
14.1

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson
University of Illinois Chapter 14

Fast Fourier Transform (FFT)

FFTs comprise a class of algorithms for quickly computing the DFT.

DFT:

 Xp = xn • WN
np

n= 0

N –1
∑ 0 ≤ p ≤ N – 1

 WN
∆
= e– j2π

N

A straightforward computation requires:

 N2 ⊗, N(N – 1) ⊕

where these multiplications and additions are generally complex.

There are many different FFTs. We will consider only radix-2 decimation-in-time and
decimation-in-frequency algorithms.

Radix-2 FFTs, where the sequence length N is restricted to be a power of two, require only
0(N log2 N) computations.

Decimation-in-Time Radix-2 FFT

Suppose N = 2M

Idea: Divide input sequence into two groups, those elements of xn{ } with n even and those with

n odd. Then combine the size N/2 DFTs of these two subsequences to calculate the first half of

Xm{ }N–1
m=0 and the second half of Xm{ }N–1

m=0 .

Let
yn = x2n

zn = x2n+1





0 ≤ n ≤
N
2

– 1

Show Xp{ }p=0
N –1

 can be obtained from the
N
2

 point DFTs Yp{ }p= 0

N
2

–1
 and Zp{ }p=0

N
2

–1
 .

Splitting a size N problem into two size
N
2

 problems will reduce computation because

N
2







2
 +

N
2







2
 =

N2

2
 < N2

14.2

Our strategy will then be to divide each size
N
2

 problem into two size
N
4

 problems, etc.

Derivation Relating Xp to Yp and Zp:

 Xp = x2k WN
2kp + x2k+1 WN

(2k+1)p()
k=0

N
2

–1

∑

 = yk WN / 2
kp

+ WN
p

k=0

N
2

–1

∑ zk WN /2
kp

k= 0

N
2

–1

∑ (1)

since WN
2kp

= e–j2π
N 2kp = e– j 2 π

N / 2 kp = WN / 2
kp

For p = 0, 1, … ,

N
2

 – 1, the first sum in (1) is Yp, and the second sum is WN
p Zp .

⇒ Xp = Yp + W
p
N Zp 0 ≤ p ≤ N

2
– 1

 (2)

What about Xp for p >

N
2

 – 1? We can get these by using (1) to write:

 Xp+ N
2

= yk WN / 2
k p+ N

2()
k=0

N
2 –1

∑ + WN
p+ N

2 zk WN / 2
k p+ N

2()
k=0

N
2 –1

∑

Note that:

 WN / 2
k p+ N

2()
= WN / 2

kp
WN / 2

k N
2 = WN / 2

kp
•1

and

 WN
p+ N

2 = WN
p

e– j2 π
N

N
2 = –WN

p

So:

 Wp+ N
2

= yk WN / 2
kp

k=0

N
2 –1

∑ – WN
p zk WN / 2

kp

k=0

N
2 –1

∑

⇒ Xp+N
2

= Yp – W
p
N Zp 0 ≤ p ≤ N

2
– 1

 (3)

14.3

(2) and (3) show how to compute an N point DFT using two
N
2

 point DFTs. These two

equations are the essence of the FFT and describe the following flow graph:

Y0

Y1

Y2

Z0

Z1

Z2

YN
2

-1

ZN
2

-1

1

1

1
1

1

1

WN

1

-WN
1

W
N
2

-1

N

–W
N
2

-1

N

X0

X1

XN
2

-1

XN/2

XN
2

+1

XN-1

x0

x2

x4

xN-2

x1

x3

x5

xN-1

N/2

PT

DFT

N/2

PT

DFT

WN
0

–WN
0

The operation to combine the

N
2

 point DFT outputs Yp and Zp is called a butterfly:

Zp

Xp
1

1

0 ≤ p ≤ – 1N
2

Yp

Xp+N
2

–WN
p

WN
p

This butterfly diagram summarizes (2) and (3).

14.4

Our overall strategy will be to:

Replace the N-point DFT by

N
2

 butterflies preceded by the
N
2

-point DFTs.

Replace each

N
2

-point DFT by
N
4

 butterflies preceded by two
N
4

-point DFTs.
 •
 •
 •
 •
Replace each 4-point DFT by two butterflies preceded by two 2-point DFTs.
Replace each 2-point DFT by a single butterfly preceded by two one-point DFTs. But, a one-
point DFT is the identity operation, so a two-point DFT is just a single butterfly.

Since N = 2M, this recursion leads to M = log2 N stages of

N
2

 butterflies each.

Thus, for a DSP chip that can perform one multiplication and one addition (one multiply-
accumulate) in each clock cycle, a radix-2 DIT FFT requires
 saccumulateNmultiplyN −2log

which can be far less than the N2 multiply-accumulates required by a straightforward DFT.

Example (N = 8, DIT FFT)

1 1 1

1
1

1

1

1

1

1

1

–W 0
2

W
0
2 W

0
4

W1
4 1

1–W0
4

–W1
4

W0
8

W1
8

W2
8

W3
8

–W 0
8

–W1
8

–W2
8

–W 3
8

x0

x4

x2

x6

x1

x5

x3

x7

X0

X1

X2

X3

X4

X5

X6

X7

000

100

010

110

001

101

011

111

000

001

010

011

100

101

110

111

Index Index

1

14.5

The input xn is required in “bit-reversed” order. Why? This follows since to compute an N-
point DFT using two N/2 point DFTs, we break up the input into even and odd points. We do
this successively as we work backward in the flow diagram:

x0

x4

x2

x6

x1

x5

x3

x7

x6

x4

x2

x0

x7

x5

x3

x1

x7

x5

x3

x0

x2

x4

x6

x1

Inputs to
2-point DFTs

Inputs to
4-point DFTs

Inputs to
8-point DFTs

Note: FFT computation can be performed “in place.” We need only one length-N array in

memory since the output of a butterfly can be written back into the input locations.

Example ~ computational comparison

Suppose N = 214 = 16,384.

Compare the number of multiply-accumulates in straightforward and DIT FFT implementations
of the DFT.

Straightforward: N2 = 268,435,456 multiply-accumulates

FFT: N log2 N = 214 (14) = 229,376 multiply-accumulates

Savings factor =

268,435, 456
229,376

 = 1170!

Suppose that in 1964 a state-of-the-art computer required 10 hours to compute a straightforward
length 214 DFT. Then, in 1965, after publication of the FFT, this same computation could be
performed in about 30 seconds!

Decimation in Frequency Radix – 2 FFT

14.6

Idea: Essentially is backwards from DIT. Separate xn{ }N–1

n=0 into first half and second half and

then compute even and odd points in Xp{ }p=0
N –1 separately, using two

N
2

-point DFTs.

Derivation of algorithm:

 Xp = xn WN
np

n= 0

N –1
∑

 = xm W mp
N + xm+ N / 2 WN

(m+ N /2)p

m=0

N
2

–1

∑
m=0

N
2

–1

∑

 = xm + xm+N / 2 WN
(N /2)p()

m=0

N
2 –1

∑ WN
mp (10)

Look at even and odd points in Xp separately.

Evens:

(10) ⇒

 X2q = xm + xm+ N /2 •1()
m=0

N
2 –1

∑ WN /2
mq

(11)⇒ { }X2q
N/2 –1
q=0

= DFT

↑ ↑
N/2 point DFTeven points in desired

length-N DFT

[{xm + xm+N/2]}
N/2 –1
m=0

Odds:

(10) ⇒

X2q+1 = xm + xm+N / 2WN
(N /2)(2q+1)()

m=0

N
2 –1

∑ WN / 2
mq WN

m

 = xm – xm +N / 2()WN
m[]

m=0

N
2 –1

∑ WN / 2
mq

14.7

⇒ { }X2q+1
N/2 –1
q=0 (12)

↑
odd points in desired

length-N DFT

= DFT[{ }]N/2 –1
m=0

xm – x m+N/2()WN
m

(11) and (12) give:

1

1

1

1

1

1

WN
1

–W
N/2-1

N

XN-2

x0

xN/2-1

x1

N/2

PT

DFT

N/2

PT

DFT

xN-1

X2

XN-1

WN

0

-WN
1

xN/2

xN/2+1

X1

X3

-WN

0

X0

W
N/2-1

N

The complete DIF algorithm computes each
N
2

-point DFT using two
N
4

-point DFTs, etc. As in

the DIT algorithm, we get log2 N stages of
N
2

 butterflies each, but now the output appears in bit-

reversed order.

Example (N = 8, DIF FFT)

14.8

11

1

1 -W 0
2

W 0
4

1

1

–W0
4

–W1
4

W 0
8

W 1
8

W
2
8

–W0
8

–W1
8

–W2
8

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

W 3
8

W 0
2

W 1
4

1

1

1

1
1

1

1

1

–W3
8

The branch weights are found by using (11) and (12).

Note: As mentioned above, the output appears in bit-reversed order.

Comment: The DIF flow diagram is simply the transpose of the DIT diagram (switch input and
output, and reverse all flows).

Other Comments:
1) FFT computer algorithms incorporate the reordering (“bit reversal”) of input or output. You

don’t have to do this yourself.
2) Can generalize Radix-2 approach to Radix-3, Radix-4, etc. with N = 3M, N = 4M, etc. For a

Radix-4 DIT algorithm, break input up into four groups.

14.9

x1

x5

x9

•

•

xN–3

x2

x6

x10

•

•

xN–2

x0

x1

x2

x3

x4

x5

x6

x7

x8

•

•

•

•

•

•

•

•

•

•

xN–3

xN–2

xN–1

x0

x4

x8

•

•

xN–4

→ N/4 PT DFT

x3

x7

x11

•

•

xN–1

→ N/4 PT DFT

→ N/4 PT DFT

→ N/4 PT DFT

The outputs of the N/4-point DFTs can then be combined, using modified butterflies with
4 inputs and 4 outputs each, to calculate X m{ }N–1

m=0 .

Example

Shown below is part of a radix-2, 64-point DIT FFT. Determine the indices α–δ and the
coefficients a–g.

14.10

xδ
a

b

c

de

f

g

Xα

Xβ

Xγ

X49

Solution: Use Eqs. (2) and (3) from p. 47.2 in course notes:

 Xp = Yp + WN
p

 Zp 0 ≤ p ≤
N
2

 – 1

 Xp+ N
2

 = Yp – WN
p

 Zp 0 ≤ p ≤
N
2

 – 1

N = 64, β +
N
2

 = 49 ⇒ β = 17

γ = 49 –
N
4

 = 33

α = 33 –
N
2

 = 1

δ is bit reversal of 49 = (110001)2 ⇒ δ = (100011)2 = 35

d = W64
1 = e– j 2π

64 g = – W64
17 = –e– j34π

64

e = 1 b = 1

f = 1 c = 1 a = 1 ←
since this is a top
branch in butterfly
of 16 pt DFT

14.11

Fast Linear Convolution

Recall the cyclic convolution property of the DFT:

 yn =
m =0

N–1
∑ hm x<n–m>N iff Ym = Hm Xm 0 ≤ m ≤ N – 1

So, we can implement cyclic convolution via

 yn{ }= DFT–1 DFT hn{ }[]• DFT xn{ }[][] (∆∆)

This can be done quickly for long sequence lengths using the FFT.

But, what is cyclic convolution?

To compute y2:

. . . .h0 h1 h2 h3 h4 hN–2 hN–1

x2 x1 x0 xN–1 xN–2 x4 x3. . . .

We would rather implement a linear (regular) convolution:

. . .

. . .

h0 h1 h2 hN–2 hN–1

xN–1 xN–2 x2 x1 x0

To compute a linear convolution via a cyclic convolution, we must eliminate the wrap-around of
nonzero terms in the cyclic convolution. Use zero-padding with N – 1 zeros, i.e., let:

 ˆ h n =
hn 0 ≤ n ≤ N –1

0 N ≤ n ≤ 2N – 2





14.12

 ˆ x n =
xn 0 ≤ n ≤ N – 1

0 N ≤ n ≤ 2N – 2





Now, cyclically convolve the zero-padded sequences.

The result is that ˆ y n{ }n=0

2N–2
 will be a linear convolution of hn{ }n=0

N–1 with xn{ }n=0
N–1 . For

example, in computing ˆ y 2, we will have:

h0 h1 h2 h3 hN-1 0

x2 x1 x0 0

0 0 0 0

0 0 xN-1 xN-2 x4 x3

0

0

Obviously, the zero-padding eliminates the wrap-around problem. Using an FFT with (∆∆), and
zero-padded sequences, provides a fast means of performing linear convolution.

What if {hn} and {xn} are not of the same length?

If {hn} is of length M and {xn} is of length N, then pad each sequence to length N + M – 1 (or
nearest larger power of 2 if you are using a radix-2 FFT).

Let’s check and see that (∆∆), with zero padding, works for a specific example.

Example
 hn = {1, 1, 1} , xn = {1, –1, 1}
 ↑ ↑

To produce a linear convolution via (∆∆), first pad each sequence with N – 1 = 2 zeros:
 ˆ h n = {1, 1, 1, 0, 0}

 ˆ x n = {1, –1, 1, 0, 0}

Now,

 ˆ H m = ˆ h n
n=0

4
∑ e–j 2π

5 nm

 = 1 + e– j 2π
5 m + e– j 4π

5 m

14.13

Likewise,

 ˆ X m = 1 – e– j 2π
5 m + e– j 4π

5 m

So,

^
Ym =

^
Hm

^
Xm = 1 + e

–j2π
5 m

 + e
–j4π

5 m

= 1 + e
–j4π

5 m
 + e

–j8π
5 m

= 1 + e
–j2π

5 2m
 + e

–j2π
5 4m

– e
–j2π

5 m
 – e

–j4π
5 m

 – e
–j6π

5 m

+ e
–j4π

5 m
 + e

–j6π
5 m

 + e
–j8π

5 m

Since

 ˆ Y m = ˆ y n
n=0

4
∑ e– j 2π

5 m

we see that
 ˆ y n = {1, 0, 1, 0, 1}

It is easy to see that this is the correct linear convolution:
 1 1 1
 1 –1 1
Performing the usual shift and add operations gives the sequence {1, 0, 1, 0, 1}. ✔

Now, what if we had not zero padded?
Then (∆∆) would have produced a cyclic convolution.
The cyclic convolution formula is

 yn =
m=0

2
∑ hm x<n–m>3

which is computed pictorially as

1 1 1

–1 1 1

y1 = 1

1 1 1

1 1 –1

y0 = 1

1 1 1

1 –1 1

y2 = 1

14.14

Let’s check that (∆∆) without zero-padding gives this same result.

 Hm =
n=0

2
∑ hn e– j 2π

3 nm

 = 1 + e– j 2π
3 m + e– j 4π

3 m

 Xm = 1 – e– j 2π
3 m + e– j 4π

3 m

 Ym = Hm Xm

– e
–j2π

3 m
 – e

–j4π
3

m

+ e
–j4π

3 m
 + e

–j6π
3

m
 + e

–j8π
3

m

– e
–j6π

3 m

= 1 + e
–j2π

3 m
 + e

–j4π
3 m

Interchanging the latter two terms and using 2π periodicity of the complex exponential gives

 Ym = 1 + e– j 2π
3 m + e– j 2π

3 2m

Matching up terms with

 Ym =
n=0

2
∑ yn e– j 2π

3 nm = y0 + y1 e– j 2π
3 m + y2 e– j 2π

3 2m

gives
 {yn} = {1, 1, 1} ✔
 ↑
Note: We worked through this example to show that (∆∆) can give a linear convolution or a
cyclic convolution, depending on whether we first zero pad. In practice, if N is large the DFTs
and inverse DFT would be computed using FFTs. If N is small, then it is faster to perform the
convolution in the sequence domain.

For practice at computing cyclic convolution in the sequence domain, consider the following
example.

Example

Find yn = hn *O xn where hn{ }n=0

3 = {1, 2, 3, 4} and xn{ }n=0
3 = {1, 0, 2, –1}.

14.15

1 –1

y = 5

1 2 3 4

2 0 0 1

y = 7

1 2 3 4

–1 2 2 0

y = 1

1 2 3 4

1 –1 –1 2

y = 7

1 2 3 4

0 1

n = 0 n = 1 n = 2 n = 3

 y0 = 5 y1 = 7 y2 = 1 y3 = 7

Example (Convolution via FFT)

Suppose that a sequence xn{ }n=0

7000is to be filtered with an FIR filter having coefficients

hn{ }n=0
1100 .

a) Ignoring possible savings from coefficient symmetry, what is the total number of
multiplications required to compute the output yn{ }8100

n=0 by implementing the usual
convolution formula with a direct-form filter structure?

b) Using the FFT method (with a radix-2 FFT and zero-padding to length 8192), how
many complex multiply-accumulates (MAs) are required to compute yn{ }8100

n=0 ? How
many real MAs are required? (For simplicity, count all “multiplications” in an FFT, even
those by ±1, ±j, as complex multiplications.)

Solution

a) Output of regular convolution is composed of 3 parts:

hn
xn

hn
xn

hn
xn

of MAs is 1 + 2 + 3 + … + 1100
 =

(1100)(1101)
2

of MAs is 1101 (7001 – 1100)

of MAs is 1100 + 1099 + … + 1

 =

(1100)(1101)
2

Total # MAs = 1100(1101) + 1101(5901) = 7,708,101

14.16

b) FFT method is

{~xn}8191
n=0

{
~
hn}8191

n=0

{yn}

FFT

FFT

FFT–1

where ˜ x n{ } and ˜ h n{ } are zero-padded versions of xn{ } and hn{ }.

complex MAs = 3 N log2 N()+ N = 3 8192 •13() + 8192 = 327, 680

The number of real MAs required to implement a complex MA is generally 4. To see this, write
out the detailed calculation (a) (b) + c where a, b, and c are all complex. Assuming this factor of
4 overhead, we have

real MAs = 4 (327, 680) = 1, 310, 720

Thus, in this example the FFT approach requires fewer than 20% of the MAs required by a
straightforward convolution.

Block Convolution

Given xn{ }N–1

n=0 and hn{ }M–1
n=0 , we have developed an approach for efficiently computing

yn = hn * xn using zero-padding and FFTs. But, what if N >> M? If N, the length of the input, is
really large, we are faced with two problems:

1)Very long FFTs will be required, which will lead to computational inefficiency.

2)There will be a very long delay in computing yn{ } since our scheme requires that all of

xn{ } be acquired before any element in the output sequence can be computed.

What to do? Answer: Segment the long input xn{ }N–1

n=0 into shorter pieces, convolve the

individual pieces with hn{ }M–1
n=0 and then stitch together the results of the shorter convolutions

to form yn{ }. There are two popular ways of doing this.

Method 1: Overlap and Add

Here, we divide up the input into nonoverlapping sections of length L. Let
 xk() = x(kL +) 0 ≤ ≤ L – 1, k = 0, 1, 2, …

14.17

Picture:

x(n)

L 2L 3L 4L
n

x0(){ } L–1

=0
x1(){ } L–1

=0
x2(){ } L–1

=0
x3(){ } L–1

=0

We have

 x(n) = xk(n – kL)

k
∑ 0 ≤ n ≤ N – 1.

Now, convolution is a linear operation, so

 y(n) = h(n) ∗ x(n) = h(n)∗ xk n – kL()
k
∑









 = h(n)∗ xk n – kL()

k
∑

Let yk(n) = h(n) * xk(n). Then by shift-invariance,

 y(n) = yk(n – kL)

k
∑ . (1)

We compute each yk(n){ } via the FFT as in the previous lecture. For simplicity, assume
M + L – 1 is a sequence length for which we have an FFT algorithm. Then

1) Pad xk(n){ }L–1
n= 0 with M–1 zeros to give ˜ x k(n){ }L+M–2

n= 0 .

 Pad h(n){ }M–1

n=0 with L–1 zeros to give ˜ h (n){ }L+ M–2
n= 0 .

2) Calculate the FFTs of ˜ x k(n){ }L+M–2

n= 0 and ˜ h (n){ }L+ M–2
n= 0 .

3) Multiply FFTs together and take FFT–1 to give yk(n){ }L+M–2

n= 0 .

14.18

Finally, calculate {y(n)} via (1) by adding together the appropriately shifted yk(n){ }.

Pictorially:

{h(n)}

{h(n)}~

{x(n)}~

M

M L – 1

zeros

zeros

L M – 1

{x(n)}
L L L

• • •
xk(n){ } xk+1(n){ } xk+2(n){ }

add

add

y0(n) = h(n) * x0(n)

y1(n) = h(n) * x1(n)

y2(n) = h(n) * x2(n)
•
•
•

•
•
•

Sum of the shifted (by kL) yk(n) gives {y(n)}.

Example

Given h(n){ }249

n=0 and x(n){ }∞
n=0 we wish to compute {y(n)} = {h(n)} * {x(n)} using the FFT

method. What is the best block length L, using the Overlap and Save method with radix-2 FFTs?

We have M = 250. Let K = FFT length. Then since K = L + M – 1, the block length will be
L = K – 249. Each length-K FFT and inverse FFT requires K log2 K MAs. Multiplication of
FFTs requires K MAs. We shall assume that the FFT of {˜ h (n)} is precomputed once and stored.
Thus, the amount of computation for each input block will be

 2 K log2 K + K = K (2log2 (K) + 1) MAs.

This amount of computation is needed to compute each yk(n){ } k = 0, 1, 2, … from each input
block xk(n){ } of length L = K – 249. Thus, the computation per input sample (or per output
sample), ignoring the few additions needed to sum the overlapping yk(n){ } blocks, is

14.19

K 2log2 K +1[]

K – 249
 (2)

Trying some different values for the FFT length K, we find:

K

L

Complex MAs
Per output

 256 7 621.7 K = FFT length

 512 263 37.0 L = input block length

 1024 775 27.7 # MAs given by (2)

 2048 1799 26.2

 4096 3847 26.6

For larger K, (2) approaches (2 log2 K) + 1, which grows with K.

Even allowing for the required complex arithmetic (4 real MAs per complex MA), the FFT
approach offers considerable savings over a direct filter implementation, which would require
250 MAs per output.

Notes:

1)Based on the above table, and if we are at all concerned about delay, we would select an
FFT block length of either 512 or 1024.

2)If xn{ } and hn{ } were complex-valued, then the direct filter implementation would
require roughly 1000 MAs per filter output.

3)If a sequence is real, there are tricks that can be used to speed up computation (by a factor
of approximately two) of its DFT. If both {x(n)} and {h(n)} are real, in which case {y(n)} is
real, these tricks can be used to reduce the number of MAs in the FFT approach by nearly a
factor of two over the entries shown in the above table.

Method 2: Overlap and Save

Could just as easily be called Overlap and Discard.

Here, we define the xk(n){ } to be overlapping as shown below.

14.20

L 2L 3L 4L n

x(n)

M–1 L

M–1 L

M–1 L

M–1 L

x0(n){ }

x1(n){ }

x2(n){ }

x3(n){ }
•
•
•

The first M–1 entries of x0(n){ } are filled with zeros. All other entries of x0(n){ } and all
entries of all other subsequences xk(n){ } are filled with the values of {x(n)} directly above. In
general, each subsequence overlaps with its two neighboring subsequences. The algorithm to
calculate {y(n)} is then:

1)Zero-pad h(n){ }M–1
n= 0 with L–1 zeros to produce ˜ h (n){ }M+ L–2

n=0 .

2)Cyclically convolve (via FFT) ˜ h (n){ }M+ L–2

n=0 with each xk (n){ }M+ L–2
n=0 to give

 yk(n) = ˜ h (n) * xk(n). 0 ≤ n ≤ M + L – 2

The result is that the first M–1 samples of each yk(n){ } will be useless, but the last L samples
will be samples of {y(n)}.

3)Assemble {y(n)} as shown:

M–1 L
y0(n){ }

y1(n){ }

y2(n){ }
•
•
•

Bad Good

Bad Good

M–1 L

M–1 L

Bad Good

The “bad” samples are discarded and the “good” samples are concatenated to form {y(n)}.

