ECE 410 DIGITAL SIGNAL PROCESSING **University of Illinois** Chapter 14

D. Munson

Fast Fourier Transform (FFT)

FFTs comprise a class of algorithms for quickly computing the DFT.

DFT:

$$X_{p} = \sum_{n=0}^{N-1} x_{n} \bullet W_{N}^{np} \qquad 0 \le p \le N-1$$

$$\bigvee_{N=0}^{M-1} e^{-j\frac{2\pi}{N}}$$

A straightforward computation requires:

 $N^2 \otimes N(N-1) \oplus$

where these multiplications and additions are generally complex.

There are many different FFTs. We will consider only radix-2 decimation-in-time and decimation-in-frequency algorithms.

Radix-2 FFTs, where the sequence length N is restricted to be a power of two, require only $0(N \log_2 N)$ computations.

Decimation-in-Time Radix-2 FFT

Suppose $N = 2^M$

Idea: Divide input sequence into two groups, those elements of $\{x_n\}$ with n even and those with n odd. Then combine the size N/2 DFTs of these two subsequences to calculate the first half of $\left\{ x_{m}\right\} _{m=0}^{N-1}$ and the second half of $\left\{ x_{m}\right\} _{m=0}^{N-1}$.

Let

$$\begin{array}{l} y_n = x_{2n} \\ z_n = x_{2n+1} \end{array} \right\} \quad 0 \leq n \leq \frac{N}{2} - 1 \\ \end{array}$$

Show $\{X_p\}_{p=0}^{N-1}$ can be obtained from the $\frac{N}{2}$ point DFTs $\{Y_p\}_{p=0}^{N-1}$ and $\{z_p\}_{p=0}^{N-1}$.

Splitting a size N problem into two size $\frac{N}{2}$ problems will reduce computation because $\left(\frac{N}{2}\right)^2 + \left(\frac{N}{2}\right)^2 = \frac{N^2}{2} < N^2$

$$\left(\frac{N}{2}\right)^2 + \left(\frac{N}{2}\right)^2 = \frac{N^2}{2} < N$$

Our strategy will then be to divide each size $\frac{N}{2}$ problem into two size $\frac{N}{4}$ problems, etc. $\underline{ \text{Derivation Relating } X_p \text{ to } Y_p \text{ and } Z_p \text{:} }$

)

$$X_{p} = \sum_{k=0}^{\frac{N}{2}-1} \left(x_{2k} W_{N}^{2kp} + x_{2k+1} W_{N}^{(2k+1)p} \right)$$
$$= \sum_{k=0}^{\frac{N}{2}-1} y_{k} W_{N/2}^{kp} + W_{N}^{p} \sum_{k=0}^{\frac{N}{2}-1} z_{k} W_{N/2}^{kp}$$
(1)

since $W_N^{2kp} = e^{-j\frac{2\pi}{N}2kp} = e^{-j\frac{2\pi}{N/2}kp} = W_{N/2}^{kp}$

For p = 0, 1, ..., $\frac{N}{2}$ – 1, the first sum in (1) is Y_p, and the second sum is W_N^p Z_p.

$$\Rightarrow \qquad \boxed{X_{p} = Y_{p} + W_{N}^{p} Z_{p}} \qquad 0 \le p \le \frac{N}{2} - 1 \qquad (2)$$

What about X_p for $p > \frac{N}{2} - 1$? We can get these by using (1) to write:

$$X_{p+\frac{N}{2}} = \sum_{k=0}^{\frac{N}{2}-1} y_k W_{N/2}^{k\left(p+\frac{N}{2}\right)} + W_N^{p+\frac{N}{2}} \sum_{k=0}^{\frac{N}{2}-1} z_k W_{N/2}^{k\left(p+\frac{N}{2}\right)}$$

Note that:

$$W_{N/2}^{k(p+\frac{N}{2})} = W_{N/2}^{kp} W_{N/2}^{k\frac{N}{2}} = W_{N/2}^{kp} \bullet 1$$

and

$$W_N^{p+\frac{N}{2}} = W_N^p e^{-j\frac{2\pi N}{N2}} = -W_N^p$$

So:

So:

$$W_{p+\frac{N}{2}} = \sum_{k=0}^{\frac{N}{2}-1} y_k W_{N/2}^{kp} - W_N^p \sum_{k=0}^{\frac{N}{2}-1} z_k W_{N/2}^{kp}$$

$$\Rightarrow \qquad \left[X_{p+\frac{N}{2}} = Y_p - W_N^p Z_p \quad 0 \le p \le \frac{N}{2} - 1 \right]$$
(3)

(2) and (3) show how to compute an N point DFT using two $\frac{N}{2}$ point DFTs. These two equations are the essence of the FFT and describe the following flow graph:

The operation to combine the $\frac{N}{2}$ point DFT outputs Y_p and Z_p is called a <u>butterfly</u>:

This butterfly diagram summarizes (2) and (3).

Our overall strategy will be to:

Replace the N-point DFT by
$$\frac{N}{2}$$
 butterflies preceded by the $\frac{N}{2}$ -point DFTs.
Replace each $\frac{N}{2}$ -point DFT by $\frac{N}{4}$ butterflies preceded by two $\frac{N}{4}$ -point DFTs.

Replace each 4-point DFT by two butterflies preceded by two 2-point DFTs.

Replace each 2-point DFT by a single butterfly preceded by two one-point DFTs. But, a one-point DFT is the identity operation, so a two-point DFT is just a single butterfly.

Since $N = 2^M$, this recursion leads to $M = \log_2 N$ stages of $\frac{N}{2}$ butterflies each.

Thus, for a DSP chip that can perform one multiplication and one addition (one multiplyaccumulate) in each clock cycle, a radix-2 DIT FFT requires

 $N \log_2 N multiply - accumulates$

which can be far less than the N² multiply-accumulates required by a straightforward DFT.

The input x_n is required in "bit-reversed" order. Why? This follows since to compute an N-point DFT using two N/2 point DFTs, we break up the input into even and odd points. We do this successively as we work backward in the flow diagram:

Note: FFT computation can be performed "in place." We need only one length-N array in memory since the output of a butterfly can be written back into the input locations.

Example ~ computational comparison

Suppose $N = 2^{14} = 16,384$.

Compare the number of multiply-accumulates in straightforward and DIT FFT implementations of the DFT.

Straightforward: $N^2 = 268,435,456$ multiply-accumulates

FFT: $N \log_2 N = 2^{14} (14) = 229,376$ multiply-accumulates

Savings factor =
$$\frac{268,435,456}{229,376} = 1170!$$

Suppose that in 1964 a state-of-the-art computer required 10 hours to compute a straightforward length 2¹⁴ DFT. Then, in 1965, after publication of the FFT, this same computation could be performed in about 30 seconds!

Decimation in Frequency Radix – 2 FFT

Idea: Essentially is backwards from DIT. Separate $\{x_n\}_{n=0}^{N-1}$ into first half and second half and then compute even and odd points in $\{X_p\}_{p=0}^{N-1}$ separately, using two $\frac{N}{2}$ -point DFTs.

Derivation of algorithm:

$$X_{p} = \sum_{n=0}^{N-1} x_{n} W_{N}^{np}$$

$$= \sum_{m=0}^{N-1} x_{m} W_{N}^{mp} + \sum_{m=0}^{N-1} x_{m+N/2} W_{N}^{(m+N/2)p}$$

$$= \sum_{m=0}^{N-1} \left(x_{m} + x_{m+N/2} W_{N}^{(N/2)p} \right) W_{N}^{mp}$$
(10)

Look at even and odd points in \boldsymbol{X}_p separately.

Evens:

$$(10) \Rightarrow X_{2q} = \sum_{m=0}^{\frac{N}{2}-1} (x_m + x_{m+N/2} \bullet 1) W_{N/2}^{mq}$$

$$\Rightarrow \left[\{ X_{2q} \}_{q=0}^{N/2-1} = DFT \left[\{ x_m + x_{m+N/2} \}_{m=0}^{N/2-1} \right] \right] \qquad (11)$$
even points in desired N/2 point DFT

Odds:

$$(10) \Rightarrow X_{2q+1} = \sum_{m=0}^{\frac{N}{2}-1} \left(x_m + x_{m+N/2} W_N^{(N/2)(2q+1)} \right) W_{N/2}^{mq} W_N^m$$
$$= \sum_{m=0}^{\frac{N}{2}-1} \left[\left(x_m - x_{m+N/2} \right) W_N^m \right] W_{N/2}^{mq}$$

$$\Rightarrow \left[\left\{ X_{2q+1} \right\}_{q=0}^{N/2 - 1} = DFT \left[\left\{ (x_m - x_{m+N/2}) W_N^m \right\}_{m=0}^{N/2 - 1} \right] \right]$$
(12)
odd points in desired
length-N DFT

(11) and (12) give:

The complete DIF algorithm computes each $\frac{N}{2}$ -point DFT using two $\frac{N}{4}$ -point DFTs, etc. As in the DIT algorithm, we get $\log_2 N$ stages of $\frac{N}{2}$ butterflies each, but now the <u>output</u> appears in bit-reversed order.

Example (N = 8, DIF FFT)

The branch weights are found by using (11) and (12).

Note: As mentioned above, the output appears in bit-reversed order.

Comment: The DIF flow diagram is simply the transpose of the DIT diagram (switch input and output, and reverse all flows).

Other Comments:

- 1) FFT computer algorithms incorporate the reordering ("bit reversal") of input or output. You don't have to do this yourself.
- 2) Can generalize Radix-2 approach to Radix-3, Radix-4, etc. with $N = 3^{M}$, $N = 4^{M}$, etc. For a Radix-4 DIT algorithm, break input up into four groups.

The outputs of the N/4-point DFTs can then be combined, using modified butterflies with 4 inputs and 4 outputs each, to calculate $\{X_m\}_{m=0}^{N-1}$.

Example

Shown below is part of a radix-2, 64-point DIT FFT. Determine the indices α - δ and the coefficients a-g.

Solution: Use Eqs. (2) and (3) from p. 47.2 in course notes:

 $X_{p} = Y_{p} + W_{N}^{p} Z_{p} \qquad 0 \le p \le \frac{N}{2} - 1$ $X_{p+\frac{N}{2}} = Y_{p} - W_{N}^{p} Z_{p} \qquad 0 \le p \le \frac{N}{2} - 1$ $N = 64, \ \beta + \frac{N}{2} = 49 \implies \beta = \underline{17}$ $\gamma = 49 - \frac{N}{4} = \underline{33}$ $\alpha = 33 - \frac{N}{2} = \underline{1}$

 δ is bit reversal of $49 = (110001)_2 \implies \delta = (100011)_2 = \underline{35}$

$$d = W_{64}^1 = e^{-j\frac{2\pi}{64}} \qquad g = -W_{64}^{17} = -e^{-j\frac{34\pi}{64}}$$

e = 1 b = 1

			since this is a top
f = 1	c = 1	a = 1	\leftarrow branch in butterfly
			of 16 pt DFT

Fast Linear Convolution

Recall the cyclic convolution property of the DFT:

$$y_n = \sum_{m=0}^{N-1} h_m x_{< n-m > N}$$
 iff $Y_m = H_m X_m$ $0 \le m \le N-1$

So, we can implement cyclic convolution via

$$\{y_n\} = DFT^{-1} \left[DFT \left[\{h_n\} \right] \bullet DFT \left[\{x_n\} \right] \right]$$
 ($\Delta \Delta$)

This can be done <u>quickly</u> for long sequence lengths using the FFT.

But, what is cyclic convolution?

To compute y₂:

We would rather implement a linear (regular) convolution:

To compute a linear convolution via a cyclic convolution, we must eliminate the wrap-around of nonzero terms in the cyclic convolution. Use zero-padding with N - 1 zeros, i.e., let:

$$\label{eq:hn} \hat{h}_n = \begin{cases} h_n & 0 \leq n \leq N-1 \\ 0 & N \leq n \leq 2N-2 \end{cases}$$

$$\label{eq:constraint} \hat{x}_n = \begin{cases} x_n & 0 \leq n \leq N-1 \\ 0 & N \leq n \leq 2N-2 \end{cases}$$

Now, cyclically convolve the zero-padded sequences.

The result is that $\{\hat{y}_n\}_{n=0}^{2N-2}$ will be a linear convolution of $\{h_n\}_{n=0}^{N-1}$ with $\{x_n\}_{n=0}^{N-1}$. For example, in computing \hat{y}_2 , we will have:

Obviously, the zero-padding eliminates the wrap-around problem. Using an FFT with ($\Delta\Delta$), and zero-padded sequences, provides a fast means of performing linear convolution.

What if $\{h_n\}$ and $\{x_n\}$ are not of the same length?

If $\{h_n\}$ is of length M and $\{x_n\}$ is of length N, then pad each sequence to length N + M - 1 (or nearest larger power of 2 if you are using a radix-2 FFT).

Let's check and see that $(\Delta \Delta)$, with zero padding, works for a specific example.

Example

 $h_n = \{1, 1, 1\}, x_n = \{1, -1, 1\}$ \uparrow \uparrow

To produce a linear convolution via ($\Delta\Delta$), first pad each sequence with N – 1 = 2 zeros:

$$h_n = \{1, 1, 1, 0, 0\}$$

$$\hat{\mathbf{x}}_n = \{1, -1, 1, 0, 0\}$$

Now,

$$\hat{H}_{m} = \sum_{n=0}^{4} \hat{h}_{n} e^{-j\frac{2\pi}{5}nm}$$
$$= 1 + e^{-j\frac{2\pi}{5}m} + e^{-j\frac{4\pi}{5}m}$$

Likewise,

$$\hat{X}_{m} = 1 - e^{-j\frac{2\pi}{5}m} + e^{-j\frac{4\pi}{5}m}$$

So,

$$\begin{split} \hat{Y}_{m} &= \hat{H}_{m} \hat{X}_{m} &= 1 + e^{-\frac{i^{2}\pi}{5}m} + e^{-\frac{i^{4}\pi}{5}m} \\ &- e^{-\frac{i^{2}\pi}{5}m} - e^{-\frac{i^{4}\pi}{5}m} \\ &+ e^{-\frac{i^{4}\pi}{5}m} + e^{-\frac{i^{6}\pi}{5}m} + e^{-\frac{i^{8}\pi}{5}m} \\ &= 1 + e^{-\frac{i^{4}\pi}{5}m} + e^{-\frac{i^{8}\pi}{5}m} \\ &= 1 + e^{-\frac{i^{2}\pi}{5}2m} + e^{-\frac{i^{8}\pi}{5}m} \\ &= 1 + e^{-\frac{i^{2}\pi}{5}2m} + e^{-\frac{i^{2}\pi}{5}4m} \end{split}$$

Since

$$\hat{Y}_{m} = \sum_{n=0}^{4} \hat{y}_{n} e^{-j\frac{2\pi}{5}m}$$

we see that $\hat{y}_n = \{1, 0, 1, 0, 1\}$

1

1

It is easy to see that this is the correct <u>linear</u> convolution:

1 1 -1 1

Performing the usual shift and add operations gives the sequence $\{1, 0, 1, 0, 1\}$. ~

Now, what if we had not zero padded? Then $(\Delta \Delta)$ would have produced a <u>cyclic</u> convolution. The cyclic convolution formula is

$$y_n = \sum_{m=0}^2 h_m x_{< n-m >_3}$$

which is computed pictorially as

Let's check that ($\Delta\Delta$) without zero-padding gives this same result.

$$H_{m} = \sum_{n=0}^{2} h_{n} e^{-j\frac{2\pi}{3}nm}$$

= $1 + e^{-j\frac{2\pi}{3}m} + e^{-j\frac{4\pi}{3}m}$
$$X_{m} = 1 - e^{-j\frac{2\pi}{3}m} + e^{-j\frac{4\pi}{3}m}$$

$$Y_{m} = H_{m} X_{m}$$

= $1 + e^{-j\frac{2\pi}{3}m} + e^{-j\frac{4\pi}{3}m}$
 $- e^{-j\frac{2\pi}{3}m} - e^{-j\frac{4\pi}{3}m} - e^{-j\frac{4\pi}{3}m}$
 $+ e^{-j\frac{4\pi}{3}m} + e^{-j\frac{4\pi}{3}m} + e^{-j\frac{8\pi}{3}m}$

Interchanging the latter two terms and using 2π periodicity of the complex exponential gives

$$Y_{m} = 1 + e^{-j\frac{2\pi}{3}m} + e^{-j\frac{2\pi}{3}2m}$$

Matching up terms with

$$Y_{m} = \sum_{n=0}^{2} y_{n} e^{-j\frac{2\pi}{3}nm} = y_{0} + y_{1} e^{-j\frac{2\pi}{3}m} + y_{2} e^{-j\frac{2\pi}{3}2m}$$

gives

$$\{\mathbf{y}_n\} = \{1, 1, 1\}$$

Note: We worked through this example to show that $(\Delta\Delta)$ can give a linear convolution or a cyclic convolution, depending on whether we first zero pad. In practice, if N is large the DFTs and inverse DFT would be computed using FFTs. If N is small, then it is faster to perform the convolution in the sequence domain.

For practice at computing cyclic convolution in the sequence domain, consider the following example.

Example

Find
$$y_n = h_n \otimes x_n$$
 where $\{h_n\}_{n=0}^3 = \{1, 2, 3, 4\}$ and $\{x_n\}_{n=0}^3 = \{1, 0, 2, -1\}$.

Example (Convolution via FFT)

Suppose that a sequence $\{x_n\}_{n=0}^{7000}$ is to be filtered with an FIR filter having coefficients $\{h_n\}_{n=0}^{1100}$.

a) Ignoring possible savings from coefficient symmetry, what is the total number of multiplications required to compute the output $\{y_n\}_{n=0}^{8100}$ by implementing the usual convolution formula with a direct-form filter structure?

b) Using the FFT method (with a radix-2 FFT and zero-padding to length 8192), how many complex multiply-accumulates (MAs) are required to compute $\{y_n\}_{n=0}^{8100}$? How many real MAs are required? (For simplicity, count <u>all</u> "multiplications" in an FFT, even those by ± 1 , $\pm j$, as complex multiplications.)

Solution

a) Output of regular convolution is composed of 3 parts:

where $\{\tilde{x}_n\}$ and $\{h_n\}$ are zero-padded versions of $\{x_n\}$ and $\{h_n\}$.

complex MAs = 3 ($N\log_2 N$)+ N = 3 (8192 • 13) + 8192 = 327, 680

The number of real MAs required to implement a complex MA is generally 4. To see this, write out the detailed calculation (a) (b) + c where a, b, and c are all complex. Assuming this factor of 4 overhead, we have

real MAs = 4 (327, 680) = 1, 310, 720

Thus, in this example the FFT approach requires fewer than 20% of the MAs required by a straightforward convolution.

Block Convolution

Given $\{x_n\}_{n=0}^{N-1}$ and $\{h_n\}_{n=0}^{M-1}$, we have developed an approach for efficiently computing $y_n = h_n * x_n$ using zero-padding and FFTs. But, what if N >> M? If N, the length of the input, is really large, we are faced with two problems:

1)Very long FFTs will be required, which will lead to computational inefficiency.

2)There will be a very long delay in computing $\{y_n\}$ since our scheme requires that all of $\{x_n\}$ be acquired before any element in the output sequence can be computed.

What to do? Answer: Segment the long input $\{x_n\}_{n=0}^{N-1}$ into shorter pieces, convolve the individual pieces with $\{h_n\}_{n=0}^{M-1}$ and then stitch together the results of the shorter convolutions to form $\{y_n\}$. There are two popular ways of doing this.

Method 1: Overlap and Add

Here, we divide up the input into nonoverlapping sections of length L. Let

 $x_k(\ell) = x(kL + \ell) \qquad 0 \le \ell \le L - 1, \qquad k = 0, 1, 2, \ldots$

We have

$$\mathbf{x}(\mathbf{n}) = \sum_{k} \mathbf{x}_{k}(\mathbf{n} - \mathbf{k}\mathbf{L}) \qquad \mathbf{0} \le \mathbf{n} \le \mathbf{N} - \mathbf{1}.$$

Now, convolution is a linear operation, so

$$y(n) = h(n) * x(n) = h(n) * \left[\sum_{k} x_{k}(n-kL)\right] = \sum_{k} h(n) * x_{k}(n-kL)$$

Let $y_k(n) = h(n) * x_k(n)$. Then by shift-invariance,

$$y(n) = \sum_{k} y_k(n - kL) . \qquad (1)$$

We compute each $\{y_k(n)\}\$ via the FFT as in the previous lecture. For simplicity, assume M + L - 1 is a sequence length for which we have an FFT algorithm. Then

- 1) Pad $\{x_k(n)\}_{n=0}^{L-1}$ with M-1 zeros to give $\{\tilde{x}_k(n)\}_{n=0}^{L+M-2}$. Pad $\{h(n)\}_{n=0}^{M-1}$ with L-1 zeros to give $\{h(n)\}_{n=0}^{L+M-2}$.
- 2) Calculate the FFTs of $\{\tilde{x}_k(n)\}_{n=0}^{L+M-2}$ and $\{h(n)\}_{n=0}^{L+M-2}$.
- 3) Multiply FFTs together and take FFT⁻¹ to give $\{y_k(n)\}_{n=0}^{L+M-2}$.

14.18

Finally, calculate $\{y(n)\}$ via (1) by adding together the appropriately shifted $\{y_k(n)\}$. Pictorially:

Sum of the shifted (by kL) $y_k(n)$ gives $\{y(n)\}$.

Example

Given $\{h(n)\}_{n=0}^{249}$ and $\{x(n)\}_{n=0}^{\infty}$ we wish to compute $\{y(n)\} = \{h(n)\} * \{x(n)\}$ using the FFT method. What is the best block length L, using the Overlap and Save method with radix-2 FFTs?

We have M = 250. Let K = FFT length. Then since K = L + M - 1, the block length will be L = K - 249. Each length-K FFT and inverse FFT requires K log₂ K MAs. Multiplication of FFTs requires K MAs. We shall assume that the FFT of $\{\tilde{h}(n)\}$ is precomputed once and stored. Thus, the amount of computation for each input block will be

$$2 \text{ K} \log_2 \text{ K} + \text{ K} = \text{ K} (2\log_2 (\text{K}) + 1)$$
 MAs

This amount of computation is needed to compute each $\{y_k(n)\}\ k = 0, 1, 2, ...$ from each input block $\{x_k(n)\}\ of \ length\ L = K - 249$. Thus, the computation per input sample (or per output sample), ignoring the few additions needed to sum the overlapping $\{y_k(n)\}\ blocks$, is

$$\frac{K\left[2\log_2 K+1\right]}{K-249} \tag{2}$$

Trying some different values for the FFT length K, we find:

K	L	Complex MAs Per output	
256	7	621.7	K = FFT length
512	263	37.0	L = input block length
1024	775	27.7	# MAs given by (2)
2048	1799	26.2	
4096	3847	26.6	

For larger K, (2) approaches $(2 \log_2 K) + 1$, which grows with K.

Even allowing for the required complex arithmetic (4 real MAs per complex MA), the FFT approach offers considerable savings over a direct filter implementation, which would require 250 MAs per output.

Notes:

1)Based on the above table, and if we are at all concerned about delay, we would select an FFT block length of either 512 or 1024.

2)If $\{x_n\}$ and $\{h_n\}$ were complex-valued, then the direct filter implementation would require roughly 1000 MAs per filter output.

3)If a sequence is real, there are tricks that can be used to speed up computation (by a factor of approximately two) of its DFT. If both $\{x(n)\}$ and $\{h(n)\}$ are real, in which case $\{y(n)\}$ is real, these tricks can be used to reduce the number of MAs in the FFT approach by nearly a factor of two over the entries shown in the above table.

Method 2: Overlap and Save

Could just as easily be called Overlap and Discard.

Here, we define the $\{x_k(n)\}$ to be overlapping as shown below.

The first M–1 entries of $\{x_0(n)\}\$ are filled with zeros. All other entries of $\{x_0(n)\}\$ and all entries of all other subsequences $\{x_k(n)\}\$ are filled with the values of $\{x(n)\}\$ directly above. In general, each subsequence overlaps with its two neighboring subsequences. The algorithm to calculate $\{y(n)\}\$ is then:

1)Zero-pad
$$\{h(n)\}_{n=0}^{M-1}$$
 with L-1 zeros to produce $\{h(n)\}_{n=0}^{M+L-2}$.
2)Cyclically convolve (via FFT) $\{h(n)\}_{n=0}^{M+L-2}$ with each $\{x_k(n)\}_{n=0}^{M+L-2}$ to give $y_k(n) = \tilde{h}(n) \otimes x_k(n)$. $0 \le n \le M + L - 2$

The result is that the first M–1 samples of each $\{y_k(n)\}$ will be useless, but the last L samples will be samples of $\{y(n)\}$.

3)Assemble $\{y(n)\}$ as shown:

The "bad" samples are discarded and the "good" samples are concatenated to form $\{y(n)\}$.