
Chapter 3

CT and DT Systems

3.1 Systems as a mapping

In Chapter 1, we explored the mathematical representation of a variety of waveforms of interest, including
sensor outputs, recorded data measurements or other information-bearing signals as either continuous-time
or discrete-time signals. In this chapter, we develop the notion of a �system� as a means for transforming
one signal into another signal. Speci�cally, a discrete-time system can be viewed as a transformation, or
mapping, from one set of sequence values, called the input to the system, to another set of sequence values,
called the output of the system.

For the discrete-time system shown in Figure 3.1, we can view the operation of the system as one that
takes as input, the signal x[n] and produces as output the signal y[n]. From this notation, the system enclosed
within the box is may appear to be simply mapping each value of the input signal x[n] into a corresponding
output value y[n], however this point of view would not capture systems that contain memory. For example,
suppose that the system simply delayed the input signal by two samples by using simple delay elements,
such that y[n] = x[n−2]. Rather than this sample-at-a-time thought process, we therefore must consider the
system in the box as one that is capable of stepping outside the limitations of the time-index, and is capable
of viewing the entire signal x[n], from n = −∞ to n =∞, and then producing a new signal y[n] which is also
de�ned over the time index n = −∞to n =∞. This notion of a system as a general mapping from one signal
spanning the entire time horizon onto another entire signal spanning the same time horizon will enable us
to consider a wide variety of practical systems in general, and properties of a number of speci�c systems of
interest in practice.

This general notion or de�nition of a system as a mapping from one signal into another can be used to
describe transformations of both continuous-time as well as discrete-time signals, as shown in �gure 3.2.

Now that we have a general viewpoint of a system as a mapping from one into another signal, we can more
formally de�ne a system by wrapping some mathematical language around this framework. Speci�cally, we
de�ne a system as follows

A discrete-time system is a mapping, or a transformation, T, that maps one discrete-time
signal, called the input signal, x[n], into another discrete-time signal, called the output signal,
y[n], such that y[n] = T

{
x[n]

}
. We will sometimes use this formal system notation, i.e.

y[n] = T
{
x[n]

}
, and, when convenient, we may adopt the shorthand x[n] → y[n], which

carries the same meaning. That is, both should be read, �When the input to the system is
x[n], the output of the system is y[n].�

A continuous-time system is a mapping, or a transformation, T, that maps one continuous-

x[n] −→ DT System −→ y[n]

Figure 3.1: A discrete-time system as a mapping from the input signal x[n], to the output signal y[n].
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68 CT and DT Systems

x(t) −→ CT System −→ y(t)

Figure 3.2: A continuous-time system as a mapping from the input signal x(t), to the output signal y(t).

x(t) −→ A/D
↑T

−→ x[n]

Figure 3.3: An A/D converter taking samples x[n] = x(nT ).

time signal, called the input signal, x(t), into another continuous-time signal, called the output
signal, y(t), such that y(t) = T

{
x(t)

}
.

With these de�nitions of discrete-time and continuous-time systems, we can begin to explore some of the
many properties of systems that process signals in discrete and continuous-time. However before we do,
we will consider one more example of a system, but this system does not satisfy either of the de�nitions
given above. Since one way in which discrete-time signals are created is through the process of sampling
continuous-time signals with periodic sampling, we will brie�y consider the ideal-sampling system as one
that takes a continuous-time signal as its input and produces a discrete-time signal as its output. Later,
when we consider analog-to-digital converters and digital-to-analog converters, we will explore these concepts
more carefully, and will also consider a system that takes a discrete-time signal as its input and produces a
continuous-time signal as its output.

3.2 Introduction to Sampling

One example of a mixed-signal system is an ideal analog-to-digital converter, or A/D converter in shorthand.
While it is mathematically simple to describe the operation of an ideal A/D converter, as we will see when
we discuss such systems in more detail, the design and operation of a practical A/D converter can be a
complicated process. However, for our purposes here, we will stick with the simple, ideal case. In this case,
we consider a system that takes an analog, continuous-time signal x(t) as input and produces a discrete-time
signal x[n] as output, as shown in �gure 3.3.

Mathematically, the discrete-time output x[n] is related to the continupus-time input signal x(t) through
the relation x[n] = x(nT ),where the parameter T is called the sampling period of the A/D converter and has
the sample units as the time index t of the input. While the relationship between the input and outputs of
the ideal A/D converter can be succinctly stated, as we will see in later chapters of this text, under certain
conditions the origional continuous-time signal x(t) may be completely recovered from its samples x[n]. As
you might imagine, this will place some restrictions on the class of signals x(t), however we will see that this
can be accomplished in a way that permits a wide range of possible input signals of interest to be sampled,
stored, and completely recovered from it samples. One simple example of a set of signals that can be recovered
easily from periodic samples is the class of polynomial signals, i.e. x(t) = a0 + a1t+ a2t

2 + ...+ aN t
N , which

can be completely recovered from only N + 1 samples. When the number of samples taken becomes large
and even in�nite, the class of signals that can be perfectly reconstructed from its periodic samples becomes
rather large. However, as the class of signals becomes large and complex, more sophisticated means must be
used to reconstruct the origional continuous-time signal.

For the system in Figure 3.3, we recall the when the input signal x(t) is bandlimited, such that its Fourier
transform magnitude satis�es |X(ω)| = 0,for |ω| > 2πB, then so long as the sampling rate is su�ciently high
enough, i.e. 1

T > 2B, then the signal x(t) can be completely reconstructed from its samples, x[n] = x(nT ),
as follows

x(t) =

∞∑
−∞

x[n]sinc(
π

T
(t− nT )). (3.1)

This relationship enables us to reconstruct x(t) from the samples x[n] = x(nT ), for bandlimited signals.
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3.2 Introduction to Sampling 69

While this relationship is tremendously powerful, it will be equally important for us to see how the Fourier
representations of the signals x(t) and x[n] are also related. We will show that the relationship between
X(Ω), the CTFT of x(t), and Xd(ω), the DTFT of x[n] is given by

Xd(ω) =
1

T

∞∑
k=−∞

X

(
ω + 2πk

T

)
, (3.2)

which provides the following relationships between a continuous-time signal x(t) and the sequence of samples
x[n] = x(nT ),

x(t) −→ A/D
↑T

−→ x[n]

x(t) =

∞∑
n=−∞

x[n]sinc
(
π
T (t− nT )

)
time domain x[n] = x(nT )

X(Ω) =

{
Xd(ΩT ), |Ω| < π

T

0 else
frequency domain Xd(ω) = 1

T

∑∞
k=−∞X

(
ω+2πk
T

)
We will show how these relationships can be derived, beginning in the lower right and working our way
counterclockwise through the chart.

We begin with a continuous-time signal x(t) that has a well-de�ned CTFT given by X(Ω). By taking
periodic samples of the signal x[n] = x(nT ), we also assume that the signal x(t) is well-de�ned at the
sampling instants t = nT . Taking a closer look at the CTFT synthesis equation, and using the sampling
instants ans the link, we have

x[n] = x(nT )

=
1

2π

∞∫
−∞

X(Ω)ejΩ(nT )dΩ

=
1

2π

∞∫
−∞

X
(ω
T

)
ej

ω
T (nT )d

ω

T

=
1

2πT

∞∫
−∞

X
(ω
T

)
ejωndω

=
1

2πT

∞∑
k=−∞

2π∫
0

X

(
ω + 2πk

T

)
ejωndω

=
1

2π

2π∫
0

[
1

T

∞∑
k=−∞

X

(
ω + 2πk

T

)]
︸ ︷︷ ︸

Xd(ω)

ejωndω

=
1

2π

2π∫
0

[Xd(ω)] ejωndω,

which yields the relationship of (3.2) by the uniqueness property of the DTFT and the last line above. The
�rst line above arises from setting t = nT in the CTFT synthesis equation; the second line comes from
setting ω = ΩT, the fourth line comes from breaking the in�nite integral into a sum of integrals of length
2πeach. It is helpful to consider what (3.2) represents graphically. We see three components of interest.
First, the DTFT is represented by a scaled-frequency axis version of the original CTFT, that is X(ω/T );
next we see that this scaled version is also scaled in amplitude by the factor 1

T ; and �nally that copies if

c©A.C Singer and D.C. Munson, Jr. February 19, 2011



70 CT and DT Systems

Figure 3.4: An example of a bandlimited CTFT of a signal xa(t).

Figure 3.5: Graphical depiction of three of the terms in (3.2) for the bandlimited CTFT signal xa(t) shown
in (3.4).

this amplitude and frequency scaled version of X(Ω) are placed at equally-spaced intervales on the ω axis.
Note that if the original spectrum, X(Ω)is zero for |Ω| > Ω, then this periodic replication simply provides
the necessary 2π periodicity of the DTFT and within the interval |ω| < π, we have the simpler relation

Xd(ω) =
1

T
X
(ω
T

)
, |ω| < π,

and is 2π periodic elsewhere. However, if the original spectrum X(Ω) is not bandlimited in this manner,
then the summation of shifted replicas of the scaled spectrum X(ω+2πk

T ) each may have overlap into the
interval |ω| < π, and each of the terms in the summation must be taken carefully into account. We will
consider several examples to illustrate this point.

As an example, let us consider a signal xa(t) that has a bandlimited spectrum as depicted in Figure 3.4.
When the sampling interval is such that π

T > B, the terms in the summation (3.2) do not overlap, and we
have no detrimental �aliasing� of frequency components, which is what we the e�ect of copies of the CTFT
that are centered outside the region from −π to π in discrete frequency, i.e. the region occupied primarily
by the k = 0 term from (3.2). When frequencies overlap, and masquerade in a band to which they do not
belong, we are no longer able to determine those frequency components from the original continuous-time
signal from those hiding behind an alias, owing to the periodic replication of the CTFT.

Note that since we assumed that π
T > B, and since the CTFT Xa(Ω) is zero for |Ω| > B, then when

we substitute ω
T for Ωin Xa(Ω), we have that Xa(ωT ) = 0 for |ω| > BT. As a result, the k = 0 term is

con�ned to the region −π < ω < π, and the k = 1 term is con�ned to the region π < ω < 3π and more
generally, the kth term is con�ned to the region −π < ω + k2π < π, or −π − k2π < ω < π − k2π. Note
that when BT > π, the contribution from the k = 0 term and the k = −1 term will overlap. This is
called �aliasing� and eliminates our ability to completely recover the continuous-time signal xa(t) from its
samples. The condition BT < π is equivalent to the Nyquist condition stated previously, since we have
BT < π =⇒ T < π

B =⇒ 1
T > B

π =⇒ 1
T > 2

(
B
2π

)
, where 1

T is the sampling frequency in samples per

second, and B
2π is the bandwidth of xa(t) in Hz.

In a second example, we consider the case when BT = 5π
3 , or T = 5π

3B , which indeed will give rise to
aliasing. In this case we no longer have the simple relationship Xd(ω) = 1

TX
(
ω
T

)
, |ω| < π, but rather need

to use the more complicated expression (3.2), which contains the in�nite sum of copies of X(Ω), scaled in
amplitude, scaled in frequency, and shifted in frequency, 1

TX(ω−2πk
T ). For this situation, with BT = 5π

3 , we
can readily see (either graphically, or through simple calculation) that we need to account for the k = −1, 0, 1
terms in the summation. This can be graphically depicted as in Fig. 3.6.

The three terms that comprise the scaled, shifted spectrum, 1
TXa(ω+2π

T ) + 1
TXa(ωT ) + 1

TXa(ω−2π
T ), when

added together create the complete DTFT Xd(ω) shown in Figure3.7.
The resulting spectrum Xd(ω), no longer appears as a periodic replication of a scaled in amplitude and
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Figure 3.6: A graphical depiction of the various terms that contribute to the DTFT Xd(ω) is shown when
the signal xa(t) with CTFT in 3.4 is sampled producing x[n] = xa(nT ), for BT = 5π

3 . As seen graphically,
the induced aliasing requires that three terms in the summation of (3.2).

Figure 3.7: The DTFT Xd(ω) is shown when the signal xa(t) with CTFT in 3.4 is sampled producing
x[n] = xa(nT ), for BT = 5π

3 .

in frequency version of Xa(Ω), but rather a distorted version of this. This is because some of the higher
frequencies from the copy of Xa(ωT ) extend outside the range |ω| < π and similarly, some of the higher
frequencies from the copy Xa(ω−2π

T ) extend into this frequency range from the right, and masquerade as
lower frequencies. The same is true from the copy Xa(ω+2π

T ) from the left. This is the reason we use the
term �aliasing� to describe this phenomenon.

If we were to select an even slower rate of sampling, i.e. a larger value of the sampling period T, then
additional terms beyond these three would also need to be incorporated. For simplicity, we can exploit the
periodicity of DTFTs and only concentrate on the terms Xa(ω−2πk

T ) that fall into the range −π < ω < π,
and then periodically replicate this resulding spectrum with periodicity 2πin ω. The net result will be the
same as if we considered all of the terms in the in�nite summation making up Xd(ω).

When there is no aliasing in the resulting spectrum and we have that Xd(ω) = 1
TXa(ωT ) in the range

−π < ω < π, then we can, at least conceptually, derive a reconstruction formula for recovering xa(t) perfectly
from the samples x[n] = xa(nT ). The �algorithm� for doing so would follow along these lines:

xa(t) = CTFT−1

[{
T ×DTFTx[n]|ω=ΩT |Ω| < π

T

0 otherwise

]
.

We can follow through this conceptual algorithm, mathematically, to produce the ideal reconstruction formula
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72 CT and DT Systems

Figure 3.8: A bandlimited signal xa(t) with spectrum Xa(Ω) bandlimited to 3000π.

as follows.

xa(t) =
1

2π

∞∫
−∞

[{
T ×DTFTx[n]|ω=ΩT |Ω| < π

T

0 otherwise

]
ejΩtdΩ

=
T

2π

π
T∫

− πT

∞∑
n=−∞

x[n]e−j(ΩT )nejΩtdΩ

=
T

2π

∞∑
n=−∞

x[n]

π
T∫

− πT

ejΩ(t−nT )dΩ

=

∞∑
n=−∞

x[n]

[
ejπ(t−nT )/T − e−jπ(t−nT )/T

]
2πj(t− nT )/T

=

∞∑
n=−∞

x[n]
2j sin(π(t− nT )/T )

2πj(t− nT )/T

=

∞∑
n=−∞

x[n]sinc(
π

T
(t− nT )), (3.3)

where in the last three lines of the derivation, we exclude the case t = nT, and consider that case separately.
When t = nT,we have in the integral in teh second line of the derivation, an integral of 1 over the interval of
length 2π/T. This, together with the scale factor T/2π outside the integral tells us that the integral evaluates
to one for t = nT, which is why we use the sinc function in the last line of the derivation, which then is valid
for all values of t.

We consider another example in which we sample a continuous time signal to produce a discrete-time
signal and observe how the frequency content of the signal as depicted in the CTFT is mapped to discrete
time. Speci�cally, for the continuous time signal xa(t) with CTFT given by Xa(Ω) = 1, for |Ω| < 3000π,
and zero elsewhere, i.e. as shown in Figure 3.8.

We consider sampling the signal xa(t) at sampling rates of 4kHz, 6kHz, and 12kHz, i.e. x[n] = xa(nT )
for T = 1/4, 000, T = 1/6, 000 and T = 1/12, 000. As shown in Figure 3.9, we see that as the sampling rate
increases (i.e. when T decreases) the spectrum Xa(Ω) is mapped to a smaller and smaller set of frequencies
in discrete-time.

The ideal reconstruction formula given in 3.3 can be viewed as a mathematical description of the operation
of an ideal digital-to-analog (D/A) converter, which we have referred to as an ideal discrete-to-continuous
(D/C) converter. The process of ideal continuous-to-discrete conversion, depicted as

x[n] −→ D/C
↑T

−→ x(t)

can be thought of as a process of clocking out a speci�c pulse shape (a sinc function) at integer multiples of
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Figure 3.9: Three di�erent DTFTs are generated when x[n] = xa(nT ) for T = 1/4, 000, T = 1/6, 000 and
T = 1/12, 000.

Figure 3.10: The reconstruction of ya(t) =
∑∞
n=−∞ x[n]g(t−nT ), for g(t) given by a rectangular pulse. This

is called zero-order-hold (ZOH) reconstruction.

the sampling period T scaled by the samples x[n]. Mathematically, we can view the process as follows,

y(t) =

∞∑
n=−∞

x[n]g(t− nT ),

where we consider an arbitrary reconstruction pulse g(t) to be used in the C/D converter, and in this case we
call the output y(t) to indicate the possibility that y(t) may di�er from xa(t) from which the samples were
taken to produce x[n]. When g(t) = sinc(π(t − nT )/T ), we have perfect reconstruction and y(t) = xa(t).
However, more generally, we may want to consider how y(t) relates to the original signal xa(t) and the
discrete-time signal x[n]. For example, later in the text, we will consider the case when g(t) is a rectangular
pulse as shown in Figure 3.10.
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Figure 3.11: Bandlimited spectrum Xa(Ω).

Mathematically, we can explore the spectrum Ya(Ω) from this reconstruction in general. We have

ya(t) =

∞∑
n=−∞

x[n]g(t− nT )

Ya(Ω) =

∞∫
−∞

ya(t)e−jΩtdt

=

∞∫
−∞

∞∑
n=−∞

x[n]g(t− nT )e−jΩtdt

=

∞∑
n=−∞

x[n]

∞∫
−∞

g(t− nT )e−jΩtdt

=

∞∑
n=−∞

x[n]G(Ω)e−jΩ(nT )

= G(Ω)

∞∑
n=−∞

x[n]e−j(ΩT )n

= G(Ω)Xd(ΩT ),

where in the �fth line, we used the delay property of CTFTs, for the CTFT of g(t−nT ), and in the sixth line
we observe the expression for the DTFT of x[n] with the frequency variable ΩT . We note that the resulting
expression

Ya(Ω) = G(Ω)Xd(ΩT )

is valid for all −∞ < Ω < ∞. When G(Ω) is an ideal lowpass �lter with cuto� frequency π
T , then only a

single period of the periodic spectrum Xd(ΩT ) remains. However for general G(Ω), we may observe not only
the period that is centered at Ω = 0, but also those centered at integer multiples of 2π

T , �ltered by G(Ω).
When the signal x[n] arises from sampling xa(t), we can substitute our expression for Xd(ω) in terms of
Xa(Ω) and obtain

Ya(Ω) = G(Ω)
1

T

∞∑
k=−∞

Xa(
ω + 2πk

T
).

If the signal xa(t) were bandlimited to B < π/T, then we may have a spectrum as depicted in Figure 3.11.
Since B < π/T, there is no aliasing so the resulting Xa(ΩT ) appears as shown in Fig. 3.12.
Since there is no aliasing, we ahve that

∑∞
k=−∞Xa(ΩT+2πk

T ) = Xa(Ω) in the range − π
T < Ω < π

T . For an
ideal D/C converter, i.e., for g(t) = sinc(π(t− nT )/T ), we have that G(Ω) = T in the range − π

T < Ω < π
T ,

and is zero elsewhere, i.e. G(Ω) is as shown in Figure 3.13.
We can now graphically observe the e�ect of using this reconstruction �lter in the D/C converter. As

shown in Figure 3.14, the ideal reconstruction �lter passes through only the term centered at Ω = 0, and
rejects all other periodic replications of Xa(Ω).

c©A.C Singer and D.C. Munson, Jr. February 19, 2011



3.2 Introduction to Sampling 75

Figure 3.12: The discrete-time spectrum that results from sampling xa(t) at rate 1/T.

Figure 3.13: The CTFT of the ideal reconstruction �lter G(Ω) in an ideal D/C converter.

Figure 3.14: Graphical depiction of the operation of an ideal reconstruction �lter in an ideal D/C converter.
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As a result, we have for the CTFT of the output,

Ya(Ω) = G(Ω)
1

T

∞∑
k=−∞

Xa(Ω +
2πk

T
)

=

{
Xa(Ω), |Ω| < π

T

0 otherwise.

Therefore, if Xa(Ω) is bandlimited to π
T , then we have that Ya(Ω) = Xa(Ω), and ya(t) = xa(t), i.e. we have

perfect reconstruction of the original continuous-time signal from its samples.

3.3 Some Examples of Discrete-time Systems

Before we investigate some of the properties of discrete-time systems, we begin by exploring some simple
systems through their input-output relationships. Along the way, we will introduce a few important concepts.
For example, a system with input x[n] and output y[n] is referred to as memoryless if the output at time n
is only a function of the input x[n] at the same value of n. For example, consider the following memoryless
systems.

System 3.1 One example of a memoryless system is a simple ampli�cation system, i.e. one for
which the input-output relationship is given by

y[n] = ax[n],

where a is a real-valued constant.

System 3.2 Another example of a memoryless system might be as follows

y[n] = |x[n]|,

where once again, the output at time n is completely determined by the input at time n.

Systems for which the output at time n depend on more information than the current value of the input
are said to have memory. We call the minimal set of information in addition to the values of the input
x[n], n ≥ m required to uniquely determine the output y[n] for all time n ≥ m the state of the system. For
example, in the following system, the state of the system consists of y[n− 1].

System 3.3 A system that has memory requires storage of the state of the system in order to
compute its output. In this system, the state is one single previous value of the output.

y[n] = x[n] + ay[n− 1].

System 3.4 Another example of a system with state is a simple delay.

y[n] = x[n− n0].

here, the state of the system is the previous values of the input, x[n− 1], x[n− 2], . . . , x[n− n0].
Storing only the single value x[n − n0] would enable us to compute only one value of y[n], but
if n0 > 1, we would be unable to proceed further. As a result, we need to store all intervening
values of x[n] in order to uniquely determine y[n], given only future values of the input.

3.4 Linear Systems

While there are a myriad of properties of systems that are of importance to study, perhaps the property of
primary importance is ability to distinguish between linear and nonlinear systems. This is largely because
some of the mathematical tools we will develop apply only to linear systems. The series of de�nitions below
culminates in the de�nition of linearity.
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A system satis�es the decomposition property if its output y[n] can be written as follows

y[n] = yx[n] + ys[n],

where yx[n] is the response of the system due only to the input x[n], while the initial conditions
of the system are set to zero, i.e., all state in the system (if there is any) is set to have zero values
in each position, and ys[n] is the response of the system due only to the state of the system with
the input set to zero.

When the output of the system can be decomposed into these two responses, we call yx[n] the zero state
response (ZSR) of the system and ys[n] the zero input response (ZIR) of the system. We �rst consider a
property called zero-state linearity, which considers the input-output functionality of the system when
the initial conditions, or state, of the system has been initially set to zero.

A system is zero-state linear, if , when the initial conditions of the system are set to zero before
the input is applied, it is satis�es both homogeneity and additivity, de�ned as follows.

A system with input x[n] and output y[n] satis�es homogeneity if for every input
x[n] and for every positive constant a, the following holds,

if x[n]→ y[n], then ax[n]→ ay[n].

This is also sometimes referred to as the scaling property of systems.

A system with input x[n] and output y[n] satis�es additivity, if for every pair of
inputs x1[n] and x2[n], and their corresponding outputs, y1[n] = T

{
x1[n]

}
and y2[n] =

T
{
x2[n]

}
, the following holds

if x1[n]→ y1[n] and x2[n]→ y2[n], then x1[n] + x2[n]→ y1[n] + y2[n].

When the two properties of homogeneity and additivity are combined into a single form, we
obtain a more compact relation known as the superposition property of linear systems. This
is summarized as follows,

A system with input x[n] and output y[n] satis�es superposition if for every pair
of inputs x1[n] and x2[n], and their corresponding outputs, y1[n] = T

{
x1[n]

}
and

y2[n] = T
{
x2[n]

}
, the following holds

if x1[n]→ y1[n] and x2[n]→ y2[n], then ax1[n] + b[n]→ ay1[n] + by2[n],

for all real-valued constants a and b.

For systems that satisfy the decomposition property, we are able to set aside the response of
the system to any intial conditions (or initial state of the system) and study the input-output
behavior of the system due solely to the input. When the system is also zero-input linear, then
we can extend the notions of linearity to the initial conditions of the system and the responses
to these initial conditions.

A system satisfying the decomposition property with a set of N initial conditions{
yk[nk] = ck

}N
{k=0}and the corresponding zero input response to these intial condi-

tions ys,1[n] and a second set of N initial conditions
{
ym[nm] = dm

}N
{m=0}and the

corresponding zero input response to these intial conditions ys,2[n] is zero-input lin-
ear if the following holds,

if
{
yk[nk] = ck

}N
{k=0} → ys,1[n] and

{
ym[nm] = dm

}N
{m=0} → ys,2[n] then

{
yk[nk] = ack + bdk

}N
{k=0} → ays,1[n] + bys,2[n],

for all real-valued constants a and b.
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We can now more formally de�ne a linear system as follows.

A discrete-time system is linear if it satis�es the decomposition property and it is both
zero-state linear and zero-input linear.

In this section we focus primarily on zero-state linearity, since the decomposition property enables
us to park issues of initial conditions outside our immediate focus and return to treat them later
as necessary. As we will later see, when systems are not only linear, but also stable, the steady
state behavior (long term behavior) will depend little on the e�ects of the initial conditions, and
it is precisely the input-ouput zero-state behavior that is often of primary interest. We continue
our exploration of linear systems by considering a few examples.

Example 1 Determine whether the system described by y[n] = |x[n]| is linear or
nonlinear. This system satis�es neither homogeneity nor additivity and is therefore
nonlinear. To prove the failure of homogeneity note that x1[n] = 1,∀n and x2[n] =
−1∀n produce the same output and yet x2[n] = −x1[n]. Similarly additivity fails
because x1[n] + x2[n] does not produce the sum of the outputs due to x1[n] and x2[n]
acting individually.

Example 2 Consider a system described by y[n] = [x[n−4]]2/x[n]. Is this system linear
or nonlinear? Check homogeneity: ax[n] → [ax[n − 4]]2/[ax[n]] = ax[n − 4]2/x[n] =
ay[n]X. So the system satis�es homogeneity. But, it looks like additivity will fail.
Therefore, we must conclude that the system is not linear. Let us �nd an x1[n]and
x2[n] to demonstrate this. Let x1[n] = 1,∀n. Then we have that

y1[n] =
12

1
= 1∀n.

Now let x2[n] = (1
2 )n,∀n, which gives rise to

y2[n] =
[( 1

2 )n−4]2

( 1
2 )n

=
( 1

2 )2n28

( 1
2 )n

= 28(
1

2
)n,∀n.

For the input x1[n] + x2[n] = 1 + ( 1
2 )n,∀n, we have

y[n] =
[1 + ( 1

2 )n−4]2

[1 + ( 1
2 )n]

6= y1[n] + y2[n] = 1 + 28(
1

2
)n,∀n,

since, for n = 4,we have

y[4] =
[1 + 1]2

[1 + ( 1
2 )4]

=
4

1 + 1
16

6= y1[n] + y2[n] = 1 + 28(
1

2
)4 = 1 + 24.

Example 3 For the following averaging �lter, we have y[n] = 1
3 [x[n−1]+x[n]+x[n+1]].

This is a simple example of a low-pass digital �lter that could be used to smooth signals
and reduce noise by replacing each sample in the output by the average of three adjacent
values of the input signal. Is this system linear or nonlinear? We can seek the answer
to this by checking superposition, i.e. by checking homogenity and additivity all at
once. We have that

x1[n]→ y1[n] =
1

3
[x1[n− 1] + x1[n] + x1[n+ 1]],

and

x2[n]→ y2[n] =
1

3
[x2[n− 1] + x2[n] + x2[n+ 1]].

Now for an input that is a linear combination, we have
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ax1[n] + bx2[n] → y[n] =
1

3
[(ax1[n− 1] + bx2[n− 1]) + (ax1[n] + bx2[n]) + (ax1[n+ 1] + bx2[n+ 1])]

→ y[n] = a
1

3
[x1[n− 1] + x1[n] + x1[n+ 1]] + b

1

3
[x2[n− 1] + x2[n] + x2[n+ 1]]

→ y[n] = ay1[n] + by2[n]X.

So we have shown that the sytem is indeed linear, since the inputs x1[n] and x2[n] and
coe�cients a and b are arbitrary.

Example 4 A median �lter is often used in data analysis when there may be outliers
in the data, i.e. spurious samples that might be erroneous or arti�cially large or small,
such that a local average of the data would be dominated by their magnitude. For
example, we might employ the median �lter y[n] = med

{
x[n− 1], x[n], x[n+ 1]

}
. This

operation would amount to looking at each value of the input sequence, and replacing
each value by the middle value, in numerical order, of the current, most recent, and
next, value of the imput. Thus, for example, the input sequence

would produce the median �lter outut

Notice that for any value of n, the median �lter output is always equal to one of
the elements of the input sequence

{
x[n]

}∞
{n=−∞}. It is easy to visualize the output{

y[n]
}∞
{n=−∞} by mentally sliding a length-three window over the input sequence and

then simply taking the output to be the middle element (in algebraic value) among
those three input elements falling within the window. So, for example shown, y[−2] =
med

{
x[−3], x[−2], x[−1]

}
= med

{
1, 2, 1

}
= 1, and y[1] = med

{
x[0], x[1], x[2]

}
=

med
{
−1,−1, 2

}
= −1. Is the median �lter in this example linear? Owing to prop-

erties of the median, homogeneity would be satis�ed, since scaling the samples in an
ordered set maintains the ordering with the possibility of reversing the elements if the
sign of the scale factor is negative, however this would leave the median of the scaled
values equal to the scaled median of the original values. What about additivity? Per-
haps we can �nd a simple set of two input sequences for which we can demonstrate a
violation of additivity. Consider for example

x1[n] = δ[n] and x2[n] = δ[n− 1],

for which the output of our three point local median �lter would be

y1[n] = 0,∀n, and y2[n] = 0∀n,

however, for the sum of these two inputs, we have that

y[n] = T
{
δ[n] + δ[n− 1]

}
= δ[n] + δ[n− 1] 6= y1[n] + y2[n] = 0∀n,
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and hence the system is not linear. Median �lters are often useful in image processing,
because unlike linear averaging �lters, median �lters can remove noise while preserving
edge structure. Linear �lters tend to blur edges, which is often objectionable in image
processing. In the 1-D case, it is easy to see that median �lters preserve edges. Consider
the edge signal x[n] = u[n]. For this signal, the output of the median �lter would be
y[n] = u[n], thus preserving the edge. However, consider the output of the three-
point local averaging �lter from example 3 above, for which the output would be
y[n] = 1

3δ[n+ 1] + 2
3δ[n] + u[n− 1], which is a blurred version of the original edge.

Example 5 For a modulator of the form y[n] = cos(ω0n)x[n], we may again check
linearity directly using the superposition property. For the pair of inputs

x1[n]→ y1[n] = cos(ω0n)x1[n] and x2[n]→ y2[n] = cos(ω0n)x2[n],

we have that

ax1[n] + bx2[n] → y[n] = cos(ω0n)(ax1[n] + bx2[n])

→ y[n] = a cos(ω0n)x1[n] + b cos(ω0n)x2[n]

→ y[n] = ay1[n] + by2[n]X.

So the modulator system is indeed linear.

Example 6 A linear constant-coe�cient di�erence equation (LCCDE) is given by the
following input-output relation

y[n] + a1y[n− 1] + . . . aNy[n−N ] = b0x[n] + . . . bMx[n−M ],

which can be more compactly written

y[n] +

N∑
k=1

aky[n− k] =

M∑
k=0

bkx[n− k]. (3.4)

This can be shown to be linear more easily when we have considered z-transforms
later in this text, however we can show linearity with some facility with such relations.
Consider the input-output pair x1[n]→ y1[n] and the input-output pair x2[n]→ y2[n].
We have that each satisfy the LCCDE individually, i.e.

y1[n] +

N∑
k=1

aky1[n− k] =

M∑
k=0

bkx1[n− k], and y2[n] +

N∑
k=1

aky2[n− k] =

M∑
k=0

bkx2[n− k].

Now by considering the input x3[n] = cx1[n] + dx2[n],we also know that the system
must satisfy, by the de�nition of the system,

y3[n] +

N∑
k=1

aky3[n− k] =

M∑
k=0

bk(cx1[n− k] + dx2[n− k]).

From the de�nition of the system, if we take a linear combination of the left hand side
of the relations for y1[n] and y2[n],we obtain

c

(
y1[n] +

N∑
k=1

aky1[n− k]

)
+ d

(
y2[n] +

N∑
k=1

aky2[n− k]

)
= c

M∑
k=0

bkx1[n− k] + d

M∑
k=0

bkx2[n− k]

(cy1[n] + dy2[n]) +

N∑
k=1

ak(cy1[n− k] + dy2[n− k]) ==

M∑
k=0

bk(cx1[n− k] + dx2[n− k])

y3[n] +

N∑
k=1

aky3[n− k] =

M∑
k=0

bk(cx1[n− k] + dx2[n− k]),
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where the last line follows from the de�nition of y3[n] as the response of the system
to the input x3[n] and the LCCDE for the system de�nition. Putting these together,
we have from the second and third lines above that the corresponding output y3[n]
satis�es y3[n] = cy1[n] + dy2[n], which indeed demonstrates linearity of the LCCDE.

3.5 Shift-invariant systems

Another property that will prove immensely powerful in the analysis of discrete-time systems is that of
shift-invariance. The ability to characterize the input-output behavior of discrete-time systems would be
rather di�cult if it were necessary to completely recharacterize the properties of the system depending on
the precise time at which a given input was presented. For example, imagine how complicated it would be
if every time a driver were to consider driving an automobile, that the driver would need to consult the
time of day and make changes appropriately. Suppose that the steering wheel was on the left side of the
car during odd-valued hours of the day, but on the right hand side of the car on even-valued hours of the
day. Additionally, perhaps the gas pedal would be to the right during the �rst quarter hour and then in the
middle during the second quarter hour, and then on the left for the remainder of the hour. The brake and
clutch pedals similarly moving about might cause no end to the confusion and di�culty in vehicle operation.
Needless to say, the invariance of the input-output properties of the car, i.e. the driving behavior of the car,
is one of the properties of a car that enable a driver to not only operate their vehicle routinely without too
much distraction, but also to enable any driver of a car to drive any other car.

A system is shift invariant if a shift in the input always leads to a corresponding shift in the output,
i.e., the system satis�es

if x[n]→ y[n], then x[n− n0]→ y[n− n0],∀n0 and ∀x[n].

The systems in Examples 1, 2, 3 and 5 are shift-invariant. The system in Example 4 is shiftvarying. Proving
that a discrete-time system is indeed shift-invariant or that it is shift varying can be a challenge the �rst time
around, however if you follow the steps taken in the following example, you will come to fewer stumbling
blocks. Let us �rst revisit Example 3.

Example 3 (revisited) For the system de�ned by the output relation y[n] = 1
3 [x[n−1]+x[n]+

x[n+ 1]], we consider a shifted version of the input, say, x0[n] = x[n−n0]. For this input, we can
�nd the corresponding output as follows

x0[n] → y0[n] =
1

3
[x0[n− 1] + x0[n] + x0[n+ 1]]

→ y0[n] =
1

3
[x[(n− n0)− 1] + x[(n− n0)] + x[(n− n0) + 1]]

→ y0[n] = y[n− n0]X

where the last equality follows from the system de�nition. Therefore the system is shift-invartiant.

Example 5 (revisited) We revisit the modulation example given by

y[n] = cos(ω0n)x[n]

and consider whether it is shift invariant or not. Let us once again let x0[n] = x[n − n0] and
consider the system response to this input, we have

y0[n] = cos(ω0n)x0[n]

= cos(ω0n)x[n− n0]

6= y[n− n0] = cos(ω0(n− n0))x[n− n0],

so the system is not shift invariant. Note that while the result may hold for certain values of n0,
for example, if ω0 = 2π/3, then for n0 = 3, the output would be equivalent to a shifted-by-three
version of the input. However, for shift invariance to hold, the output must be a shifted version
of the input for all possible (integer) values of n0. In this case, shifting the input does not shift
the cosine modulation, and as a result the system is shift-varying.

c©A.C Singer and D.C. Munson, Jr. February 19, 2011



82 CT and DT Systems

3.6 Causal Systems

A system is causal if for every n, y[n] depends only on x[m], m ≤ n. Thus, for causal systems, current
outputs do not depend on future inputs. Systems that are not causal are called noncausal. For systems for
which the independent variable n is indeed a time variable, noncausal systems are not physically realizable
if the output y[n] must be computed immediately upon acquiring x[n]. However, in many DSP systems,
data x[n] is acquired and stored before processing (e.g., stored as an image

{
x[n,m]

}
prior to processing,

as in a digital camera). These systems can be noncausal without violating any physical laws of nature. The
systems in Examples 1 and 2 are causal. The systems in Examples 3 and 4 are noncausal, since they require
x[n + 1] in order to compute the three-sample average or median, respectively. The system in Example
6 can be either causal or noncausal, depending on the �direction� in which the equation is iterated. For
example, rewriting (3.4) so that y[n−kN ] is computed from x[n] and y[n], y[n−1], . . . , y[n−N +1],suggests
a noncausal realization, i.e.

y[n−N ] =
1

aN

[
−y[n]−

N−1∑
k=1

aky[n− k] +

M∑
k=0

bkx[n− k]

]
.

So an LCCDE describing the relationship between the sequences y[n] and x[n] can be either causal or
noncausal, depending on the speci�c implementation of the LCCDE. Unless speci�ed otherwise, we will
typically assume that such an LCCDE corresponds to the causal implementation, i.e. the implementation
for which the output y[n] is computed in terms of the present and past values of the input and past values
of the output, i.e. using an algorithm in the form of (3.4).

Example 7 For the following system, described by

y[n] =
x[n]

x[5]
,

the system is nonlinear, shift-varying, and noncausal.

Example 8 The system described by the relation,

y[n] = x[−n],

corresponds to a time-reversal of the imput. This system is linear, shift-varying, and noncausal.

Example 9 The system whose input-output relation is

y[n] = x[|n|],

is linear, shift-varying, and noncausal.

3.7 LSI systems and convolution

We have seen that systems that are linear satisfy superposition, that is, they satisfy homogeneity (scaling)
and additivity. We have also see that systems that are shift-invariant will generate a shifted version of their
output when their input is shifted accordingly. Together, these two properties make up an important class
of systems that we will explore, namely, linear shiftinvariant systems, or LSI systems. In many contexts, the
independent variable of a sequence is referred to as time, and the term linear time invariant (LTI) is also
used to describe such systems. For discrete-time sequences, we may refer to the time index of a sequence,
but realize that the properties of discrete-time signals and systems hold more generally for sequences indexed
on a wide variety of non-time based indexes, such as computer memory storage location, trading day in the
stock market, individuals in a line of people, units of a product on an assembly line, pixels of a digital image
stored in an array, antenna elements in a phased-array, and many, many more examples.

Let us return to the problem of identifying the response of a discrete-time LSI system to an arbitrary
input by recalling the notionof shift-invariance in discrete-time systems. Linear, constant coe�cient di�erence
equations describe shift-invariant systems, and as such, we are particularly interested in the properties of
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systems that can be expressed in terms of such di�erence equations. Recall that when zero initial conditions
are applied, i.e. when a system is initially at rest, that a system is shift-invariant, if the response to an input
sequence

{
x[n]

}∞
n=−∞produces the output sequence

{
y[n]

}∞
n=−∞and for anyn0, the response to the same

input, delayed by n0,
{
x[n−n0]

}∞
n=−∞ produces the same output sequence, delayed by n0,

{
y[n−n0]

}∞
n=−∞.

Graphically this is depicted as

x[n] −→
system

−→ y[n] =⇒ x[n− n0] −→
system

−→ y[n− n0].

These two properties, when taken together, yield the powerful relationship between the input and the
output of an LSI system known as the convolution sum. In the general case, the relationship between the
input and output in an LSI system is given by the convolution sum,

y[n] =

∞∑
k=−∞

x[k]h[n− k], (3.5)

where the sequence h[n] is the response of the system to the unit sample function, or discrete time impulse,
δ[n]. As a result, h[n] often referred to as the impulse response, or unit sample response, of the discrete-time
LSI system. By making the change of variable, m = n− k,we obtain an equivalent form of the convolution
sum,

y[n] =

∞∑
m=−∞

h[m]x[n−m] =

∞∑
m=−∞

x[m]h[n−m].

which we will write in short-hand notation as y[n] = x[n] ∗ h[n],where h[n] is system unit pulse response (or
impulse response) of the LSI system. This notation is somewhat an �abuse of notation�, in that the output
at time n appears to depend only on the input and impulse response at time n. As shown in Equation
(3.5), the output at time n actually depends on the entire input sequence and the entire impulse response
sequence. Alternative notation that would, perhaps be more explicit in showing this relationship could be{
y[n]

}∞
n=−∞ =

{
x[n]

}∞
n=−∞ ∗

{
h[n]

}∞
n=−∞, however we will often drop this explicit sequence notation and

assume that in general when we write y[n], we are referring to the entire sequence, and not just the value at
a given time n, unless we make this explicit from the context. A perhaps even more correct notation would
note that the convolution operation in Equation (3.5)actually produces one sequence, and if we would like
to refer to a given time instance of that sequence, we might write y[n] = (x ∗ h)[n], for simplicity, we will
stick with the more standard, y[n] = x[n] ∗ h[n].

The convolution sum, Equation (3.5), can be shown as a consequence of the properties of linearity and
shift invariance, and as a result, we could even de�ne an LSI system as one whose input and output satisfy
the convolution sum. That is,

y[n] =

∞∑
m=−∞

h[m]x[n−m]⇔ The system is LSI.

The way to show this involves writing the input x[n] in terms if impulses and applying both linearity and
shift invariance to the resulting output. Speci�cally, we write the input as

x[n] = · · ·+ x[−1]δ[n+ 1] + x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2] + · · ·

=

∞∑
k=−∞

x[k]δ[n− k],

which can be viewed as a superposition of delayed and scaled discrete-time impulses, where the amplitide
of each discrete-time impulse is scaled by the value of x[n] at that time. In this manner, we can view the
entire sequence x[n] as a linear superposition of simpler sequences, where each of these simpler sequences
has only one non-zero sample. The weighting in the linear superposition is simply the corresponding value
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of the sequence x[n]. We can now use linearity to write the output of an LSI system in response to the input
x[n] as a sum of the responses to each of the delayed and scaled impulses. Speci�cally, for a linear system,
if we know the response to an impulse at time n = k, is, say hk[n], then we also know the response of the
system to the input x[k]δ[n− k]. By applying the homogeneity property of linear systems, we know that

δ[n− k]→ hk[n] =⇒ x[k]δ[n− k]→ x[k]hk[n].

Now by the additivity property of linear systems, we also can construct the response to the entire input x[n],
by adding up the responses to each of the simpler signals that make up the input, that is,

δ[n− k]→ hk[n] =⇒
∞∑

k=−∞

x[k]δ[n− k]→
∞∑

k=−∞

x[k]hh[n],

which corresponds to

x[n]→
∞∑

k=−∞

x[k]hh[n],

where hk[n] is the response of the linear system to a discrete-time impulse at time n = k. Now in order to
construct the output due to an arbitrary input, we would need to knowhk[n] for all possible values of k, for
which the input is non-zero. This would indeed be too much information to keep track of. However, if a
system is also shift-invariant, in addition to being linear, then we know that the response of the system due
to an impulse at time k is just a delayed version of the response of the system due to an impulse at time 0.
That is,

δ[n− k]→ h0[n− k] , h[n− k],

where we drop the subscript, since through shift-invariance, we have that hk[n] = h[n − k]. By adding
homogeneity, we have that

x[k]δ[n− k]→ x[k]h[n− k],

for each value of k, and more generally, using superposition and the representation of x[n] as a superposition
of delayed and scaled discrete time impulses, that

x[n] =

∞∑
k=−∞

x[k]δ[n− k]→ y[n] =

∞∑
k=−∞

x[k]h[n− k],

which proves the convolution sum representation of the input-output relationship for LSI systems.

3.8 Properties of DT LSI Systems

Given that we can completely express the nature of LSI systems through the convolution sum, we can now
go back and see how properties of LSI systems a�ect the resulting convolution sum representation. As a
result, we will see that we will be able to deduce properties of LSI systems directly by observing the impulse
response as it appears in the convolution sum. We begin by considering the property of causality in LSI
systems and consider how the convolution sum representation of a causal system may di�er from that of a
non-causal system.

Recall that a system is causal if for any n0,y[n0]depends only on x[n], n ≤ n0. We can now relate the
notion of causality to the impulse response of a LSI system by using the convolution sum representation.
Starting with the convolution sum representation of y[n0],

y[n0] =

∞∑
k=−∞

x[k]h[n0 − k],

we see that y[n0] depends, in general on all values of x[n] such that h[n0−k] is non-zero. For the corresponding
LSI system to be causal, we would require that h[n0− k] = 0 for k > n0. This is equivalent to requiring that
h[n] = 0,for n < 0. This leads to the following property of LSI systems:
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A discrete-time LSI system is causal, if and only if the impulse response satis�es h[n] = 0, for n < 0.

In this case, the convolution sum reduces to

y[n] =

∞∑
k=0

h[k]x[n− k] =

n∑
k=−∞

x[k]h[n− k]

for causal LSI systems.

Example: Graphical View of Convolution Given the two sequences x[n] and h[n] shown below,

determine x[n] ∗ h[n], i.e. �nd

y[n] =

∞∑
m=−∞

x[m]h[n−m].

To do this, we will �nd the output one term at a time, by plotting x[n −m] versus m, and then summing
up the product of h[m] and x[n−m] over m. In order to plot x[n−m] versus m, we want to view this as a
sequence overm, where, here, n plays the role of a �xed shift of the sequence. So, to proceed, we �rst consider
the sequencex[−m], which is simply a time-reversed version of x[m]. We then desire x[n−m] = x[−(m−n)],
which is a shift of the sequence x[−m] to the right by n samples (i.e. a delay of n samples of the time-reversed
sequence x[−m]). In steps, this corresponds to

x[m] −→ time
reversal

x[−m]
−−−−−→ delay by

n samples

x[−(m− n)]
−−−−−−−−−−→ x[n−m]

which for this example yields the following result,
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from the �gure, we can see that, term by term, the output y[n] can be computed as follows

y[n] =



0, n < −1,

1× 1 = 1, n = −1,

2× 1 + 1× 1 = 3, n = 0,

3× 1 + 2× 1 + 1× 1 = 6, n = 1,

3× 1 + 2× 1 = 5, n = 2,

3× 1 = 3, n = 3,

0, n > 3.

Noting from the �gure that h[n] = 0 for n < 0, we expect that the output y[n] will not depend
on the input x[k], for k > n, and we see that graphically, only past values of x[n] contribute to
the output.

Example Given the discrete-time sequence x[n] = (1/4)nu[n], determine the output of the causal
discrete-time LSI system shown in the �gure below.

The system in the �gure is described by the following di�erence equation

y[n] =
7

2
y[n− 1]− 3

2
y[n− 2] + x[n]

or

y[n]− 7

2
y[n− 1] +

3

2
y[n− 2] =

(
1

4

)n
, n ≥ 0, y[−1] = y[−2] = 0.

We could solve this using a classical solution method for LCCDEs. However, this time, we will
use the convolution formula, since this di�erence equation describes a LSI system, that can be
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characterized by its response to a discrete-time impulse, i.e, we can write

y[n] =

∞∑
m=−∞

h[m]x[n−m].

How do we obtain the impulse response from the given information? One way is to �nd h[n]
directly by solving an appropriate di�erence equation. As such, from de�nition of the system
and that of the discrete-time impulse response, we have that h[n] is de�ned to be the solution to
the system equations when the input is a discrete-time impulse, i.e.,

h[n]− 7

2
h[n− 1] +

3

2
h[n− 2] = δ[n], n ≥ 0, h[−1] = h[−2] = 0.

How do we solve this di�erence equation? The input term has a form that changes with n. We
could employ classical methods that require the selection of a particular solution, but we can
sidestep this issue by noting that

h[n]− 7

2
h[n− 1] +

3

2
h[n− 2] = 0, n > 0.

However, now for initial conditions, we would require h[0] and h[−1]. To �nd h[0],we can simply
use just use the system de�nition,

h[0]− 7

2
h[−1] +

3

2
h[−2] = 1

h[0] = 1.

Now to �nd h[n]for n ≥ 1, we solve

h[n]− 7

2
h[n− 1] +

3

2
h[n− 2] = 0, n ≥ 1, h[0] = 1, h[−1] = 0.

In order to solve this equation, we use the knowledge that a homogensous LCCDE, i.e. one for
which the right hand side is zero, have solutions of the form y[n] = czn, for complex numbers z.
Plugging in a general solution of this form, provides

zn − 7

2
zn−1 +

3

2
zn−2 = 0

z2 − 7

2
z +

3

2
= 0

where the last line is known as the characteristic equation for the homogeneous LCCDE. The
roots of the characteristic equation are given by

z =
1

2
, z = 3.

This implies that the impulse response takes the form

h[n] = c1

(
1

2

)n
+ c23n.

By applying the initial conditions, we can solve for the unknown constants c1and c2. This yields,

h[0] = 1 = c1 + c2

h[−1] = 0 = 2c1 +
1

3
c2

which we can solve to obtain

c1 = −1

5
, and c2 =

6

5
.
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This implies that h[n] is given by

h[n] = −1

5

(
1

2

)n
+

6

5
(3)n, n ≥ 0.

We know that h[n] = 0 for n < 0 from the initial conditions, so we have

h[n] =

[
−1

5

(
1

2

)n
+

6

5
(3)n

]
u[n].

Now, for the convolution sum, we have

y[n] =

∞∑
k=−∞

h[k]x[n− k]

=

∞∑
k=−∞

[
−1

5

(
1

2

)k
+

6

5
(3)k

]
u[k]

(
1

4

)n−k
u[n− k].

Since the term u[k]is inside the summation, we can replace the lower limit in the sum to obtain,

y[n] =

∞∑
k=0

[
−1

5

(
1

2

)k
+

6

5
(3)k

](
1

4

)n−k
u[n− k].

Note that the term u[n− k] is zero for k > n, which leads to

y[n] =

n∑
k=0

[
−1

5

(
1

2

)k
+

6

5
(3)k

]
u[k]

(
1

4

)n−k
.

Now, we can also note that the summation index is k, and that the term (1/4)n inside the sum
does not need to be there, so we can invite it out front, to leave only terms depending on k in
side the summation, leading to

y[n] =

(
1

4

)n n∑
k=0

[
−1

5

(
1

2

)k
+

6

5
(3)k

](
1

4

)−k
.

We can now take each of the remaining �nite-length geometric sums one at a time,

y[n] = −1

5

(
1

4

)n n∑
k=0

(2)
k

+
6

5

(
1

4

)n n∑
k=0

(12)k

= −1

5

(
1

4

)n
1− 2n+1

1− 2
+

6

5

(
1

4

)n
1− 12n+1

1− 12

=
1

5

(
1

4

)n
(1− 2n+1) +− 6

55

(
1

4

)n
(1− 12n+1)

=
1

5

(
1

4

)n
− 2

5

(
1

2

)n
+− 6

55

(
1

4

)n
− 72

55
(3)n

=
1

11

(
1

4

)n
− 2

5

(
1

2

)n
+

72

55
(3)n, n ≥ 0.

While it took quite a bit of work to �nd h[n], once h[n] was known, the output due to any input
could be found via the convolution formula. This is one of the key properties of linear, shift
invariant systems that make them attractive for analysis and implementation. We can always
implement an LSI system by directly implementing the convolution sum. This may not be the
most e�cient implementation, for example, if the system is described by a low-order di�erence
equation, but it will always work. We will later develop an easier way to �nd h[n] using the
z-transform.
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Figure 3.15: Example discrete-time linear, shift invariant (LSI) system. The elements labeld with
z−1correspond to delay elements.

3.8.1 Convolution and the unit pulse response (impulse response)

We continue by considering another example system, as shown in Figure 3.15.
The output of this system is given by the relation

y[n] = −y[n− 1] + x[n] + 3x[n− 1].

When the input to the system is a discrete-time impulse, x[n] = δ[n], when the system has zero initial
conditions, we have

h[n] = −h[n− 1] + δ[n] + 3δ[n− 1], n ≥ 0, h[−1] = 0.

We can use the initial rest condition, i.e. h[−1] = 0, to shift the equation two samples forward to obtain,

h[n] + h[n− 1] = 0, n ≥ 2.

From the initial condition, we have

h[0] = −h[−1] + δ[0] + 3δ[−1] = 1,

and we also have
h[1] = −h[0] + δ[1] + 3δ[0] = 2.

Then for n ≥ 2, we have to solve a simpler, homogeneous di�erence equation of the form

h[n] + h[n− 1] = 0, n ≥ 2, h[1] = 2.

We saw previously, that the natural form of a solution to a linear constant-coe�cient homogenous di�erence
equation takes the form cznfor (possibly complex) constants c and z. Substituting this form into the di�erence
equation and factoring out the common terms, yields the characteristic equation,

z + 1 = 0,

which has the solution,
z = −1.

Therefore, the solution to the homogenous di�erence equation is

h[n] = c(−1)n, n ≥ 2,

where we can select the term c based on the condition that h[1] = 2, this yields

h[1] = c(−1) = 2 =⇒ c = −2.

Finally we have that
h[n] = −2(−1)n, n ≥ 1, h[0] = 1.
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We have that h[n] = 0, n < 0, since we assumed the system started with zero initial state prior to the input.
The net result for the discrete-time impulse response is

h[n] =


0, n < 0,

1, n = 0,

−2(−1)n n ≥ 1.

The approach to discrete-time convolution is similar to that of continuous-time convolution, with the excep-
tion that summations are used, rather than integration. We will illustrate the basic mechanics of discrete-time
convolution through several examples.

Example Consider a system with impulse response h[n] = (1/4)nu[n] and input x[n] = u[n− 7]. Let us
determine the output of this system that would be obtained through the convolution sum

y[n] =

∞∑
k=−∞

h[k]x[n− k],

which we recall involves �ipping the time axis of the input to produce x[−k], then sliding this �ipped version
along to line up with a particular time sample in the impulse response h[k], such that we have x[n− k], and
then taking the pointwise product h[k]x[n− k], and summing the result, to provide the single output y[n]. If
you are wondering why this process involves �ipping the time axis of the input, let us consider the di�erence
between how signals are plotted (for example, in a text like this one) and how the appear in time. When
we plot a signal in a text, we typically place the �rst samples of the signal to the left and let the time axis
increase to the right. However, with x[n] plotted in this manner it appears as if we would have the largest
values of the time axis (and hence the last values of the input) appearing �rst at the input to the system.
Since for a signal that has its �rst non-zero value at n = 0, this is precisely why we need to �ip the time axis
of x[n] as a �rst step in peforming convolution graphically.

Returning to the example, we have for the output

y[n] =

∞∑
k=−∞

h[k]x[n− k],

that we can interpret graphically, by plotting, for each value of n, the sequence h[k] and the sequence x[n−k].
It is important to note that we seek a particular value of the output, y[n], that is, we seek the output at time
n. As a result, and to match the notation of the summation, we will graphically depict the sequences h[k]
and x[n−k] as a function of the independent variable k. In this context, x[n−k] corresponds to x[−(k−n)],
that is, the sequence x[k] is �ipped in time so that the sequence values are reversed with respect to the k
axis, and then it is shifted so that the value of x[0] sits on top of the time index k = n. Graphically, for the
example above, we have the sequences as shown in Figure 3.16.

First we proceed with the convolution using the information provided by inspecting the signals graphically.
We can observe from the plots of h[k] and x[n− k] that there will be no overlap of non-zero terms whenever
the entire sequence x[n − k] lies entirely to the left of h[k]. This will occur whenever we have n − 7 < 0 or
equivalently, whenever n < 7. Hence, we have

y[n] = 0, n < 7.

For n ≥ 7, we have at least one non-zero term of overlap and we can readily compute the output as

y[n] =

n−7∑
k=0

(
1

4

)k
=

1− ( 1
4 )n−7+1

1− 1
4

=
4

3
− 4

3
(
1

4
)n−6, , n ≥ 7.

This process can also be observed from a purely mathematical (algebraic) perspective. Beginning with the
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Figure 3.16: The sequences h[k] = (1/4)ku[k], x[k] = u[k − 7], and x[n− k], for n = −2, as they participate
in the convolution y[n] =

∑∞
k=−∞ h[k]x[n− k].
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expression for the output from the convolution sum, we have

y[n] =

∞∑
k=−∞

h[k]x[n− k]

=

∞∑
k=−∞

(
1

4

)k
u[k]u[(n− k)− 7]

=

∞∑
k=0

(
1

4

)k
u[(n− k)− 7]

=

n−7∑
k=0

(
1

4

)k
=

{
0, n < 7
4
3 −

4
3 ( 1

4 )n−6, n ≥ 7.

Taking a purely mathematical viewpoint, we began above with the de�nition of the output in terms of the
convolution sum. The second line follows by expressing h[k] and x[n− k] in functional form. The third line
follows from noting that u[k] = 0, for k < 0, and therefore the in�nite sum will have no contribution for
k < 0. The fourth line follows from a similar argument by noting that u[n− k − 7] = 0 when n− k − 7 < 0
which holds when n−7 < k; therefore, there will be no contribution to the in�nite sum for values of k > n−7.
Having established the limits to the summation �rst, we now have precisely the same form for the summation
that we had in the graphical approach. Now we have one more issue to contend with. From the way that we
arranged the limits of the summation, it is clear that whenever the term u[k]u[n− k − 7] is zero, there will
be no contribution to the sum. Therefore, when the lower limit of the sum is greater than the upper limit of
the sum, i.e. when 0 > n− 7 or n < 7, the output will be zero. This is the �rst term in the last line above,
and the last term arises from summation of the �nite-length geometric series. These simple steps will go a
long way in either graphically, or algebraically computing convolutions with geometric terms containing unit
step sequences.

Example We consider another, slightly more complicated example next. We consider the output y[n]
when the input is given by x[n] = ( 1

2 )nu[n] and the impulse response is give by h[n] = ( 1
4 )nu[n]. Setting up

the convolution sum, we have

y[n] =

∞∑
k=−∞

(
1

4

)k
u[k]

(
1

2

)n−k
u[n− k].

This time we will proceed algebraically �rst, then graphically. Following the steps outlined in the previous
example, we �rst use the unit step inside the in�nite summation to determine the limits of the sum.

y[n] =

∞∑
k=−∞

(
1

4

)k
u[k]

(
1

2

)n−k
u[n− k]

=

n∑
k=0

(
1

4

)k (
1

2

)n−k
,

where we again used that u[k] = 0 for negative k and that u[n− k] is zero for k > n. Combining terms, and
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Figure 3.17: Sequences h[k] and x[n− k] shown for n = −2.

factoring out terms that do not depend on k, we obtain

y[n] =

(
1

2

)n n∑
k=0

(
1

4

)k (
1

2

)−k
=

(
1

2

)n n∑
k=0

(
1

2

)k

=

{
0, n < 0(

1
2

)n 1−( 1
2 )n+1

1− 1
2

, n > 0

=

{
0, n < 0(

1
2

)n−1 −
(

1
4

)n
, n > 0.

This algebraic appraoch proceeded simply using the rules outlined above for determining limits of the con-
volution sum using the non-zero overlap regions of the unit step functions. These can also be determined
graphically, by observing the sequence h[k] and x[n− k] graphically on similar axes as shown in Figure 3.17.
It is clear from the �gure, that for n < 0, there will be no overlap in the two sequences, while for n ≥ 0, thee
result will be a �nite-length sum (growing with n) that arises from the product of two geometric terms. The
result is the algebraic sum we have just solved.

ExampleWe now consider a �nite-length input to an LSI system with an in�nite-length impulse response.
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We want to determine the output y[n] when the input is x[n] = u[n] − u[n −N ], for some N > 0, and the
impulse response is given by h[n] = anu[n]. We will solve for the result in terms of N and a in general form.
We begin again with the convolution sum,

y[n] =

∞∑
k=−∞

h[k]x[n− k]

=

∞∑
k=−∞

aku[k](u[n− k]− u[n− k −N ])

=

∞∑
k=0

ak(u[n− k]− u[n− k −N ]).

At this point, there are a few ways to proceed. We could either break this sum into two sums, which would
provide

y[n] =

∞∑
k=0

aku[n− k]−
∞∑
k=0

aku[n− k −N ]

=

n∑
k=0

aku[n− k]−
n−N∑
k=0

aku[n− k −N ]

=
1− an+1

1− a
u[n]− 1− an−N+1

1− a
u[n−N ],

or we could have recognized that there will be three regions of interest:n < 0, 0 ≤ n < N, and n ≥ N. This
would have led us to evaluate on the the �rst term in the sum above for values of 0 ≤ n < N, and then
introduced the second sum for n ≥ N which would enable use to combine the two algebraic expressions in
each of these two regions. Sometimes this is a simpler approach, sometimes the purely algebraic approach is
simpler. The results will always be the same in the end, if the calculations are carried out carefully.

Example We now consider a more complicated example with a two-sided convolution. Let the input
signal x[n] be given by x[n] = (1

3 )nu[n] + 4nu[−n − 1], which is a two-sided sequence, and let the impulse
response be h[n] = u[n− 1]. We will tackle this example using the mathematical appraoch described above.
First, we write the output y[n] in terms if of the two signals, i.e.

y[n] =

∞∑
k=−∞

[(
1

3

)k
u[k] + 4ku[−k − 1]

]
u[n− k − 1]

=

∞∑
k=−∞

[(
1

3

)k
u[k] + 4ku[−k − 1]

]
u[n− k − 1]

=

n−1∑
k=−∞

(
1

3

)k
u[k] +

∞∑
k=−∞

4ku[−k − 1]u[n− k − 1]

=

n−1∑
k=0

(
1

3

)k
+

∞∑
k=−∞

4ku[−k − 1]u[n− k − 1]

=
1− ( 1

3 )n

1− 1
3

u[n− 1] +

∞∑
m=−∞

4−mu[m− 1]u[m+ n− 1]

where we have taken care of the �rst term through methods just like the previous example. We used the
term u[k] in the summation to eliminate values of k from the summation for k < 0 and we used the term
u[n− k− 1] to eliminate terms from the summation for values of k > n− 1. In the second summation above,
in the last line, we have made the substitution m = −k to help us handle the product u[m− 1]u[m+ n− 1],
which will take some care to work through. Since each of these terms is of the form u[n−N ] for some N, then
each is a right-sided unit step sequence, i.e., each is zero for m < N, for some N and then one for all m ≥ N.
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Therefore, when you multiply them you obtain u[m − N1]u[m − N2] = u[m −max(N1, N2)]. We next note
that u[m−1] is equal to zero for values of m < 1, i.e. N1 = 1. Next, we note that u[m+n−1] = u[m−(1−n)]
is equal to zero for values of m < 1− n, i.e. N2 = 1− n. So, since the summation will start at either m = 0
or at m = 1−n, we need to determine which of these terms wins out, i.e. we need to �nd N = max(1, 1−n).
We see that when n ≥ 1, we have u[m − 1]u[m + n − 1] = u[m − 1] (the sum starts at m = 1) and when
n < 1, we have that u[m − 1]u[m + n − 1] = u[m + n − 1], i.e. the sum starts at m = 1 − n. We can now
proceed, setting

= y[n] =
1− ( 1

3 )n

2
3

u[n− 1] +

max(1,1−n)∑
m=−∞

4−mu[m− 1]u[m+ n− 1]

=
3− ( 1

3 )n−1

2
u[n− 1] +

{∑∞
m=1 4−m, n ≥ 1∑∞
m=1−n 4−m n < 1

=
3− ( 1

3 )n−1

2
u[n− 1] +


1
4

1− 1
4

, n ≥ 1

4−(1−n)

1− 1
4

n < 1

=
3− ( 1

3 )n−1

2
u[n− 1] +

{
1
3 , n ≥ 1
4n

3 n < 1

=

(
3

2
+

1

3
− 1

2

(
1

3

)n−1
)
u[n− 1] +

1

3
4nu[1− n]

=

(
11

6
− 1

2

(
1

3

)n−1
)
u[n− 1] +

1

3
4nu[1− n].

3.9 Di�erence equations

Recall from (3.4) that a linear constant-coe�cient di�erence equation (LCCDE) is given by the following
input-output relation

y[n] + a1y[n− 1] + . . . aNy[n−N ] = b0x[n] + . . . bMx[n−M ],

which can be more compactly written

y[n] +

N∑
k=1

aky[n− k] =

M∑
k=0

bkx[n− k].

This is an input-output relationship between the input x[n] and the output y[n] that is both linear and
shift-invariant. We note that the di�erence equation alone does not uniquely characterize the output y[n]
for a given x[n], since the LCCDE depends on values of the output that occur either prior to the input, or
after the input has terminated. If we consider a causal system described by an LCCDE, then we know that
the output y[n] for n ≥ m cannot depend on values of the input x[n] for n > m. Therefore, if the input
x[n] is zero for n < 0, in order to determine the output y[n], we need some auxilliary conditions, i.e. initial
conditions y[−k], k = 1, ..., N. Since the system is LSI, we know that we can always decompose the output
into the sum of two components, y[n] = yx[n] + ys[n], i.e. that contribution to the outout from the input
when the initial conditions are set to zero, yx[n], and the contribution to the output due only to the initial
conditions (or the initial state of the system), when the input is set to zero, ys[n].We will see later in this text
how to readily handle such situations using the one-sided (unilateral) z-transform. We note that it is also
possible to directly �nd the solution for the output of an LCCDE given the input and initial conditions by
solving the homogenous equation, as was done in a previous example, where we obtained the characteristic
equation by setting the input to zero, and then adding in a particular solution that is matched to the form
of the input. Then, since the homogenous equation leaves the right hand side of the LCCDE equal to zero,
we can then use undetermined constants from the homogeneous solution to match the initial conditions.
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When the initial conditions are set to zero, another method for �nding the output of an LCCDE for a
given input would be to solve for the homogeneous solution using the characteristic equation as before, but
then use the implied initial conditions that result from application of a discrete-time impulse as input. We
can then use the undetermined coe�cients from the homogenous solution to �nd the response of the system
to a discrete-time impulse, or, the impulse response of the system. Then, for any given input, we can �nd
the output using convolution methods, as described earlier in this chapter.
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