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Fast Fourier Transform (FFT) 
 
FFTs comprise a class of algorithms for quickly computing the DFT. 
 
DFT: 
 

     Xp = xn • WN
np

n= 0

N –1
∑                0 ≤ p ≤ N – 1 

           WN
∆
= e– j2π

N  
 

A straightforward computation requires: 
 

 N2 ⊗,    N(N – 1) ⊕ 
 

where these multiplications and additions are generally complex. 
 
There are many different FFTs.  We will consider only radix-2 decimation-in-time and 
decimation-in-frequency algorithms. 
 
Radix-2 FFTs, where the sequence length N is restricted to be a power of two, require only 
0(N log2 N) computations. 
 
Decimation-in-Time Radix-2 FFT 
 
Suppose N = 2M 
 

Idea:  Divide input sequence into two groups, those elements of xn{ } with n even and those with 

n odd.  Then combine the size N/2 DFTs of these two subsequences to calculate the first half of 

Xm{ }N–1
m=0  and the second half of Xm{ }N–1

m=0 . 
 

Let  
yn = x2n

zn = x2n+1

 
 
 

0 ≤ n ≤
N
2

– 1 

 

Show Xp{ }p=0
N –1

  can be obtained from the 
N
2

 point DFTs Yp{ }p= 0

N
2

–1
 and Zp{ }p=0

N
2

–1
 . 

 

Splitting a size N problem into two size 
N
2

 problems will reduce computation because 

 
N
2

 
 

 
 

2
 + 

N
2

 
 

 
 

2
 = 

N2

2
 <  N2 
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Our strategy will then be to divide each size 
N
2

 problem into two size 
N
4

 problems, etc. 
 

Derivation Relating Xp to Yp and Zp: 
 

 Xp = x2k WN
2kp + x2k+1 WN

(2k+1)p( )
k=0

N
2

–1

∑  

 

  = yk WN / 2
kp

+ WN
p

k=0

N
2

–1

∑ zk WN /2
kp

k= 0

N
2

–1

∑  (1) 

 

since WN
2kp

= e–j2π
N 2kp = e– j 2 π

N / 2 kp = WN / 2
kp

 
 
For p = 0, 1, … , 

N
2

 – 1, the first sum in (1) is Yp, and the second sum is WN
p Zp . 

 

⇒ Xp = Yp + W
p
N Zp   0 ≤ p ≤ N

2
– 1

 
 
     (2) 

 
What about Xp for p > 

N
2

 – 1?  We can get these by using (1) to write: 

 

 Xp+ N
2

= yk WN / 2
k p+ N

2( )
k=0

N
2 –1

∑ + WN
p+ N

2 zk WN / 2
k p+ N

2( )
k=0

N
2 –1

∑  

 
Note that: 
 

 WN / 2
k p+ N

2( )
= WN / 2

kp
WN / 2

k N
2 = WN / 2

kp
•1 

 
and 

 WN
p+ N

2 = WN
p

e– j2 π
N

N
2 = –WN

p
 

 
So: 

 Wp+ N
2

= yk WN / 2
kp

k=0

N
2 –1

∑ – WN
p zk WN / 2

kp

k=0

N
2 –1

∑  

 

⇒ Xp+N
2

= Yp – W
p
N Zp   0 ≤ p ≤ N

2
– 1

 

 

 (3)
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(2) and (3) show how to compute an N point DFT using two 
N
2

 point DFTs.  These two 

equations are the essence of the FFT and describe the following flow graph: 
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The operation to combine the 

N
2

 point DFT outputs Yp and Zp is called a butterfly: 

 

Zp

Xp
1

1

0 ≤ p ≤       – 1N
2

Yp

Xp+N
2

–WN
p

WN
p

 
 
This butterfly diagram summarizes (2) and (3). 
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Our overall strategy will be to: 
 
Replace the N-point DFT by 

N
2

 butterflies preceded by the 
N
2

-point DFTs. 
 
Replace each 

N
2

-point DFT by 
N
4

 butterflies preceded by two 
N
4

-point DFTs. 
 • 
 • 
 • 
 • 
Replace each 4-point DFT by two butterflies preceded by two 2-point DFTs.  
Replace each 2-point DFT by a single butterfly preceded by two one-point DFTs.  But, a one-
point DFT is the identity operation, so a two-point DFT is just a single butterfly. 
 
Since   N = 2M, this recursion leads to M = log2 N stages of 

N
2

 butterflies each. 
 
Thus, for a DSP chip that can perform one multiplication and one addition (one multiply-
accumulate) in each clock cycle, a radix-2 DIT FFT requires 
 saccumulateNmultiplyN −2log  
 
which can be far less than the N2 multiply-accumulates required by a straightforward DFT. 
 
Example   (N = 8, DIT FFT) 
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The input xn is required in “bit-reversed” order.  Why?  This follows since to compute an N-
point DFT using two N/2 point DFTs, we break up the input into even and odd points. We do 
this successively as we work backward in the flow diagram: 
 

x0

x4

x2

x6

x1

x5

x3

x7

x6

x4

x2

x0

x7

x5

x3

x1

x7
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x3

x0

x2

x4

x6

x1

Inputs to
2-point DFTs

Inputs to
4-point DFTs

Inputs to
8-point DFTs

 
 
Note: FFT computation can be performed “in place.”  We need only one length-N array in 

memory since the output of a butterfly can be written back into the input locations. 
 
 
 
 
Example ~ computational comparison 
 
Suppose N = 214 = 16,384. 
 
Compare the number of multiply-accumulates in straightforward and DIT FFT implementations 
of the DFT. 
 
Straightforward:  N2 = 268,435,456   multiply-accumulates 
 
FFT:  N log2 N = 214 (14) = 229,376   multiply-accumulates 
 
Savings factor = 

268,435, 456
229,376

  =  1170! 

 
 
Suppose that in 1964 a state-of-the-art computer required 10 hours to compute a straightforward 
length 214 DFT.  Then, in 1965, after publication of the FFT, this same computation could be 
performed in about 30 seconds! 
 
Decimation in Frequency Radix – 2 FFT 
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Idea:  Essentially is backwards from DIT.  Separate xn{ }N–1

n=0  into first half and second half and 

then compute even and odd points in Xp{ }p=0
N –1  separately, using two 

N
2

-point DFTs. 

 
Derivation of algorithm: 
 

 Xp =  xn WN
np

n= 0

N –1
∑  

 

 =  xm W mp
N + xm+ N / 2 WN

(m+ N /2)p

m=0

N
2

–1

∑
m=0

N
2

–1

∑  

 

 =  xm + xm+N / 2 WN
(N /2)p( )

m=0

N
2 –1

∑ WN
mp  (10) 

 
Look at even and odd points in Xp separately. 
 
Evens: 
 
(10)  ⇒ 

 X2q  =  xm + xm+ N /2 •1( )
m=0

N
2 –1

∑ WN /2
mq  

 

 

(11)⇒   { }X2q
N/2 –1
q=0

= DFT

↑ ↑
N/2 point DFTeven points in desired

length-N DFT

[{xm + xm+N/2 ]}
N/2 –1
m=0

 
 
Odds: 
 
(10)  ⇒ 

X2q+1   = xm + xm+N / 2WN
(N /2)(2q+1)( )

m=0

N
2 –1

∑ WN / 2
mq WN

m 

 

 =  xm – xm +N / 2( )WN
m[ ]

m=0

N
2 –1

∑ WN / 2
mq  
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⇒   { }X2q+1
N/2 –1
q=0 (12)

↑
odd points in desired

length-N DFT

= DFT[{ } ]N/2 –1
m=0

xm – x m+N/2( )WN
m

 
 
 
(11) and (12) give: 
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0

-WN
1

xN/2
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-WN
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W
N/2-1
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The complete DIF algorithm computes each 
N
2

-point DFT using two 
N
4

-point DFTs, etc.  As in 

the DIT algorithm, we get log2 N stages of 
N
2

 butterflies each, but now the output appears in bit-

reversed order. 
 
 
Example     (N = 8,  DIF FFT) 
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The branch weights are found by using (11) and (12). 
 
Note:  As mentioned above, the output appears in bit-reversed order. 
 
Comment:  The DIF flow diagram is simply the transpose of the DIT diagram (switch input and 
output, and reverse all flows). 
 
Other Comments: 
1) FFT computer algorithms incorporate the reordering (“bit reversal”) of input or output.  You 

don’t have to do this yourself. 
2) Can generalize Radix-2 approach to Radix-3, Radix-4, etc. with N = 3M, N = 4M, etc.  For a 

Radix-4 DIT algorithm, break input up into four groups. 
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x1

x5

x9

•

•

xN–3

x2

x6

x10

•

•

xN–2

x0

x1

x2

x3

x4

x5

x6

x7

x8

•

•

•

•

•

•

•

•

•

•

xN–3

xN–2

xN–1

x0

x4

x8

•

•

xN–4

→   N/4 PT DFT

x3

x7

x11

•

•

xN–1

→   N/4 PT DFT

→   N/4 PT DFT

→   N/4 PT DFT

 
 
The outputs of the N/4-point DFTs can then be combined, using modified butterflies with 
4 inputs and 4 outputs each, to calculate X m{ }N–1

m=0  . 

 
Example 

 
Shown below is part of a radix-2, 64-point DIT FFT.  Determine the indices α–δ and the 
coefficients a–g. 
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xδ
a

b

c

de

f

g

Xα

Xβ

Xγ

X49

 
 
Solution:  Use Eqs. (2) and (3) from p. 47.2 in course notes: 
 

 Xp = Yp + WN
p

 Zp 0 ≤ p ≤ 
N
2

 – 1 

 

 Xp+ N
2

 = Yp – WN
p

 Zp 0 ≤ p ≤ 
N
2

 – 1 

 

N = 64,  β + 
N
2

 = 49   ⇒    β = 17 

 

γ = 49 – 
N
4

 = 33 

 

α = 33 – 
N
2

 = 1 

 
δ is bit reversal of 49 = (110001)2  ⇒  δ = (100011)2 = 35 
 

d = W64
1  = e– j 2π

64  g = – W64
17 = –e– j34π

64  
 
 
e = 1    b = 1 
 

f = 1    c = 1 a = 1 ← 
since this is a top
branch in butterfly
of 16 pt DFT
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Fast Linear Convolution 
 
Recall the cyclic convolution property of the DFT: 
 

 yn = 
m =0

N–1
∑ hm x<n–m>N   iff   Ym = Hm Xm    0 ≤ m ≤ N – 1 

 
So, we can implement cyclic convolution via 
 
 yn{ }= DFT–1 DFT hn{ }[ ]• DFT xn{ }[ ][ ] (∆∆) 
 
This can be done quickly for long sequence lengths using the FFT. 
 
But, what is cyclic convolution? 
 
To compute y2: 
 

. . . .h0 h1 h2 h3 h4 hN–2 hN–1

x2 x1 x0 xN–1 xN–2 x4 x3. . . .
 

 
 
We would rather implement a linear (regular) convolution: 
 

. . .

. . .

h0 h1 h2 hN–2 hN–1

xN–1 xN–2 x2 x1 x0   
 

 
To compute a linear convolution via a cyclic convolution, we must eliminate the wrap-around of 
nonzero terms in the cyclic convolution.  Use zero-padding with N – 1 zeros, i.e., let: 
 

 ˆ h n  = 
hn 0 ≤ n ≤ N –1

0 N ≤ n ≤ 2N – 2
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 ˆ x n  = 
xn 0 ≤ n ≤ N – 1

0 N ≤ n ≤ 2N – 2

 
 
 

 

 
Now, cyclically convolve the zero-padded sequences. 
 
The result is that ˆ y n{ }n=0

2N–2
 will be a linear convolution of hn{ }n=0

N–1 with xn{ }n=0
N–1 .  For 

example, in computing ˆ y 2, we will have: 
 
 

h0 h1 h2 h3 hN-1 0

x2 x1 x0 0

0 0 0 0

0 0 xN-1 xN-2 x4 x3

0

0  
 
Obviously, the zero-padding eliminates the wrap-around problem.  Using an FFT with (∆∆), and 
zero-padded sequences, provides a fast means of performing linear convolution. 
 
What if {hn} and {xn} are not of the same length? 
 
If {hn} is of length M and {xn} is of length N, then pad each sequence to length N + M – 1 (or 
nearest larger power of 2 if you are using a radix-2 FFT). 
 
Let’s check and see that (∆∆), with zero padding, works for a specific example. 
 
Example 
 hn = {1, 1, 1} , xn = {1, –1, 1} 
     ↑                      ↑ 
  
To produce a linear convolution via (∆∆), first pad each sequence with N – 1 = 2 zeros: 
 ˆ h n  = {1, 1, 1, 0, 0} 
 
 ˆ x n  = {1, –1, 1, 0, 0} 
 
Now, 

 ˆ H m = ˆ h n
n=0

4
∑ e–j 2π

5 nm  

 

  = 1 + e– j 2π
5 m  + e– j 4π

5 m  
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Likewise, 

 ˆ X m  = 1 – e– j 2π
5 m  + e– j 4π

5 m  
 
So, 

 

^
Ym =

^
Hm

^
Xm  =  1 + e

–j2π
5 m

 + e
–j4π

5 m

=  1 + e
–j4π

5 m
 + e

–j8π
5 m

=  1 + e
–j2π

5 2m
 + e

–j2π
5 4m

–  e
–j2π

5 m
 – e

–j4π
5 m

 – e
–j6π

5 m
  

+  e
–j4π

5 m
 + e

–j6π
5 m

 + e
–j8π

5 m
  

 
 
Since 

 ˆ Y m  = ˆ y n
n=0

4
∑ e– j 2π

5 m  

 
we see that 
  ˆ y n  = {1, 0, 1, 0, 1} 
 
It is easy to see that this is the correct linear convolution: 
   1     1     1 
   1    –1     1 
Performing the usual shift and add operations gives the sequence {1, 0, 1, 0, 1}.      ✔ 
 
Now, what if we had not zero padded? 
Then (∆∆) would have produced a cyclic convolution. 
The cyclic convolution formula is 
 

 yn = 
m=0

2
∑ hm x<n–m>3 

 
which is computed pictorially as 
 

1 1 1

–1 1 1

y1 = 1

1 1 1

1 1 –1

y0 = 1

1 1 1

1 –1 1

y2 = 1  
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Let’s check that (∆∆) without zero-padding gives this same result. 
 

    Hm = 
n=0

2
∑ hn e– j 2π

3 nm  

  = 1 + e– j 2π
3 m  + e– j 4π

3 m  
 

    Xm = 1 – e– j 2π
3 m  + e– j 4π

3 m  
 
    Ym = Hm Xm 
 

  

– e
–j2π

3 m
 – e

–j4π
3

m

+ e
–j4π

3 m
 + e

–j6π
3

m
 + e

–j8π
3

m

– e
–j6π

3 m

= 1 + e
–j2π

3 m
 + e

–j4π
3 m

 
Interchanging the latter two terms and using 2π periodicity of the complex exponential gives 
 

     Ym = 1 + e– j 2π
3 m  + e– j 2π

3 2m 
 
Matching up terms with 

     Ym = 
n=0

2
∑ yn e– j 2π

3 nm   =   y0 + y1 e– j 2π
3 m  + y2 e– j 2π

3 2m 

gives 
 {yn} = {1, 1, 1}          ✔  
      ↑ 
Note:  We worked through this example to show that (∆∆) can give a linear convolution or a 
cyclic convolution, depending on whether we first zero pad.  In practice, if N is large the DFTs 
and inverse DFT would be computed using FFTs.  If N is small, then it is faster to perform the 
convolution in the sequence domain.   
 
For practice at computing cyclic convolution in the sequence domain, consider the following 
example. 
 
Example 
 
Find yn = hn *O  xn where hn{ }n=0

3  = {1, 2, 3, 4} and xn{ }n=0
3  = {1, 0, 2, –1}.   
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1 –1

y  = 5

1 2 3 4

2 0 0 1

y  = 7

1 2 3 4

–1 2 2 0

y  = 1

1 2 3 4

1 –1 –1 2

y  = 7

1 2 3 4

0 1

n = 0 n = 1 n = 2 n = 3

 
              y0 = 5 y1 = 7 y2 = 1 y3 = 7 
 
 
Example  (Convolution via FFT) 
 
Suppose that a sequence xn{ }n=0

7000is to be filtered with an FIR filter having coefficients 

hn{ }n=0
1100 . 

 

a) Ignoring possible savings from coefficient symmetry, what is the total number of 
multiplications required to compute the output yn{ }8100

n=0  by implementing the usual 
convolution formula with a direct-form filter structure? 
 

b) Using the FFT method (with a radix-2 FFT and zero-padding to length 8192), how 
many complex multiply-accumulates (MAs) are required to compute yn{ }8100

n=0 ?  How 
many real MAs are required?  (For simplicity, count all “multiplications” in an FFT, even 
those by ±1, ±j, as complex multiplications.) 
 

Solution 
 

a) Output of regular convolution is composed of 3 parts: 
 

hn
xn

hn
xn

hn
xn

 

# of MAs is 1 + 2 + 3 + … + 1100 
 = 

(1100)(1101)
2

 

 
 
# of MAs is 1101 (7001 – 1100) 
 
 
 
# of MAs is 1100 + 1099 + … + 1  
 
 = 

(1100)(1101)
2

 

 
Total # MAs = 1100(1101) + 1101(5901) =   7,708,101  
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b) FFT method is

{~xn}8191
n=0

{
~
hn}8191

n=0

{yn}

FFT

FFT

FFT–1

 
 
 

where ˜ x n{ } and ˜ h n{ } are zero-padded versions of xn{ } and hn{ }. 
 
# complex MAs = 3 N log2 N( )+ N = 3 8192 •13( )  + 8192 =  327, 680 
 
The number of real MAs required to implement a complex MA is generally 4.  To see this, write 
out the detailed calculation (a) (b) + c where a, b, and c are all complex. Assuming this factor of 
4 overhead, we have 
 
# real MAs = 4 (327, 680) =   1, 310, 720  
 
Thus, in this example the FFT approach requires fewer than 20% of the MAs required by a 
straightforward convolution. 
 
 
Block Convolution 
 
Given xn{ }N–1

n=0  and hn{ }M–1
n=0 , we have developed an approach for efficiently computing 

yn = hn * xn using zero-padding and FFTs. But, what if N >> M?  If N, the length of the input, is 
really large, we are faced with two problems: 
 

1)Very long FFTs will be required, which will lead to computational inefficiency. 
 
2)There will be a very long delay in computing yn{ } since our scheme requires that all of 

xn{ } be acquired before any element in the output sequence can be computed. 
 
What to do?  Answer:  Segment the long input xn{ }N–1

n=0  into shorter pieces, convolve the 

individual pieces with hn{ }M–1
n=0  and then stitch together the results of the shorter convolutions 

to form yn{ }.  There are two popular ways of doing this. 
 

Method 1: Overlap and Add 
 
Here, we divide up the input into nonoverlapping sections of length L.  Let 
 xk( ) = x(kL + )            0 ≤  ≤ L – 1,      k = 0, 1, 2, … 
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Picture: 
 

x(n)

L 2L 3L 4L
n

x0( ){ } L–1

=0
x1( ){ } L–1

=0
x2( ){ } L–1

=0
x3( ){ } L–1

=0  
 
We have 
 
 x(n) = xk(n – kL)

k
∑        0 ≤ n ≤ N – 1. 

 
Now, convolution is a linear operation, so 
 

 y(n) = h(n) ∗ x(n) = h(n)∗ xk n – kL( )
k
∑

 

 
 

 

 
 = h(n)∗ xk n – kL( )

k
∑  

 
Let yk(n) = h(n) * xk(n).  Then by shift-invariance, 
 
 y(n) = yk(n – kL)

k
∑  . (1) 

 
We compute each yk(n){ } via the FFT as in the previous lecture.  For simplicity, assume 
M + L – 1 is a sequence length for which we have an FFT algorithm.  Then 
 

1) Pad xk(n){ }L–1
n= 0 with M–1 zeros to give ˜ x k(n){ }L+M–2

n= 0 . 

 
 Pad h(n){ }M–1

n=0  with L–1 zeros to give ˜ h (n){ }L+ M–2
n= 0  . 

 
2) Calculate the FFTs of ˜ x k(n){ }L+M–2

n= 0  and ˜ h (n){ }L+ M–2
n= 0 . 

 
3) Multiply FFTs together and take FFT–1 to give yk(n){ }L+M–2

n= 0 . 
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Finally, calculate {y(n)} via (1) by adding together the appropriately shifted yk(n){ }. 
 
Pictorially: 
 

 

{h(n)}

{h(n)}~

{x(n)}~

M

M L – 1

zeros

zeros

L M – 1

{x(n)}
L L L

•  •  •
xk(n){ } xk+1(n){ } xk+2(n){ }

 
 
 

 

  

add

add

y0(n) = h(n) * x0(n)

y1(n) = h(n) * x1(n)

y2(n) = h(n) * x2(n)
•
•
•

•
•
•  

 
Sum of the shifted (by kL) yk(n) gives {y(n)}. 
 
Example 
 
Given h(n){ }249

n=0  and x(n){ }∞
n=0  we wish to compute {y(n)} = {h(n)} * {x(n)} using the FFT 

method.  What is the best block length L, using the Overlap and Save method with radix-2 FFTs? 
 
We have M = 250.  Let K = FFT length.  Then since K = L + M – 1, the block length will be 
L = K – 249.  Each length-K FFT and inverse FFT requires K log2 K MAs.  Multiplication of 
FFTs requires K MAs.  We shall assume that the FFT of {˜ h (n)} is precomputed once and stored.  
Thus, the amount of computation for each input block will be 
 
 2 K log2 K + K = K (2log2 (K) + 1)      MAs. 
 
This amount of computation is needed to compute each yk(n){ } k = 0, 1, 2, … from each input 
block xk(n){ } of length L = K – 249.  Thus, the computation per input sample (or per output 
sample), ignoring the few additions needed to sum the overlapping yk(n){ } blocks, is 
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K 2log2 K +1[ ]

K – 249
 (2) 

 
Trying some different values for the FFT length K, we find: 
 

 
K 

 
L 

Complex MAs 
Per output 

 

 256  7  621.7  K = FFT length 

 512  263  37.0  L = input block length 

 1024  775  27.7  # MAs given by (2) 

 2048  1799  26.2  

 4096  3847  26.6  
 
 
For larger K, (2) approaches (2 log2 K) + 1, which grows with K. 
 
Even allowing for the required complex arithmetic (4 real MAs per complex MA), the FFT 
approach offers considerable savings over a direct filter implementation, which would require 
250 MAs per output. 
 
Notes: 
 

1)Based on the above table, and if we are at all concerned about delay, we would select an 
FFT block length of either 512 or 1024. 
 
2)If xn{ } and hn{ } were complex-valued, then the direct filter implementation would 
require roughly 1000 MAs per filter output. 
 
3)If a sequence is real, there are tricks that can be used to speed up computation (by a factor 
of approximately two) of its DFT.  If both {x(n)} and {h(n)} are real, in which case {y(n)} is 
real, these tricks can be used to reduce the number of MAs in the FFT approach by nearly a 
factor of two over the entries shown in the above table. 
 
Method 2:  Overlap and Save 
 
Could just as easily be called Overlap and Discard. 
 
Here, we define the xk(n){ } to be overlapping as shown below. 
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L 2L 3L 4L n

x(n)

 
 

M–1 L

M–1 L

M–1 L

M–1 L

x0(n){ }

x1(n){ }

x2(n){ }

x3(n){ }
•
•
•  

The first M–1 entries of x0(n){ } are filled with zeros.  All other entries of x0(n){ } and all 
entries of all other subsequences xk(n){ } are filled with the values of {x(n)} directly above.  In 
general, each subsequence overlaps with its two neighboring subsequences.  The algorithm to 
calculate {y(n)} is then: 
 

1)Zero-pad h(n){ }M–1
n= 0  with L–1 zeros to produce ˜ h (n){ }M+ L–2

n=0 . 

 
2)Cyclically convolve (via FFT) ˜ h (n){ }M+ L–2

n=0  with each xk (n){ }M+ L–2
n=0  to give 

 
    yk(n) = ˜ h (n) *   xk(n).  0 ≤ n ≤ M + L – 2 
 

The result is that the first M–1 samples of each yk(n){ } will be useless, but the last L samples 
will be samples of {y(n)}. 

 
3)Assemble {y(n)} as shown: 
 

M–1 L
y0(n){ }

y1(n){ }

y2(n){ }
•
•
•

Bad Good

Bad Good

M–1 L

M–1 L

Bad Good

 
 
The “bad” samples are discarded and the “good” samples are concatenated to form {y(n)}. 


