ECE 410
University of Illinois

DIGITAL SIGNAL PROCESSING
Chapter 14

Fast Fourier Transform (FFT)

FFTs comprise a class of algorithms for quickly computing the DFT.
DFT:

$$
\mathrm{X}_{\mathrm{p}}=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}_{\mathrm{n}} \cdot{\underset{\mathrm{~W}}{N}}_{\mathrm{np}}^{W_{N} \stackrel{\Delta}{=} \mathrm{e}^{-j \frac{2 \pi}{\mathrm{~N}}}} \quad 0 \leq \mathrm{p} \leq \mathrm{N}-1
$$

A straightforward computation requires:

$$
\mathrm{N}^{2} \otimes, \quad \mathrm{~N}(\mathrm{~N}-1) \oplus
$$

where these multiplications and additions are generally complex.
There are many different FFTs. We will consider only radix-2 decimation-in-time and decimation-in-frequency algorithms.

Radix-2 FFTs, where the sequence length N is restricted to be a power of two, require only $0\left(\mathrm{~N} \log _{2} \mathrm{~N}\right)$ computations.

Decimation-in-Time Radix-2 FFT

Suppose $\mathrm{N}=2^{\mathrm{M}}$

Idea: Divide input sequence into two groups, those elements of $\left\{x_{n}\right\}$ with n even and those with n odd. Then combine the size $\mathrm{N} / 2$ DFTs of these two subsequences to calculate the first half of $\left\{X_{m}\right\}_{m=0}^{N-1}$ and the second half of $\left\{X_{m}\right\}_{m=0}^{N-1}$.

Let $\left.\quad \begin{array}{l}\mathrm{y}_{\mathrm{n}}=\mathrm{x}_{2 \mathrm{n}} \\ \mathrm{z}_{\mathrm{n}}=\mathrm{x}_{2 \mathrm{n}+1}\end{array}\right\} 0 \leq \mathrm{n} \leq \frac{\mathrm{N}}{2}-1$
Show $\left\{X_{p}\right\}_{p=0}^{N-1}$ can be obtained from the $\frac{N}{2}$ point DFTs $\left\{Y_{p}\right\}_{p=0}^{\frac{N}{2}-1}$ and $\left\{Z_{p}\right\}_{p=0}^{\frac{N}{2}-1}$.
Splitting a size N problem into two size $\frac{\mathrm{N}}{2}$ problems will reduce computation because

$$
\left(\frac{\mathrm{N}}{2}\right)^{2}+\left(\frac{\mathrm{N}}{2}\right)^{2}=\frac{\mathrm{N}^{2}}{2}<\mathrm{N}^{2}
$$

Our strategy will then be to divide each size $\frac{N}{2}$ problem into two size $\frac{N}{4}$ problems, etc.
$\underline{\text { Derivation Relating } X_{p} \text { to } Y_{p} \text { and } Z_{p} \text { : }}$

$$
\begin{align*}
\mathrm{X}_{\mathrm{p}} & =\sum_{\mathrm{k}=0}^{\frac{\mathrm{N}}{2}-1}\left(\mathrm{x}_{2 \mathrm{k}} \mathrm{~W}_{\mathrm{N}}^{2 \mathrm{kp}}+\mathrm{x}_{2 \mathrm{k}+1} \mathrm{~W}_{\mathrm{N}}^{(2 \mathrm{k}+1) \mathrm{p}}\right) \\
& =\sum_{\mathrm{k}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{y}_{\mathrm{k}} \mathrm{~W}_{\mathrm{N} / 2}^{\mathrm{kp}}+\mathrm{W}_{\mathrm{N}}^{\mathrm{p}} \sum_{\mathrm{k}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{z}_{\mathrm{k}} \mathrm{~W}_{\mathrm{N} / 2}^{\mathrm{kp}} \tag{1}
\end{align*}
$$

since $\mathrm{W}_{\mathrm{N}}^{2 \mathrm{kp}}=\mathrm{e}^{-\mathrm{j} \frac{2 \pi}{\mathrm{~N}} 2 \mathrm{kp}}=\mathrm{e}^{-\mathrm{j} \frac{2 \pi}{\mathrm{~N} / 2} \mathrm{kp}}=\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{kp}}$
For $p=0,1, \ldots, \frac{N}{2}-1$, the first sum in (1) is Y_{p}, and the second sum is $W_{N}^{p} Z_{p}$.

$$
\begin{equation*}
\Rightarrow \quad\left[\mathrm{X}_{\mathrm{p}}=\mathrm{Y}_{\mathrm{p}}+\mathrm{W}_{\mathrm{N}}^{\mathrm{p}} \mathrm{Z}_{\mathrm{p}} \quad 0 \leq \mathrm{p} \leq \frac{\mathrm{N}}{2}-1\right] \tag{2}
\end{equation*}
$$

What about X_{p} for $p>\frac{N}{2}-1$? We can get these by using (1) to write:

$$
X_{p+\frac{N}{2}}=\sum_{k=0}^{\frac{N}{2}-1} y_{k} W_{N / 2}^{k\left(p+\frac{N}{2}\right)}+W_{N}^{p+\frac{N}{2}} \sum_{k=0}^{\frac{N}{2}-1} z_{k} W_{N / 2}^{k\left(p+\frac{N}{2}\right)}
$$

Note that:

$$
\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{k}\left(\mathrm{p}+\frac{\mathrm{N}}{2}\right)}=\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{kp}} \mathrm{~W}_{\mathrm{N} / 2}^{\mathrm{k} \frac{\mathrm{~N}}{2}}=\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{kp}} \bullet 1
$$

and

$$
W_{N}^{p+\frac{N}{2}}=W_{N}^{p} e^{-j \frac{2 \pi}{N} \frac{N}{2}}=-W_{N}^{p}
$$

So:

$$
\begin{array}{r}
\quad \mathrm{W}_{\mathrm{p}+\frac{\mathrm{N}}{2}}=\sum_{\mathrm{k}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{y}_{\mathrm{k}} \mathrm{~W}_{\mathrm{N} / 2}^{\mathrm{kp}}-\mathrm{W}_{\mathrm{N}}^{\mathrm{p}} \sum_{\mathrm{k}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{z}_{\mathrm{k}} \mathrm{~W}_{\mathrm{N} / 2}^{\mathrm{kp}} \\
\Rightarrow \quad\left[\mathrm{X}_{\mathrm{p}+\frac{\mathrm{N}}{2}}=\mathrm{Y}_{\mathrm{p}}-\mathrm{W}_{\mathrm{N}}^{\mathrm{p}} \mathrm{Z}_{\mathrm{p}} \quad 0 \leq \mathrm{p} \leq \frac{\mathrm{N}}{2}-1\right] \tag{3}
\end{array}
$$

(2) and (3) show how to compute an N point DFT using two $\frac{\mathrm{N}}{2}$ point DFTs. These two equations are the essence of the FFT and describe the following flow graph:

The operation to combine the $\frac{N}{2}$ point DFT outputs Y_{p} and Z_{p} is called a butterfly:

This butterfly diagram summarizes (2) and (3).

Our overall strategy will be to:
Replace the N-point DFT by $\frac{\mathrm{N}}{2}$ butterflies preceded by the $\frac{\mathrm{N}}{2}$-point DFTs.
Replace each $\frac{\mathrm{N}}{2}$-point DFT by $\frac{\mathrm{N}}{4}$ butterflies preceded by two $\frac{\mathrm{N}}{4}$-point DFTs.
Replace each 4-point DFT by two butterflies preceded by two 2-point DFTs.
Replace each 2-point DFT by a single butterfly preceded by two one-point DFTs. But, a onepoint DFT is the identity operation, so a two-point DFT is just a single butterfly.

Since $N=2^{M}$, this recursion leads to $M=\log _{2} N$ stages of $\frac{N}{2}$ butterflies each.
Thus, for a DSP chip that can perform one multiplication and one addition (one multiplyaccumulate) in each clock cycle, a radix-2 DIT FFT requires
$N \log _{2}$ Nmultiply - accumulates
which can be far less than the N^{2} multiply-accumulates required by a straightforward DFT.
Example ($\mathrm{N}=8$, DIT FFT)

The input x_{n} is required in "bit-reversed" order. Why? This follows since to compute an Npoint DFT using two N/2 point DFTs, we break up the input into even and odd points. We do this successively as we work backward in the flow diagram:

Note: FFT computation can be performed "in place." We need only one length-N array in memory since the output of a butterfly can be written back into the input locations.

Example ~ computational comparison
Suppose N $=2^{14}=16,384$.
Compare the number of multiply-accumulates in straightforward and DIT FFT implementations of the DFT.

Straightforward: $\mathrm{N}^{2}=268,435,456$ multiply-accumulates
FFT: $\mathrm{N} \log _{2} \mathrm{~N}=2^{14}(14)=229,376$ multiply-accumulates
Savings factor $=\frac{268,435,456}{229,376}=1170!$

Suppose that in 1964 a state-of-the-art computer required 10 hours to compute a straightforward length $2{ }^{14}$ DFT. Then, in 1965, after publication of the FFT, this same computation could be performed in about 30 seconds!

Idea: Essentially is backwards from DIT. Separate $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\mathrm{N}-1}$ into first half and second half and then compute even and odd points in $\left\{X_{p}\right\}_{p=0}^{N-1}$ separately, using two $\frac{N}{2}$-point DFTs.

Derivation of algorithm:

$$
\begin{align*}
\mathrm{X}_{\mathrm{p}} & =\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}_{\mathrm{n}} \mathrm{~W}_{\mathrm{N}}^{\mathrm{np}} \\
& =\sum_{\mathrm{m}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{x}_{\mathrm{m}} \mathrm{~W}_{\mathrm{N}}^{\mathrm{mp}}+\sum_{\mathrm{m}=0}^{\frac{\mathrm{N}}{2}-1} \mathrm{x}_{\mathrm{m}+\mathrm{N} / 2} \mathrm{~W}_{\mathrm{N}}^{(\mathrm{m}+\mathrm{N} / 2) \mathrm{p}} \\
& =\sum_{\mathrm{m}=0}^{\frac{\mathrm{N}}{2}-1}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}+\mathrm{N} / 2} \mathrm{~W}_{\mathrm{N}}^{(\mathrm{N} / 2) \mathrm{p}}\right) \mathrm{W}_{\mathrm{N}}^{\mathrm{mp}} \tag{10}
\end{align*}
$$

Look at even and odd points in X_{p} separately.
Evens:
(10) \Rightarrow

$$
\begin{aligned}
\mathrm{X}_{2 \mathrm{q}} & =\sum_{\mathrm{m}=0}^{\frac{\mathrm{N}}{2}-1}\left(\mathrm{x}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}+\mathrm{N} / 2} \bullet 1\right) \mathrm{W}_{\mathrm{N} / 2}^{\mathrm{mq}} \\
& \Rightarrow\left[\begin{array}{c}
\left.\left\{\mathrm{X}_{2 \mathrm{q}}\right\}_{\mathrm{q}=0}^{\mathrm{N} / 2-1}=\underset{\uparrow}{\mathrm{DFT}}\left[\left\{\mathrm{x}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}+\mathrm{N} / 2}\right\}_{\mathrm{m}=0}^{\mathrm{N} / 2-1}\right]\right]
\end{array}\right.
\end{aligned}
$$

even points in desired $\quad \mathrm{N} / 2$ point DFT length-N DFT

Odds:
(10) \Rightarrow
$X_{2 q+1}=\sum_{m=0}^{\frac{N}{2}-1}\left(x_{m}+x_{m+N / 2} W_{N}^{(N / 2)(2 q+1)}\right) W_{N / 2}^{m q} W_{N}^{m}$ $=\sum_{m=0}^{\frac{N}{2}-1}\left[\left(x_{m}-x_{m+N / 2}\right) W_{N}^{m}\right] W_{N / 2}^{m q}$

$$
\Rightarrow\left[\begin{array}{c}
\left\{\mathrm{X}_{2 \mathrm{q}+1}\right\}_{\mathrm{q}=0}^{\mathrm{N} / 2-1}=\operatorname{DFT}\left[\left\{\left(\mathrm{x}_{\mathrm{m}}-\mathrm{x}_{\mathrm{m}+\mathrm{N} / 2}\right) \mathrm{W}_{\mathrm{N}}^{\mathrm{m}}\right\}_{\mathrm{m}=0}^{\mathrm{N} / 2-1}\right]
\end{array}\right]
$$

odd points in desired
length-N DFT
(11) and (12) give:

The complete DIF algorithm computes each $\frac{\mathrm{N}}{2}$-point DFT using two $\frac{\mathrm{N}}{4}$-point DFTs, etc. As in the DIT algorithm, we get $\log _{2} \mathrm{~N}$ stages of $\frac{\mathrm{N}}{2}$ butterflies each, but now the output appears in bitreversed order.

Example ($\mathrm{N}=8$, DIF FFT)

The branch weights are found by using (11) and (12).
Note: As mentioned above, the output appears in bit-reversed order.
Comment: The DIF flow diagram is simply the transpose of the DIT diagram (switch input and output, and reverse all flows).

Other Comments:

1) FFT computer algorithms incorporate the reordering ("bit reversal") of input or output. You don't have to do this yourself.
2) Can generalize Radix-2 approach to Radix-3, Radix-4, etc. with $N=3^{M}, N=4^{M}$, etc. For a Radix-4 DIT algorithm, break input up into four groups.

The outputs of the $\mathrm{N} / 4$-point DFTs can then be combined, using modified butterflies with 4 inputs and 4 outputs each, to calculate $\left\{X_{m}\right\}_{m=0}^{N-1}$.

Example

Shown below is part of a radix-2, 64-point DIT FFT. Determine the indices $\alpha-\delta$ and the coefficients a-g.

Solution: Use Eqs. (2) and (3) from p. 47.2 in course notes:

$$
\begin{array}{rl}
X_{p}=Y_{p}+W_{N}^{p} Z_{p} & 0 \leq p \leq \frac{N}{2}-1 \\
X_{p+\frac{N}{2}}=Y_{p}-W_{N}^{p} Z_{p} & 0 \leq p \leq \frac{N}{2}-1 \\
N=64, \beta+\frac{N}{2}=49 \Rightarrow \beta=\underline{17} \\
\gamma=49-\frac{N}{4}=\underline{33} \\
\alpha=33-\frac{N}{2}=\underline{1}
\end{array}
$$

δ is bit reversal of $49=(110001)_{2} \Rightarrow \delta=(100011)_{2}=\underline{35}$

$$
\begin{aligned}
& d=W_{64}^{1}=e^{-j \frac{2 \pi}{64}} \quad g=-W_{64}^{17}=-e^{-j \frac{34 \pi}{64}} \\
& e=1 \quad b=1
\end{aligned}
$$

$$
\mathrm{f}=1
$$

$$
\mathrm{c}=1
$$

$$
a=1
$$

since this is a top
\leftarrow branch in butterfly
of 16 pt DFT

Fast Linear Convolution

Recall the cyclic convolution property of the DFT:

$$
y_{n}=\sum_{m=0}^{N-1} h_{m} x_{<n-m>} \text { iff } Y_{m}=H_{m} X_{m} \quad 0 \leq m \leq N-1
$$

So, we can implement cyclic convolution via

$$
\left\{\mathrm{y}_{\mathrm{n}}\right\}=\operatorname{DFT}^{-1}\left[\operatorname{DFT}\left[\left\{\mathrm{~h}_{\mathrm{n}}\right\}\right] \cdot \operatorname{DFT}\left[\left\{\mathrm{x}_{\mathrm{n}}\right\}\right]\right]
$$

This can be done quickly for long sequence lengths using the FFT.
But, what is cyclic convolution?
To compute y_{2} :

We would rather implement a linear (regular) convolution:

To compute a linear convolution via a cyclic convolution, we must eliminate the wrap-around of nonzero terms in the cyclic convolution. Use zero-padding with $\mathrm{N}-1$ zeros, i.e., let:

$$
\hat{\mathrm{h}}_{\mathrm{n}}= \begin{cases}\mathrm{h}_{\mathrm{n}} & 0 \leq \mathrm{n} \leq \mathrm{N}-1 \\ 0 & \mathrm{~N} \leq \mathrm{n} \leq 2 \mathrm{~N}-2\end{cases}
$$

$$
\hat{\mathrm{x}}_{\mathrm{n}}= \begin{cases}\mathrm{x}_{\mathrm{n}} & 0 \leq \mathrm{n} \leq \mathrm{N}-1 \\ 0 & \mathrm{~N} \leq \mathrm{n} \leq 2 \mathrm{~N}-2\end{cases}
$$

Now, cyclically convolve the zero-padded sequences.
The result is that $\left\{\hat{y}_{n}\right\}_{n=0}^{2 N-2}$ will be a linear convolution of $\left\{h_{n}\right\}_{n=0}^{N-1}$ with $\left\{x_{n}\right\}_{n=0}^{N-1}$. For example, in computing $\hat{\mathrm{y}}_{2}$, we will have:

Obviously, the zero-padding eliminates the wrap-around problem. Using an FFT with ($\Delta \Delta$), and zero-padded sequences, provides a fast means of performing linear convolution.

What if $\left\{\mathrm{h}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ are not of the same length?
If $\left\{h_{n}\right\}$ is of length M and $\left\{x_{n}\right\}$ is of length N, then pad each sequence to length $N+M-1$ (or nearest larger power of 2 if you are using a radix- 2 FFT).

Let's check and see that $(\Delta \Delta)$, with zero padding, works for a specific example.

Example

$$
\mathrm{h}_{\mathrm{n}}=\underset{\uparrow}{\{1,1,1\}}, \mathrm{x}_{\mathrm{n}}=\underset{\uparrow}{\{1,-1,1\}}
$$

To produce a linear convolution via $(\Delta \Delta)$, first pad each sequence with $\mathrm{N}-1=2$ zeros:

$$
\begin{aligned}
& \hat{\mathrm{h}}_{\mathrm{n}}=\{1,1,1,0,0\} \\
& \hat{\mathrm{x}}_{\mathrm{n}}=\{1,-1,1,0,0\}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\hat{H}_{m} & =\sum_{n=0}^{4} \hat{h}_{n} e^{-j \frac{2 \pi}{5} n m} \\
& =1+e^{-j \frac{2 \pi}{5} m}+e^{-j \frac{4 \pi}{5} m}
\end{aligned}
$$

Likewise,
$\hat{X}_{m}=1-e^{-j \frac{2 \pi}{5} m}+e^{-j \frac{4 \pi}{5} m}$
So,

$$
\begin{aligned}
\hat{\mathrm{Y}}_{\mathrm{m}}=\hat{\mathrm{H}}_{\mathrm{m}} \hat{\mathrm{X}}_{\mathrm{m}}= & 1+e^{-j \frac{2 \pi}{5} m}+e^{-j \frac{4 \pi}{5} m} \\
& -e^{-j \frac{2 \pi}{5 m}}-e^{-j \frac{4 \pi}{5} m}-e^{-j \frac{6 \pi}{5} m} \\
& +e^{-j \frac{4 \pi m}{5} m}+e^{-j \frac{6 \pi}{5} m}+e^{-j \frac{8 \pi}{5} m} \\
= & 1+e^{-j \frac{4 \pi}{5} m}+e^{-j \frac{8 \pi}{5} m} \\
= & 1+e^{-j \frac{2 \pi}{5} 2 m}+e^{-j \frac{2 \pi}{5} 4 m}
\end{aligned}
$$

Since

$$
\hat{Y}_{m}=\sum_{n=0}^{4} \hat{y}_{n} e^{-j \frac{2 \pi}{5} m}
$$

we see that

$$
\hat{\mathrm{y}}_{\mathrm{n}}=\{1,0,1,0,1\}
$$

It is easy to see that this is the correct linear convolution:

$$
\begin{array}{lllll}
& & 1 & 1 & 1 \\
1 & -1 & 1 & &
\end{array}
$$

Performing the usual shift and add operations gives the sequence $\{1,0,1,0,1\}$.
Now, what if we had not zero padded?
Then ($\Delta \Delta$) would have produced a cyclic convolution.
The cyclic convolution formula is

$$
\mathrm{y}_{\mathrm{n}}=\sum_{\mathrm{m}=0}^{2} \mathrm{~h}_{\mathrm{m}} \mathrm{x}<\mathrm{n}-\mathrm{m}>3
$$

which is computed pictorially as

Let's check that $(\Delta \Delta)$ without zero-padding gives this same result.

$$
\begin{aligned}
H_{m}= & \sum_{n=0}^{2} h_{n} e^{-j \frac{2 \pi}{3} n m} \\
= & 1+e^{-j \frac{2 \pi}{3} m}+e^{-j \frac{4 \pi}{3} m} \\
X_{m}= & 1-e^{-j \frac{2 \pi}{3} m}+e^{-j \frac{j \pi}{3} m} \\
Y_{m}= & H_{m} X_{m} \\
= & 1+e^{-j \frac{2 \pi}{3} m}+e^{-j \frac{j \pi}{3} m} \\
& -e^{-j \frac{j \pi}{3} m}-e^{-j \frac{j \pi}{3} m}-e^{-j \frac{6 \pi}{3} m} \\
& +e^{-j \frac{j \pi}{3} m}+e^{-j \frac{j \pi}{3} m}+e^{-j \frac{8 \pi}{3} m}
\end{aligned}
$$

Interchanging the latter two terms and using 2π periodicity of the complex exponential gives

$$
Y_{m}=1+e^{-j \frac{2 \pi}{3} m}+e^{-j \frac{2 \pi}{3} 2 m}
$$

Matching up terms with

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{m}}=\sum_{\mathrm{n}=0}^{2} \mathrm{y}_{\mathrm{n}} \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{3} \mathrm{~nm}}=\mathrm{y}_{0}+\mathrm{y}_{1} \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{3} \mathrm{~m}}+\mathrm{y}_{2} \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{3} 2 \mathrm{~m}} \\
& \text { gives } \\
&\left\{\mathrm{y}_{\mathrm{n}}\right\}=\underset{\substack{ \\
\{1,1,1\} \quad \boldsymbol{~}}}{ } \quad
\end{aligned}
$$

Note: We worked through this example to show that $(\Delta \Delta)$ can give a linear convolution or a cyclic convolution, depending on whether we first zero pad. In practice, if N is large the DFTs and inverse DFT would be computed using FFTs. If N is small, then it is faster to perform the convolution in the sequence domain.

For practice at computing cyclic convolution in the sequence domain, consider the following example.

Example

Find $\mathrm{y}_{\mathrm{n}}=\mathrm{h}_{\mathrm{n}} \circledast \mathrm{x}_{\mathrm{n}}$ where $\left\{\mathrm{h}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{3}=\{1,2,3,4\}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{3}=\{1,0,2,-1\}$.

Example (Convolution via FFT)

Suppose that a sequence $\left\{x_{n}\right\}_{n=0}^{7000}$ is to be filtered with an FIR filter having coefficients $\left\{\mathrm{h}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{1100}$.
a) Ignoring possible savings from coefficient symmetry, what is the total number of multiplications required to compute the output $\left\{y_{n}\right\}_{n=0}^{8100}$ by implementing the usual convolution formula with a direct-form filter structure?
b) Using the FFT method (with a radix-2 FFT and zero-padding to length 8192), how many complex multiply-accumulates (MAs) are required to compute $\left\{y_{n}\right\}_{n=0}^{8100}$? How many real MAs are required? (For simplicity, count all "multiplications" in an FFT, even those by $\pm 1, \pm \mathrm{j}$, as complex multiplications.)

Solution

a) Output of regular convolution is composed of 3 parts:

$$
\begin{gathered}
\text { \# of MAs is } 1+2+3+\ldots+1100 \\
=\frac{(1100)(1101)}{2}
\end{gathered}
$$

\# of MAs is 1101 (7001-1100)

$$
\begin{aligned}
& \text { \# of MAs is } 1100+1099+\ldots+1 \\
& =\frac{(1100)(1101)}{2}
\end{aligned}
$$

Total \# MAs $=1100(1101)+1101(5901)=7,708,101$
b) FFT method is

where $\left\{\tilde{x}_{n}\right\}$ and $\left\{\tilde{h}_{n}\right\}$ are zero-padded versions of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{h}_{\mathrm{n}}\right\}$.
\# complex MAs $=3\left(N \log _{2} N\right)+\mathrm{N}=3(8192 \bullet 13)+8192=327,680$
The number of real MAs required to implement a complex MA is generally 4. To see this, write out the detailed calculation (a) (b) +c where a, b, and c are all complex. Assuming this factor of 4 overhead, we have
\# real MAs $=4(327,680)=1,310,720$
Thus, in this example the FFT approach requires fewer than 20% of the MAs required by a straightforward convolution.

Block Convolution

Given $\left\{x_{n}\right\}_{n=0}^{N-1}$ and $\left\{h_{n}\right\}_{n=0}^{M-1}$, we have developed an approach for efficiently computing $\mathrm{y}_{\mathrm{n}}=\mathrm{h}_{\mathrm{n}} * \mathrm{x}_{\mathrm{n}}$ using zero-padding and FFTs. But, what if $\mathrm{N} \gg \mathrm{M}$? If N , the length of the input, is really large, we are faced with two problems:
1)Very long FFTs will be required, which will lead to computational inefficiency.
2)There will be a very long delay in computing $\left\{y_{n}\right\}$ since our scheme requires that all of $\left\{x_{n}\right\}$ be acquired before any element in the output sequence can be computed.

What to do? Answer: Segment the long input $\left\{x_{n}\right\}_{n=0}^{N-1}$ into shorter pieces, convolve the individual pieces with $\left\{\mathrm{h}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\mathrm{M}-1}$ and then stitch together the results of the shorter convolutions to form $\left\{y_{n}\right\}$. There are two popular ways of doing this.

Method 1: Overlap and Add

Here, we divide up the input into nonoverlapping sections of length L. Let

$$
x_{k}(\ell)=x(k L+\ell) \quad 0 \leq \ell \leq L-1, \quad k=0,1,2, \ldots
$$

Picture:

We have

$$
\mathrm{x}(\mathrm{n})=\sum_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}(\mathrm{n}-\mathrm{kL}) \quad 0 \leq \mathrm{n} \leq \mathrm{N}-1 .
$$

Now, convolution is a linear operation, so

$$
\mathrm{y}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{x}(\mathrm{n})=\mathrm{h}(\mathrm{n}) *\left[\sum_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}(\mathrm{n}-\mathrm{kL})\right]=\sum_{\mathrm{k}} \mathrm{~h}(\mathrm{n}) * \mathrm{x}_{\mathrm{k}}(\mathrm{n}-\mathrm{kL})
$$

Let $y_{k}(n)=h(n) * x_{k}(n)$. Then by shift-invariance,

$$
\begin{equation*}
\mathrm{y}(\mathrm{n})=\sum_{\mathrm{k}} \mathrm{y}_{\mathrm{k}}(\mathrm{n}-\mathrm{kL}) . \tag{1}
\end{equation*}
$$

We compute each $\left\{y_{k}(\mathrm{n})\right\}$ via the FFT as in the previous lecture. For simplicity, assume $\mathrm{M}+\mathrm{L}-1$ is a sequence length for which we have an FFT algorithm. Then

1) Pad $\left\{\mathrm{x}_{\mathrm{k}}(\mathrm{n})\right\}_{\mathrm{n}=0}^{\mathrm{L}-1}$ with $\mathrm{M}-1$ zeros to give $\left\{\tilde{\mathrm{x}}_{\mathrm{k}}(\mathrm{n})\right\}_{\mathrm{n}=0}^{\mathrm{L}+\mathrm{M}-2}$.
$\operatorname{Pad}\{\mathrm{h}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{M}-1}$ with $\mathrm{L}-1$ zeros to give $\{\mathrm{h}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{L}+\mathrm{M}-2}$.
2) Calculate the FFTs of $\left\{\tilde{x}_{k}(n)\right\}_{n=0}^{L+M-2}$ and $\{\mathrm{h}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{L}+\mathrm{M}-2}$.
3) Multiply FFTs together and take FFT $^{-1}$ to give $\left\{y_{k}(n)\right\}_{n=0}^{L+M-2}$.

Finally, calculate $\{y(n)\}$ via (1) by adding together the appropriately shifted $\left\{\mathrm{y}_{\mathrm{k}}(\mathrm{n})\right\}$.
Pictorially:

Sum of the shifted (by kL$) \mathrm{y}_{\mathrm{k}}(\mathrm{n})$ gives $\{\mathrm{y}(\mathrm{n})\}$.

Example

Given $\{\mathrm{h}(\mathrm{n})\}_{\mathrm{n}=0}^{249}$ and $\{\mathrm{x}(\mathrm{n})\}_{\mathrm{n}=0}^{\infty}$ we wish to compute $\{\mathrm{y}(\mathrm{n})\}=\{\mathrm{h}(\mathrm{n})\} *\{\mathrm{x}(\mathrm{n})\}$ using the FFT method. What is the best block length L, using the Overlap and Save method with radix-2 FFTs?

We have $\mathrm{M}=250$. Let $\mathrm{K}=\mathrm{FFT}$ length. Then since $\mathrm{K}=\mathrm{L}+\mathrm{M}-1$, the block length will be $\mathrm{L}=\mathrm{K}-249$. Each length-K FFT and inverse FFT requires $\mathrm{K} \log _{2} \mathrm{~K}$ MAs. Multiplication of FFTs requires K MAs. We shall assume that the FFT of $\{\tilde{\mathrm{h}}(\mathrm{n})\}$ is precomputed once and stored. Thus, the amount of computation for each input block will be

$$
2 \mathrm{~K} \log _{2} \mathrm{~K}+\mathrm{K}=\mathrm{K}\left(2 \log _{2}(\mathrm{~K})+1\right) \quad \text { MAs. }
$$

This amount of computation is needed to compute each $\left\{\mathrm{y}_{\mathrm{k}}(\mathrm{n})\right\} \mathrm{k}=0,1,2, \ldots$ from each input block $\left\{\mathrm{x}_{\mathrm{k}}(\mathrm{n})\right\}$ of length $\mathrm{L}=\mathrm{K}-249$. Thus, the computation per input sample (or per output sample), ignoring the few additions needed to sum the overlapping $\left\{\mathrm{y}_{\mathrm{k}}(\mathrm{n})\right\}$ blocks, is

$$
\begin{equation*}
\frac{\mathrm{K}\left[2 \log _{2} \mathrm{~K}+1\right]}{\mathrm{K}-249} \tag{2}
\end{equation*}
$$

Trying some different values for the FFT length K, we find:

| K | Complex MAs
 Per output | | |
| ---: | ---: | :---: | :--- |\quad| K = FFT length |
| :--- |
| 256 |
| 512 |

For larger K, (2) approaches $\left(2 \log _{2} \mathrm{~K}\right)+1$, which grows with K .
Even allowing for the required complex arithmetic (4 real MAs per complex MA), the FFT approach offers considerable savings over a direct filter implementation, which would require 250 MAs per output.

Notes:
1)Based on the above table, and if we are at all concerned about delay, we would select an FFT block length of either 512 or 1024.
2)If $\left\{x_{n}\right\}$ and $\left\{h_{n}\right\}$ were complex-valued, then the direct filter implementation would require roughly 1000 MAs per filter output.
3)If a sequence is real, there are tricks that can be used to speed up computation (by a factor of approximately two) of its DFT. If both $\{x(n)\}$ and $\{\mathrm{h}(\mathrm{n})\}$ are real, in which case $\{\mathrm{y}(\mathrm{n})\}$ is real, these tricks can be used to reduce the number of MAs in the FFT approach by nearly a factor of two over the entries shown in the above table.

Method 2: Overlap and Save

Could just as easily be called Overlap and Discard.
Here, we define the $\left\{\mathrm{x}_{\mathrm{k}}(\mathrm{n})\right\}$ to be overlapping as shown below.

$$
\left\{\mathrm{x}_{0}(\mathrm{n})\right\} \quad \underset{\mathrm{M}-1}{\vdash}
$$

$$
\left\{\mathrm{x}_{1}(\mathrm{n})\right\}
$$

$$
\stackrel{1}{\vdash_{M-1}}
$$

$$
\left\{x_{2}(n)\right\}
$$

$\left\{x_{3}(n)\right\}$
:
\cdot

The first M-1 entries of $\left\{\mathrm{x}_{0}(\mathrm{n})\right\}$ are filled with zeros. All other entries of $\left\{\mathrm{x}_{0}(\mathrm{n})\right\}$ and all entries of all other subsequences $\left\{\mathrm{x}_{\mathrm{k}}(\mathrm{n})\right\}$ are filled with the values of $\{\mathrm{x}(\mathrm{n})\}$ directly above. In general, each subsequence overlaps with its two neighboring subsequences. The algorithm to calculate $\{\mathrm{y}(\mathrm{n})\}$ is then:
1)Zero-pad $\{\mathrm{h}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{M}-1}$ with $\mathrm{L}-1$ zeros to produce $\{\mathrm{n}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{M}+\mathrm{L}-2}$.
2)Cyclically convolve (via FFT) $\{\mathrm{n}(\mathrm{n})\}_{\mathrm{n}=0}^{\mathrm{M}+\mathrm{L}-2}$ with each $\left\{\mathrm{x}_{\mathrm{k}}(\mathrm{n})\right\}_{\mathrm{n}=0}^{\mathrm{M}+\mathrm{L}-2}$ to give

$$
\mathrm{y}_{\mathrm{k}}(\mathrm{n})=\tilde{\mathrm{h}}(\mathrm{n}) \odot \mathrm{x}_{\mathrm{k}}(\mathrm{n}) . \quad 0 \leq \mathrm{n} \leq \mathrm{M}+\mathrm{L}-2
$$

The result is that the first $\mathrm{M}-1$ samples of each $\left\{\mathrm{y}_{\mathrm{k}}(\mathrm{n})\right\}$ will be useless, but the last L samples will be samples of $\{y(n)\}$.
3)Assemble $\{y(n)\}$ as shown:

:

The "bad" samples are discarded and the "good" samples are concatenated to form $\{\mathrm{y}(\mathrm{n})\}$.

