
13.1 

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson 
University of Illinois Chapter 13 
 
 
 
Digital Interpolation 
 
Suppose have yn = ya(nT1) as pictured: 
 

ya(t) T1
yn

 
 

 

and want  ˜ y n  = ya nT2( ) where T2 =
T1
L

,  and L is integer :  

 

ya(t) T2
yn~

 
 

Thus, { ˜ y n } are denser samples of ya(t).  How do we get { ˜ y n } from {yn}?  Could use   
 

 ya(t) = yk
k= –∞

∞
∑  sinc 

π
T1

t – kT1( ) 

  
 

   

 
to get 
 

 ˜ y n   = ya (nT2) = yk sinc
π
Τ1

nΤ2 – kΤ1( ) 

  
 

  
k= –∞

∞
∑  

 
But, this involves an infinite sum (which must be truncated in practice) and evaluation of the 
sinc function.  Alternatively, we might try something simpler, such as a piecewise linear or 
polynomial approximation to ya(t), but these methods are not particularly accurate. 
 
Alternative Digital Approach 
 
 

↑  Lyn Gd(ω)
~yn

wn

 
 
 
where the first box is an up-sampler that inserts L-1 zeros between each pair of inputs: 
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wn = {0, 0, … , 0, y–1, 0, 0, … , 0, y0, 0, 0, … , 0, y1, 0 … }
 

    L-1 zeros 
 

and Gd(ω) is an ideal LPF with cutoff π/L and passband gain L: 
 

-π π
ω

Gd(ω)

π
L

L

 
 
 
Why does this work?? 
 
Analyze the problem in the Fourier domain. 
 
First, note that if 
 

B
Ω

1

Ya(Ω)

 
 

then sampling ya(t) at times nT1  with T1 <
π
B

 
 

 
  would give {yn} with 

 

–π π 2π
ω

BT1

∑
n 



ω+ 2πn

T1
Yd(ω) =

1

T1

1
T1

Y a
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Sampling ya(t) on the denser grid nT2 would give ˜ y n{ } with 
 

π 2π
ω

1

T2

Ỹd(ω) =
1

T2
Ya

ω+2πn

T2



 




n
∑

BT2 =
BT1

L  
 

(Sampling at a higher frequency shrinks the DTFT of the A/D output). 
 

Now, show that the above digital interpolation approach gives ˜ Y d  from Yd (and therefore ˜ y n  
from yn). 
 
We have 
 
 Wd(ω) = wn

n
∑  e–jωn = yn

n
∑  e–jωLn  

 
 
 
⇒     Wd(ω) = Yd(Lω) 
 
 
 
So, 
 

Yd(ω)

ω
πBT1

1

T1
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⇒
1

T1

Wd(ω) = Yd(Lω)

π
L

2π
L

BT2 =
BT1

L

ω

 
 
Now, since 
 

Gd(ω)

L = T1/T2

ωπ
L

π

 
we have 
 
 ˜ Y d (ω) = Gd(ω) Wd(ω) given by 
 

BT2

Ỹd(ω)
1

T2

2π ω
 

 

as desired.  Thus, in principle, the digital interpolator will compute ˜ y n{ } from yn{ } exactly.  In 
practice, the quality of the interpolator depends on the quality of Gd(ω)), i.e., on how close 
Gd(ω) is to the ideal low-pass shape. 
 
Comments: 
 

1) L-1 out of every L inputs to Gd(ω) are zero.  This saves many multiplications for L large!  
This is readily apparent for nonrecursive Gd(ω), but is also true for some recursive Gd(ω). 

 

2) There exist efficient digital interpolation schemes for T2 = α T1, where α is any real number 

(doesn’t have to be 
1
L

). 
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A Further Look at Up-Sampler 
 
A digital interpolator uses an up-sampler as one of its components. 
 

  
xn ynL

 
 
We have shown that Yd(ω) is a squashed version of Xd(ω), namely 
 
 Yd(ω) = Xd(Lω). 
 
Notice that the amplitude of Yd is the same as the amplitude of Xd.  This makes intuitive sense 
since the energy in the yn sequence is the same as that of the xn sequence, because the up-
sampler inserts just zeros between the xn elements. 
 
Example (Up-Sampler) 
 
Suppose L = 3.  Sketch Yd(ω), assuming 
 

ω

1

–2π –π π 2π

Xd(ω)

π
2  

 
The entire ω axis is squashed by a factor of 3 to give 
 

Yd(ω)

1

–π –2π
3

–π
6

π
6

2π
3

π
ω
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Oversampling D/A 
 
Used in C-D players, for example.  Idea is to simplify analog filter in D/A by using interpolation 
prior to the D/A.  Interpolating {yn} prior to the D/A permits the use of a ZOH with a smaller 
step-size.  This ZOH puts out a finer staircase approximation to ya(t), which relaxes the 
requirements on Fa(Ω).  So, instead of this: 
 

yn ZOH
ya(t)

Fa(Ω) ya(t)

 
 
do this: 
 

 

yn

Interpolator

π
L

↑L
~yn

ZOH Fa(Ω) ya(t)
ya(t)

 
 

 
As you can imagine, a far simpler filter Fa(Ω) can be used in the second system to produce ya(t) 
from ya(t), since ya(t) is much smoother in the second system than in the first system.  We gain 
considerable insight into this via the following analysis. 
 
Our analysis of the oversampling D/A is facilitated by first, considering a usual D/A, assuming 
sampling period of T1.  The standard way to reconstruct ya(t) from yn = ya(nT1) is: 
 
 

ZOH
ya(t)

Fa(Ω)ya(nT1) = yn ya(t)

 
 
where 
 
 ya(t) = yn

n
∑  pa (t – nT1) 
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with 
 

pa(t)

Τ1 t

1

 
 
and 
 
 Y a (Ω)  = Pa(Ω) Yd (ΩT1) 
   ↑ 
  from analysis of general D/A 
 
so that 

 Y a (Ω)  = T1 sinc 
ΩT1

2
 e

– j ΩT1
2

 Yd(ΩT1) (❑ ) 

 
As a specific example, assume 
 

–π ωc π ω

Yd(ω)

 
 
Then Y a (Ω)  is the product of the following two curves: 
 
 

Yd(ΩT1)

Ω
–2π
T1 ωc

T1

π
T1

2π
T1

sinc
ΩT1

2

–π
T1

 
giving 
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–2π
T1 ωc

T1

π
T1 2π– ωc

T1

Ya (Ω)

Ω
–π
T1

 
 

Now, as we know, Fa(Ω) should be a LPF with a  
 
 

1

sinc ΩT1
2

 

 
shape in its passband.  For the situation above, with ωc < π, there is room for a transition band of 

Fa(Ω) on the interval 
ωc
T1

 < |Ω| < 
2π – ωc

T1
 .  A finite-order (realizable) Fa(Ω) needs room for a 

transition band (transition cannot be infinitely sharp).  A wider transition band permits a lower 
order (less complicated) Fa(Ω). 
 
A realizable Fa(Ω) might look like: 
 

Fa (Ω)

–ωc

T1

ωc

T1

2π– ωc

T1

Ω

Transition
Band

 
 

This filter is permitted a transition bandwidth of 
 

   
2π – ωc

T1
 – 

ωc
T1

 = 
2 π – ωc( )

T1
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Now, consider oversampling D/A: 
 

ya(nT1) = yn ↑  L Gd(ω) ZOH Fa(Ω) ya(t)
ya(t)

Digital Interpolator

yn = ya(nT2)~

“oversampling factor” =
T1

T2

uses period T2

 
 
Due to the interpolation, the above ZOH puts out a finer staircase approximation with narrow 
steps (width T2).  Thus, we expect that Fa(Ω) can be simpler in this scheme.  Let’s analyze this 
in the frequency domain: 
 
The interpolator squashes the DTFT of yn: 
 

π 2π

Yd(ω)
~

–π ωωc
L  

 
So, Y a (Ω)  now looks like the curve below (use eqn. (❑ ) except with T2 instead of T1 and ˜ Y d  
instead of Yd): 
 
 

Y

Ω

ωc

L • T2
=

ωc

T1

π
T2

2π
T2

2π
T2

–
ωc

T1

a (Ω)

 
 

Thus, the transition band of Fa(Ω) can now be much wider. 
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 Transition BW  = 
2π
T2

 – 
ωc
T1

 – 
ωc
T1

 

 

   = 
2(Lπ – ωc )

T1
 >>  

2(π – ωc)
T1

 

    ↑ from before for regular D/A 
 
so that implementation of Fa(Ω) can be far simpler. 
 

Also, from the picture above we see that the center pulse of Y a (Ω)  is almost flat and that the 

artifact centered at 2π
T2

 is nearly zero, so even a fairly crude Fa(Ω) will do a good job.  Fa(Ω) 

should have a nearly flat response in its passband, can have a huge transition band, and needs 

only moderate attenuation in its stopband. 
 
 
Fa(Ω) in an oversampling D/A can look like: 
 
 

Transition Band

Fa (Ω)

ωc

T1

π
T2

2π
T2

2π
T2

–
ωc

T1

Ω
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Oversampling A/D 
 
A different type of oversampling is sometimes used to limit aliasing in the A/D.  We will 
examine this as the second method, described below, for preventing aliasing at the A/D. 
 
Prevention of Aliasing at A/D 
 
Suppose xa(t) is nearly (not exactly) BL to B rad/sec. 
 
 

Ω
B–B

Xa(Ω)

 
 
Here,  B is an “effective band limit,” but sampling with T = π

B
 will still cause measurable 

aliasing. 
 
How do we prevent aliasing at the sampler?  Two possibilities: 
 
1) Precede the A/D with an analog “antialiasing” LPF with cutoff B rad/sec.  Then sample using 

T < π
B

.  This approach is very common. 

 

2) Alternatively, sample at a high rate with T = 
π

B • D
 where D is an integer and is large enough 

to virtually prevent aliasing (choose D so that Xa(Ω) is virtually limited to D • B rad/sec).  

Then digitally LPF with cutoff ωc = 
π

D
.  Then decimate by a factor of D (discard D–1 of 

every D samples).  This is called an oversampling A/D: 
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xa(t)

sample at
high rate

T =

Decimator

vn
Gd(ω)

wn ↓ D

LPF
stretches
DTFT by
factor of D

xn

= wnD

π
D•B

ωc =
π
D  

 
 
Ordinarily, sampling at such a high rate would be an expensive proposition, since this could 
create a very high data rate.  The decimator, however, reduces the sampling rate back down by a 
factor of D.  Note that implementation of Gd(ω) is not nearly so complicated as you might 
expect.  Since D-1 of every D outputs of Gd(ω) will be discarded, only every Dth output need be 
computed! 
 
Choosing between 1) and 2) is simply an issue of whether you put the complexity in the analog 
or digital part of your system. 
 
 
 
 
Analysis of Oversampling A/D 
 
We will show that Option 2 (oversampling approach) produces exactly the same output {xn} as 
does Option 1.  Suppose: 

 

Ω
B–B

Xa(Ω)

 
 

 

If T = 
π

D • B
 then 
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–π π

Vd(ω)

1

T
=

DB

π

BT =
π
D

ω

 
 
We have 

π

Gd(ω)

ω
–π

1

–π
D D

π
 

 
So: 

 

π
D

–π
D

DB

π

Wd(ω)

π
ω

 
 
Now, what is the relationship between Xd(ω) and Wd(ω)? 
 
Digression 
 
Note 

 
1
D

e
j2π

D
kn

k= 0

D–1
∑  =  

1 n = mD

1
D

1 – e
j
2π
D

nD

1 – e
j
2πn
D

n ≠ mD

 

 
 

 
 

 

 

   =   
1 n = mD

0 n ≠ mD
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Now, 
 

Xd(ω)  = 
n= –∞

∞
∑ xn e–jωn 

 

  = 
n= –∞

∞
∑ wnD e–jωn = 

n=mD
m=–∞

∞
∑ wn e

– jω n
D  

 

  =
↑

trick from
digression

 

  

wn
n=–∞

∞
∑

1
D

e
j 2π

D
kn

k=0

D–1
∑

= 0 unless n =  mD
       

  e
– jω n

D  

   

  = 
1
D k= 0

D–1
∑

n= –∞

∞
∑  wn e

– jn(ω –2πk
D

)  

 
 
 

⇒  Xd(ω) =
1
D

Wd
ω – 2π k

D
 
 

 
 

k= 0

D–1
∑  (∆) 

 
 
 
Now, had 
 

π
D

–π
D

DB

π

Wd(ω)

π
ω
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Using this Wd(ω) in (∆) gives 
 

k = D – 1 B
π

–π π 2π
ω

k = 1
Xd(ω)

k = 0 term

=
1

D
Wd

ω
D







 
 

Note:  This Xd is just what we would have obtained if we had analog low-pass filtered xa(t) to 

B rad/sec and then sampled with period T = 
π
B

  ! 

 
Thus, 2) does an equivalent job to 1). 
 
Note: 
 
How can (∆) produce a periodic Xd(ω)?  (∆) has only a finite number of terms in its sum.  
Answer:  Each term is a periodic DTFT, not a FT as in Eq. (◊). 
 
k=0 term in (∆) has pulses centered at 0, ± 2πD, ± 4πD, etc. 
 
k=1 term has pulses centered at 2π, 2π ± 2πD, 2π ± 4πD, etc. 
 
     
 
k = D – 1 term has pulses centered at (D–1)2π, (D–1)2π ± 2πD, (D–1)2π ± 4πD, etc. 
 
 
A Further Look at Down-Sampler 
 
A decimator uses a down-sampler as one of its components: 
 

 xn D yn  
 
The down-sampler essentially stretches Xd.  However, if Xd(ω) is not limited to |ω| < 

π
D

 , then 

aliasing also occurs.  Specifically, 
 

  Yd(ω) =  
1
D

Xd
k= 0

D–1
∑

ω – 2πk
D

 
 

 
 . (∆) 
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Notice the scaling in amplitude by 
1

D
 .  This factor is not surprising, given that in the time 

domain, the down-sampler discards D–1 out of every D samples.  By contrast, the up-sampler 

does not discard any samples, and inserts only zero-valued samples, so that there is no amplitude 

scaling in the Fourier domain for the up-sampler. 
 
 
Example (Down-Sampler) 
 
Suppose D = 3.  Sketch Yd(ω), assuming 
 

Xd(ω)

1

–2π –π π 2π ω  
 

Then the k = 0 term in (∆) is 
 

1
3

–7π –6π –5π –4π –3π –2π –π
3π
4

π 2π 3π 4π 5π 6π 7π ω

 
 
The k = 1 term in (∆)  is a 2π-shifted version of the above, namely 
 
 

1
3

ω–5π –4π –2π–3π –π π 2π 3π 4π 5π 6π 7π 8π 9π  
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Likewise, the D – 1 = 2 term in (∆) is a 4π-shifted version of the k = 0 term: 
 

1
3

ω
–2π–3π –π π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π  

 
Adding the three previous plots together gives Yd(ω): 
 

Yd(ω)
k = 2 term

–3π –2π –π π 2π 3π
ω

1
3 k = 0 term k = 1 term

 
 
Note that the various terms in (∆) interlace to produce a 2π-periodic Yd(ω).  In this example 
there was no need to plot the k = 0, 1, 2 terms, since the k = 0 term, alone, determines the shape 
of Yd(ω) for |ω| < π.  In the next example, the downsampler causes aliasing, so that the terms in 
(∆) overlap.  This situation is more complicated than in the previous example. 
 
Example (Down-Sampler) 
 
Suppose D = 3 as before, but now with 
 
 

ω

1

–2π –π π 2ππ
2

Xd(ω)
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The k = 0 term in (∆) is: 

1
3

ω
–8π –7π –6π –5π –4π –3π –2π –π 0 π 2π 3π 4π 5π 6π 7π 8π  

 

Notice that the center pulse extends beyond ω = ± π, which is an indication of aliasing.  The k = 1 
term in (∆) is a 2π-shifted version of the above plot, namely:   

ω
0–6π –5π –4π –3π –2π –π

1
3

π 2π 3π 4π 5π 6π 7π 8π 9π 10π  
 

The k = 2 term in (∆) is a 4π-shifted version of the k = 0 term:  

ω0

1
3

π 2π 3π 4π 5π 6π 7π 8π 9π 10π–4π –3π –2π –π 11π 12π  
 

Adding the k = 0, 1, 2 terms gives Yd(ω), which we plot only for |ω| ≤ π: 
 

–3π
2

Yd(ω)

1
3
2
9

–π –π
2

π
2

π 3π
2

ω

 
In this example, we have aliasing because Xd(ω) extends beyond ω = ± π

D
 = 

π
3

.  In a decimator, 

the job of the LPF that precedes the down-sampler is to cut off Xd(ω) at ω = π
D

 to prevent this 

aliasing. 
 


