14.1

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson
University of Illinois Chapter 14

Fast Fourier Transform (FFT)

FFTs comprise a class of algorithms for quickly computing the DFT.

DFT:

0<ps<N-1

A straightforward computation requires:
N2®, NN-1)®
where these multiplications and additions are generally complex.

There are many different FFTs. We will consider only radix-2 decimation-in-time and
decimation-in-frequency algorithms.

Radix-2 FFTs, where the sequence length N is restricted to be a power of two, require only
O(N logz N) computations.

Decimation-in-Time Radix-2 FFT
Suppose N =2M
Idea: Divide input sequence into two groups, those elements of {x,, } with n even and those with

n odd. Then combine the size N/2 DFTs of these two subsequences to calculate the first half of

X }2;(1) and the second half of {X, }2;(1) :

Yn =X2n
Let 0<n<

Zp = X2n+l

-1

o | Z

N N
-1 N — -1 ——1
Show {Xp E: , can be obtained from the By point DFTs {Yp }pZ: 0 and {Zp }[)2: 0

Splitting a size N problem into two size B problems will reduce computation because

(N)2+(N N2

2
3) t3) =T

14.2

. . . N . . N
Our strategy will then be to divide each size > problem into two size 7 problems, etc.

Derivation Relating Xy, to Yy, and Zy:

N,

2

_ 2kp 2k+Dp

Xp= 2. @2kWN Xoppt WY]
k=0

N, N,
Z kp p 2 kp

= 2 Yk Wayo + Wy Z zZx WN /2 (1)

2kp _i2n
since WN = INKP JN/ka Wx/2

N . . . p
Forp=0,1, ..., 3 — 1, the first sum in (1) is Yy, and the second sum is Wy Z,.
O X, =Yp+WR z, 0<psN_4
p=YprWh &p DEP=5 @

N) .
What about X, for p > 5 1? We can get these by using (1) to write:

N_ N4
e e
XP+M= Yk WN/2 +WN Z ZkW
2 k=0 k=0
Note that:
WN/Z =Wy/2 WN/z—WN/z‘1
and
P p —j&il p
_ J _
Wy " =Wye 'N2=-W
So:
N4 N
A kp p
Wo N = 2 Yk Wy - Wy 2 7k Wy

P N
H X =Y,— Wy Z Osps--1
‘ Y=Y~ Wnse 0=P=3 \ 3)

14.3

. . N .
(2) and (3) show how to compute an N point DFT using two 5 point DFTs. These two

equations are the essence of the FFT and describe the following flow graph:

Y 1
X 0
0 — B — Xo
N/2 Y, \ 1 /
Xy —— - X1
0
Y, W
Xq4 — I e
R 1
PT we
. DFT Yu_1 > 1
2 XN

N/2 z,

e w \>\>< 7"
o 1 2

z W)
X, ——] 0 / > X2
2

X3—>

X5 —
o PT
° DFT
XN_1_>

. . N :
The operation to combine the B point DFT outputs Y}, and Z,, is called a butterfly:

Yp Xp

o
In
e
In
Nl Z
|
H

Z > X
P p
~Wy

p+

] =4

This butterfly diagram summarizes (2) and (3).

14.4

Our overall strategy will be to:

. N . N .
Replace the N-point DFT by 3 butterflies preceded by the 3 -point DFTs.

N . N . N
Replace each — -point DFT by I butterflies preceded by two 2 -point DFTs.

o o o oD

Replace each 4-point DFT by two butterflies preceded by two 2-point DFTs.

Replace each 2-point DFT by a single butterfly preceded by two one-point DFTs. But, a one-
point DFT is the identity operation, so a two-point DFT is just a single butterfly.

: : . N :
Since N =2M, this recursion leads to M = log, N stages of B} butterflies each.

Thus, for a DSP chip that can perform one multiplication and one addition (one multiply-
accumulate) in each clock cycle, a radix-2 DIT FFT requires

. N log, Nmultiply — accumulates

which can be far less than the N2 multiply-accumulates required by a straightforward DFT.

Example (N =28, DIT FFT)

Index 1 1 1 I ndex
000 000
100 001
010 010

110 011

001 x, > ' ' ' Iy x, 100
"X
101 xg 1% x; 101

011 x, 1% x, 110

111 X7 X7 111

14.5

The input x,, is required in “bit-reversed” order. Why? This follows since to compute an N-

point DFT using two N/2 point DFTs, we break up the input into even and odd points. We do
this successively as we work backward in the flow diagram:

Inputs to Inputs to Inputs to
2-point DFTs 4-point DFTs 8-point DFTs

Xo Xo Xo
————
X4 X Xy
—————
X
Xy 4 X2
-]
Xg X6 X3
X
Xl Xl 4
.
Xs X3 X5
- x
6
X3 X5
. X
X7 X7 7

Note: FFT computation can be performed “in place.” We need only one length-N array in
memory since the output of a butterfly can be written back into the input locations.

Example ~ computational comparison

Suppose N =214 =16,384.

Compare the number of multiply-accumulates in straightforward and DIT FFT implementations
of the DFT.

Straightforward: N2 = 268,435,456 multiply-accumulates
FFT: Nlog, N=214(14)=229,376 multiply-accumulates

268,435,4
Savings factorzm = 1170!
229,376

Suppose that in 1964 a state-of-the-art computer required 10 hours to compute a straightforward
length 214 DFT. Then, in 1965, after publication of the FFT, this same computation could be
performed in about 30 seconds!

Decimation in Frequency Radix — 2 FFT

14.6

Idea: Essentially is backwards from DIT. Separate {xn }II:I:_(; into first half and second half and
o N -1 . N
then compute even and odd points in {Xp }p_ 0 separately, using two E -point DFTs.

Derivation of algorithm:

N-1 np
X, = > Xn Wy
n=0

p

%11 gfl

_ mp (m+N/2)

= 2 Xm Wy + 2 XmiN/2 WN P
m=0 m=0
N
S (N /2)p g mp

= T (o a2 WP (10)
m=0

Look at even and odd points in X, separately.

Evens:
(10) =
N
2 mg
Xoqg = 2. (Xm +XmiN/2 '1)WN/2
m=0
0 N2-1 _ N/2 -1
{ XZq} =0 = D:——I' [{ Xm t+ Xm+N/2} m=0] (11)
)
even pointsin desired N/2 point DFT
length-N DFT
Odds:
(10) =
N_
2
/2)(2q+1
X2q+1 = Z (Xm +Xm+N/2VVIE]N J@arh IiIn/qZ Wliln
m=0
N

Z m |, mq
Z [(Xm _Xm+N/2)WN N/2

m=

0 N/2 -1

odd pointsin desired
length-N DFT

(11) and (12) give:

{X2q+1} 0 = DFT [{(Xm_xm+N/2)W£1} m=0
1

N/2 —1]

Xo

X1

= X,
N/2
> X,
[]
PT °
[]
[]
[]
DFT
_> XN2
N/2
= X,
[]
PT °
[]
[]
[]
DFT
— xN-l

(12)

14.7

_ N . : N .
The complete DIF algorithm computes each B -point DFT using two 2 -point DFTs, etc. As in

N
the DIT algorithm, we get log, N stages of 5 butterflies each, but now the output appears in bit-

reversed order.

Example (N =38, DIF FFT)

14.8

‘ Wy
Xg 0 X5
/ A wl
Xg 3 X3
/ Wi
X7 X7
3
_W8

The branch weights are found by using (11) and (12).
Note: As mentioned above, the output appears in bit-reversed order.

Comment: The DIF flow diagram is simply the transpose of the DIT diagram (switch input and
output, and reverse all flows).

Other Comments:
1) FFT computer algorithms incorporate the reordering (“bit reversal”) of input or output. You
don’t have to do this yourself.

2) Can generalize Radix-2 approach to Radix-3, Radix-4, etc. with N = 3M, N = 4M, etc. Fora
Radix-4 DIT algorithm, break input up into four groups.

14.9

X0 X0
X1 X4
X %8
2 . (— |[N/4APTDFT
X3 .
X4 XN—4
X5
N

X6 X1

X
X7 >

X9

xg . - [\4pPTDFT]

XN-3 |

. X2
X6

X10

XN-2)

N\

X3
X7

X11

XN-2 ¢

XN-1 XN-1)
The outputs of the N/4-point DFTs can then be combined, using modified butterflies with
4 inputs and 4 outputs each, to calculate {Xm}i_zlo .
Example

Shown below is part of a radix-2, 64-point DIT FFT. Determine the indices a—0 and the
coefficients a—g.

14.10

Yo

N
-1
2
_ p N
N
N=64, p+ = =49 = p=17
N
=49-— =33
Y PR
N
a=33-—=1
2

27 34x
_ 1 —5= _ 17 _ —j
d=Wg,=e o4 g=— Wgy =—c 64
e=1 b=1

since this is a top
f=1 c=1 a=1 « branch in butterfly
of 16 pt DFT

14.11

Fast Linear Convolution

Recall the cyclic convolution property of the DFT:

N-1
Yn = X hpX<pmey iff Y =HpXp 0<ms<N-1

m=0

So, we can implement cyclic convolution via

{/n}=DFT-1 [DFT [{h, }]e DFT [{x, }]] (AA)
This can be done quickly for long sequence lengths using the FFT.

But, what is cyclic convolution?

To compute y,:

hy .

X2 X1 X0 XN-1 XN-2 - . . " X4 X3

We would rather implement a linear (regular) convolution:

ho hl h2 " " " hN_2 hN_l
o @ @ @ o
@ @ @ @ @
XN-1 XN-2 - . - XD X1 X0

To compute a linear convolution via a cyclic convolution, we must eliminate the wrap-around of
nonzero terms in the cyclic convolution. Use zero-padding with N — 1 zeros, i.e., let:

R h, 0<n<N-1
hn:

0 N<n<2N-2

14.12

Xn =

R X, 0<n<N-1
0 N<n<2N-2

Now, cyclically convolve the zero-padded sequences.

-1

. ~ 2N=-2 . . - .
The result is that {yn }n:() will be a linear convolution of {h,, }Ilj:é with {XH}E:O . For
example, in computing §/2, we will have:
0 0 0 0 e e« O 0
@ @ @ ® @ ®
@ @ @ @ @
0 0 Xya X2 ® * * X2 X3

Obviously, the zero-padding eliminates the wrap-around problem. Using an FFT with (AA), and
zero-padded sequences, provides a fast means of performing linear convolution.

What if {h,} and {x,} are not of the same length?

If {h,} is of length M and {x,,} is of length N, then pad each sequence to length N+ M — 1 (or
nearest larger power of 2 if you are using a radix-2 FFT).

Let’s check and see that (AA), with zero padding, works for a specific example.
Example

hy = {11 1},x,={l,-1,1}
T 0

To produce a linear convolution via (AA), first pad each sequence with N — 1 =2 zeros:
hn = {1,1,1,0,0}

xn = {1,-1,1,0,0}
Now,
g 3 2Enm
Hp= > h,e’s
n=0
27 _;4xn
= l+ed5M 45

Likewise,
. _i2m _i4n
Xp= l-ed5M+e5M
So,

4 27

_ o —iSEm

Ym = Z Yn€ 5
n=0

we see that
YH = {1707 1707 1}

It is easy to see that this is the correct linear convolution:
I 1 1
1 -1 1
Performing the usual shift and add operations gives the sequence {1,0,1,0,1}. [

Now, what if we had not zero padded?

Then (AA) would have produced a cyclic convolution.
The cyclic convolution formula is

Yn T hm X<n—m> 3

0

2 M

which is computed pictorially as

Q_ 1 1) 1 1 D Q. 1 1}
@ @
1 1 1 1 1 1

- -1 1

Yo=1 y1=1 y2=1

14.13

14.14

Let’s check that (AA) without zero-padding gives this same result.

2 —jﬁnm
H, = > hye’3

n=0
21 _4n
= l+e3M4e 3™
_i2xn _;4xn
Xy = l—e 7 3M4+e3M
Ym = HpXp

Fom —rm
= 1+e7’g°ﬁ +e’éﬁ
Eﬁ%ﬁm eﬂ%{m 39?(“
AT %m j8Mm
+e 3+ +e’ 3

Interchanging the latter two terms and using 27 periodicity of the complex exponential gives

Matching up terms with

27 27

2 21
Y = 2 yae 3™ = ypty e I3 4y, e I3
n=0
gives
ab= {LL1} O

T

Note: We worked through this example to show that (AA) can give a linear convolution or a
cyclic convolution, depending on whether we first zero pad. In practice, if N is large the DFTs
and inverse DFT would be computed using FFTs. If N is small, then it is faster to perform the
convolution in the sequence domain.

For practice at computing cyclic convolution in the sequence domain, consider the following
example.

Example

Find y, =h, ® xq where fhy _o = {1,2,3,4} and {x, }>_o = {1,0,2,-1}.

14.15

yo=35 y1=17

Example (Convolution via FFT)

Suppose that a sequence {xn }Z(l%ois to be filtered with an FIR filter having coefficients
1100
{hn }n:() :

a) Ignoring possible savings from coefficient symmetry, what is the total number of

multiplications required to compute the output {yn }ilzo(g) by implementing the usual

convolution formula with a direct-form filter structure?
b) Using the FFT method (with a radix-2 FFT and zero-padding to length 8192), how
many complex multiply-accumulates (MAs) are required to compute {yn }21311:08 ? How

many real MAs are required? (For simplicity, count all “multiplications” in an FFT, even
those by 1, +j, as complex multiplications.)

Solution

a) Output of regular convolution is composed of 3 parts:

hn #of MAsis1+2+3+ ...+ 1100
. Xn — _ (1100)(1101)
' ' 2
hn
Xn ' |

| | # of MAs is 1101 (7001 — 1100)

b / #of MAsis 1100 + 1099 + ... + 1

_ (1100)(1101)
2

Total # MAs = 1100(1101) + 1101(5901) = [7,708,101

14.16

{Xn} g ——| FFT

b) FFT methodis FFT-1 —>{yn}
{h} ST —— FFT

where {X, } and {;n } are zero-padded versions of {x, } and ¢{h,, }.

complex MAs =3 (Nlogy N)+ N =3 (8192 13) + 8192 = 327, 680

The number of real MAs required to implement a complex MA is generally 4. To see this, write
out the detailed calculation (a) (b) + ¢ where a, b, and c are all complex. Assuming this factor of
4 overhead, we have

real MAs =4 (327, 680) = 1, 310, 720

Thus, in this example the FFT approach requires fewer than 20% of the MAs required by a
straightforward convolution.

Block Convolution

Given {x, } 0 and {h = 0 , we have developed an approach for efficiently computing

yn = hp * X, using zero-padding and FFTs. But, what if N >> M? If N, the length of the input, is
really large, we are faced with two problems:

I)Very long FFTs will be required, which will lead to computational inefficiency.

2)There will be a very long delay in computing {yn} since our scheme requires that all of
{Xn} be acquired before any element in the output sequence can be computed.
What to do? Answer: Segment the long input {x, }Efol into shorter pieces, convolve the
individual pieces with {h 0 and then stitch together the results of the shorter convolutions

to form {yn } There are two popular ways of doing this.

Method 1: Overlap and Add

Here, we divide up the input into nonoverlapping sections of length L. Let
xk(?) =x(kL + ¢) 0</<L-1, k=0,1,2,...

14.17

Picture:

x(n)

\ / \ /\ /\ /
V V

{xo(} I;:_; {xa(1} I;; {xa(7} l,_:_; {xa(2} Ig_:_;

We have

X(n)=ZXk(n—kL) 0<n<N-1.
k
Now, convolution is a linear operation, so
[1
y(n) = h(n) *x(n) =h(n)* LZxk(n ~kL) h 2 h(m)*x;(n—kL)
k k

Let yx(n) = h(n) * xg(n). Then by shift-invariance,

y(n) =Y yp(n—kL) . (1)
k

We compute each {yk(n)} via the FFT as in the previous lecture. For simplicity, assume
M + L — 1 is a sequence length for which we have an FFT algorithm. Then

1) Pad {xk(n)}iz_(l) with M—1 zeros to give {ik(n)}f;:éw =
Pad {h(n)}nlv[:_()1 with L1 zeros to give %(n) :(1;/[2

2) Calculate the FFTs of {ik(n)}i:(l)v[2 and {1(n) L:(l)\/I _2~

L+M-2

3) Multiply FFTs together and take FFT-! to give {y(n)} _,

14.18

Finally, calculate {y(n)} via (1) by adding together the appropriately shifted {yk(n)}.

Pictorially:
{h(n)} IT|
{x(n)} L {Xk(n)} | {Xk+1(n)} | {Xk+2(n)} | o
1 L 1 L T L 1
n | | zeros .
I
Y | 2eros
{x(n)} . - Yo

yo(n) = h(n) * xo(n) | : |

y1(n) = h(n) * xa(n) : : |

y2(n) = h(n) * x2(n) :

Sum of the shifted (by kL) yk(n) gives {y(n)}.

Example

Given {h(n)}i‘f0 and {x(n)};o:0 we wish to compute {y(n)} = {h(n)} * {x(n)} using the FFT
method. What is the best block length L, using the Overlap and Save method with radix-2 FFTs?

We have M =250. Let K =FFT length. Then since K=L + M — 1, the block length will be
L =K —249. Each length-K FFT and inverse FFT requires K logy K MAs. Multiplication of

FFTs requires K MAs. We shall assume that the FFT of {fl(n)} is precomputed once and stored.
Thus, the amount of computation for each input block will be

2Klogy K+K=K (2logy (K)+1) MAs.

This amount of computation is needed to compute each {yk(n)} k=0,1,2, ... from each input
block {xk(n)} of length L = K —249. Thus, the computation per input sample (or per output
sample), ignoring the few additions needed to sum the overlapping {yk(n)} blocks, is

14.19

K[2log, K +1]
K -249

2)

Trying some different values for the FFT length K, we find:

Complex MAs
K L Per output
256 7 621.7 K =FFT length
512 263 37.0 L = input block length
1024 775 27.7 # MAs given by (2)
2048 1799 26.2
4096 3847 26.6

For larger K, (2) approaches (2 logy K) + 1, which grows with K.

Even allowing for the required complex arithmetic (4 real MAs per complex MA), the FFT
approach offers considerable savings over a direct filter implementation, which would require
250 MAs per output.

Notes:

1)Based on the above table, and if we are at all concerned about delay, we would select an
FFT block length of either 512 or 1024.

D)If {xn} and {hn} were complex-valued, then the direct filter implementation would
require roughly 1000 MAs per filter output.

3)If a sequence is real, there are tricks that can be used to speed up computation (by a factor
of approximately two) of its DFT. If both {x(n)} and {h(n)} are real, in which case {y(n)} is
real, these tricks can be used to reduce the number of MAs in the FFT approach by nearly a
factor of two over the entries shown in the above table.

Method 2: Overlap and Save

Could just as easily be called Overlap and Discard.

Here, we define the {xk(n)} to be overlapping as shown below.

14.20

x(n)

\L /2 3L a n
{xo(n} | |v|—1: L :
{xy(m} e
{x>(n} v E—
{Xg.(n)} L

The first M—1 entries of {xo(n)} are filled with zeros. All other entries of {xo(n)} and all

entries of all other subsequences {xk(n)} are filled with the values of {x(n)} directly above. In

general, each subsequence overlaps with its two neighboring subsequences. The algorithm to
calculate {y(n)} is then:

1)Zero-pad {h(n)}ll\l/IJO1 with L—1 zeros to produce %(n)}rl\lg)lfz.
2)Cyclically convolve (via FFT) %(n)}ig)]“_z with each {xk(n)}ig)]“_2 to give

yk(m) = h(n) ® x(n). 0<n<M+L-2

The result is that the first M—1 samples of each {yk(n)} will be useless, but the last L samples
will be samples of {y(n)}.

3)Assemble {y(n)} as shown:

. Bad | Good |
tyo(n} ‘M1 L
Bad, Good |,
(i} roal, Good
Bad, Good |
{yz.(n} IM_ll L 1

The “bad” samples are discarded and the “good” samples are concatenated to form {y(n)}.

