 are given in the table below. 
 

Ω0 1 1.5 2 3 
ω0 0.5 π 0.626 π 0.705 π 0.795 π 

 
 
Thus, Hd(ω)  looks like 
 

2

1

–π –.795 π

–.705 π
–.626 π

–π
2

π
2

.626 π
.705 π

.795 π π ω

Hd(ω)

  
Notice that Hd(ω) takes on exactly the same set of values taken on by Ha(Ω).  It just does so at 
different frequencies, which causes a change in shape. 
 
 
2. Computer-Aided Optimization 
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Used for IIR designs with general magnitude and/or phase specifications (i.e., Hd(ω) not LPF, 
HPF, or BPF). 
 
 
Digital Frequency Transformation 
 
By making a “change of variable” in HL(s) or H(z), we can transform an analog or digital LPF to 
a LPF having a different cutoff frequency, or to a HPF or BPF. 
 
We will consider only digital transformations (transformations of H(z)). 
 
 
Procedure: 
 
Let H(z) be the transfer function of a low-pass digital filter.  Then simply substitute for z–1 in 
H(z), using the expressions below, to produce filters having the described characteristics. 
 
Lowpass → Lowpass 
 

 z–1 → 
z –1 – β

1 – β z–1  

 
where 
 
 ω ′ c  = cutoff of new filter 
 

 β = 
sin (ωc – ω ′ c ) / 2[ ]
sin (ωc + ω ′ c ) / 2[ ]  

 
Lowpass → Highpass 
 

 z–1 → – 
z –1 – β

1 – βz–1  

 
 ω ′ c  = cutoff of new filter 
 

 β = 
cos (ωc + ω ′ c )/ 2[ ]
cos (ωc – ω ′ c )/ 2[ ]  

 
Lowpass → Bandpass 
 

 z–1 → – 
z–2 – β1 z–1 + β2

β2 z–2 – β1 z–1 +1
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 ωA = lower cutoff of BPF 
 
 ωu = upper cutoff of BPF 
 
 β1 =  2 γ K/(K + 1) 
 
 β2 =  (K – 1)/(K + 1) 
 

   γ =  
  

cos (ωu + ωA )/ 2[ ]
cos (ωu – ωA) / 2[ ]  

 

   K =  cot 
  
ωu – ωA

2
 tan 

ωc
2

 

 
 
Relationship Between Pole and Zero Locations and Frequency Response 
 
In digital filter design we choose the coefficients of 
 

 H(z) = 
  

a0 + a1 z–1 +"+ aN z–N

1 + b1 z–1 +"+ bN z–N  

 
to shape the frequency response Hd(ω) = H(ejω) in a desired way.  Since H(z) can also be written 
in terms of its poles and zeros as 
 

 H(z) = a0   
z – zi
z – pii=1

N
∏  

 
this provides an alternative parameterization of H(z).  Choosing the pole and zero locations of 
the filter is basically equivalent to choosing the {ai} and {bi}.  In this connection, it is worth 
exploring how the pole and zero locations affect the shape of Hd(ω). 
 
The general shape of Hd(ω)  often can be visualized from knowledge of the pole and zero 
locations of H(z).  This is especially true for situations where poles are near the unit circle and 
zeros are either on or near the unit circle. 
 
Example 
 
Consider a causal, stable all-pole filter with 
 

 H(z) = 
1

z2 – 2αcosωp( )z + α2
  =   

1
z – αejωp( ) z – αe –jωp( ) 
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and 0 < α < 1.  H(z) approaches ∞ at the pole locations and approaches zero for |z| large.  Thus, 
we expect |H(z)| to look somewhat like a two-pole circus tent: 
 

Im(z)

Re(z)

ωp

–ωp 1

 
 
Here, the pole locations are marked by × and are at a distance α from the origin.  Since H(z) is 
causal, its ROC is {z : |z| > α} and the above tent covers only this set of z.  (The tent is 
undefined elsewhere.)  Since α < 1, ROCH includes the unit circle.  Thus, the frequency response 
Hd(ω) = H(ejω) is well defined and is a circular slice of the circus tent, around the unit circle.  
Now, since H(z) is infinite at z = α e±jωp, we expect that H(z) will be large for z near the poles.  
If α is nearly one then the poles are close to the unit circle and Hd(ω) will be large for ω such 
that ejω is close to the poles.  This suggests that Hd(ω)  will look like 
 

Hd(ω)

–ωp ωp
ω

 
 
where the peaks occur near ω = ωp. 
 
Example 
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 H(z) = 
z2 – 2 cosωp( )z +1

z2 – 2αcosωp( )z + α2
  =   

z – ejωp( ) z – e –jωp( )
z – αejωp( ) z – αe –jωp( ) 

 
As before, H(z) approaches ∞ at the pole locations z = α e±jωp.  H(z) = 0 at the zero locations 
z = e±jωp.  Thus, |H(z)| is similar to the previous two-pole circus tent except it “touches the 
ground” at the zero locations z = e±jωp as shown below, where poles are indicated by × and zeros 
are represented by     . 
 

Im(z)

Re(z)

ωp

–ωp 1

 
 
Since the pole and zero locations are close together, it may seem difficult to determine what 
Hd(ω) = {H(z) for z on the unit circle} will look like.  A simple observation helps greatly, 
though.  Suppose 
 

 H(z) = 
z – z1( ) z – z2( )
z – p1( ) z – p2( )

 (❑ ) 

 
so that  
 

 Hd(ω)  = H(ejω )  = 
ejω – z1 e jω – z2
ejω – p1 e jω – p2

 

 
Then, the value of Hd(ω)  at some specific frequency ω* is 
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ejω∗ – z1 ejω∗ – z2
ejω∗ – p1 ejω∗ – p2

 . 

 
The factor ejω∗ – zi  is the distance in the complex plane between ejω* and zi.  Likewise, the 
factor ejω∗ – pi  is the distance in the complex plane between ejω* and pi.  Thus, Hd(ω∗)  is the 
product of the distances between ejω* and z1, and between ejω* and z2, divided by the product of 
the distances between ejω* and p1, and between ejω* and p2.  In our example, these distances can 
be visualized for three different frequencies ω1

∗  by examining the figure below. 
 

Im(z)

Re(z)

ejω3
*

ejω2
*

ejω1
*ωp

–ωp

p1

p2

z1

z2

 
 
We see that the distances from ejω1* to the zero z1 at ejωp and to the neighboring pole p1 are 
nearly the same. Likewise, the distances from ejω1* to the zero z2 at e–jωp and its neighboring 
pole p2 are nearly the same.  Thus, 
 

 Hd ω1
∗( )=

e jω1
∗

– z1

ejω1
∗

– p1
=

e jω1
∗

– z2

ejω1
∗

– p2
≈ (1)(1) = 1 

 
The same result holds for any ω1

∗  that is close to zero. 
 
Similarly, in the case of ejω3* we see that distances to all poles and zeros are nearly equal.  Thus. 
 
 Hd ω3

∗( )≈ 1,  
 



12.24 

which holds for any ω3
∗  roughly satisfying 

π
2

≤ ω3
∗ ≤ π .  The distance between ejω2* and the 

zero at ejωp approaches zero as ω2
∗ → ωp .  Thus 

 
 Hd ω2

∗( ) ≈ 0  
 
for ω2

∗  close enough to ωp.  These considerations lead to the Hd(ω)  sketched below. 
 

Hd(ω)

1

ωπωp–ωp–π  
 
Here, we can find the precise values of Hd(0)  and Hd(π)  by using 
 

 Hd(0) = H(1) = 
2 – 2cosωp

1 + α2 – 2αcosωp
 

 

 Hd(π) = H(–1) = 
2 + 2cosωp

1 + α2 + 2αcosωp
 . 

 
The above frequency response is that of a crude notch filter where signal components near 
ω = ωp are greatly attenuated and signal components at other frequencies are passed with nearly 
unit amplitude.  The nulls (notches) in Hd(ω) at ω = ωp are caused by the zeros of H(z) at 
z = e±jωp. 
 
It is only slightly more difficult to gain a rough idea of what ∠Hd(ω) will look like.  From (❑ ) 
we have 
 
 ∠Hd(ω) = ∠(ejω – z1) + ∠(ejω – z2) – ∠(ejω – p1) – ∠(ejω – p2) 
 
Each term (ejω – zi) or (ejω – pi) is a vector in the complex plane. ∠(ejω – zi) and ∠(ejω – pi) are 
simply the angles of these vectors with respect to the positive real axis.  This interpretation can 
be helpful when trying to visualize ∠Hd(ω) for low-order filters.  In general, however, Matlab 
should be used to plot both Hd(ω)  and ∠Hd(ω) for higher-order filters 
 
Example 
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For an FIR lowpass filter, use Matlab to find the zero locations of H(z).  (All poles are at z = 0.)  
You will find that zeros in Hd(ω)  within the stopband are caused by zeros of H(z) on the unit 
circle. Other zeros of H(z) are strategically placed off the unit circle to give a flat response in the 
passband. 
 
 
Example 
 
For a Butterworth lowpass filter you will find that some poles are located near the unit circle ejω 
for ω corresponding to the cutoff frequency.  
 
Example 
 
For an elliptic lowpass filter you will find poles near ejω for ω = cutoff frequency, and some 
zeros on the unit circle at locations corresponding to the stopband. 


