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Solution of Difference Equations (D.E.’s) Using z-Transform  
 
Just as the Laplace transform was used to aid in the solution of linear differential equations, the 
z-transform can be used to aid in the solution of linear difference equations.  Recall that linear, 
constant coefficient differential equations could be converted into algebraic equations by 
transforming the signals in the equation using the Laplace transform.  Derivatives could be 
mapped into functions of the Laplace transform variable s, through the derivative law for 
Laplace transforms.  Similarly, delayed versions of a sequence can be mapped into algebraic 
functions of z, using one of the delay rules for z-transforms.   
 
In the case of continuous-time linear systems described by differential equations, in order to find 
the response of such a linear system to an particular input, the differential equations needed to be 
solved, using either time-domain or Laplace transform methods.  For an Nth-order differential 
equation, in general N conditions on the output were needed in order to specify the output in 
response to a given input.  Similarly, for linear difference equations of Nth-order, N pieces of 
information are needed to find the output for a given input.  Unlike the continuous-time case, 
difference equations can often be simply iterated forward in time if these N conditions are 
consecutive.  That is, given y[-N+1], ... y[-1], then re-writing  
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k k

a y n k b x n k
= =

− = −∑ ∑  

in the form 
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= − − + −∑ ∑  

from which y[0] could be found.  Iterating this process forward could find each value of the 
output without ever explicitly obtaining a general expression for y[n].   
 
In this chapter we will explore the z-transform for the explicit solution of linear constant 
coefficient difference equations.  The properties of the z-transform that we have developed can 
be used to map the difference equations describing the relationship between the input and the 
output, into a simple set of linear algebraic equations involving the z-transforms of the input and 
output sequences.  By solving the resulting algebraic equations for the z-transform of the output, 
we can then use the methods we’ve developed for inverting the transform to obtain an explicit 
expression for the output.  We begin with an example. 
 
Example 
 
We revisit this simple linear, homogeneous difference equation, now using the unilateral z-
transform.  Again consider the difference equation 

[ ] 3 [ 1] 0, 0, [ 1] 2y n y n n y− − = ≥ − =  
Taking unilateral z-transform of both sides, and using the delay property, we obtain 
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which can be solved for Y( z ), yielding 
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z
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=
 

 
Another, slightly more involved example repeats a previous problem as well. 
 
Example 
 
Consider the following homogenous, linear constant coefficient difference equation, defined for 
nonnegative n and with initial conditions shown 

[ ] 4 [ 1] 4 [ 2] 0,   0,   [ 1] [ 2] 1y n y n y n n y y+ − + − = ≥ − = − =  
Taking the z-transform of both sides, again using the delay property and including the initial 
conditions, we obtain 
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Since this is not in strictly proper rational form, we expand 1 ( )z Y z−  in a partial fraction 
expansion, yielding 

1 2
2 2

( ) 8 4 .
( 2) 2 ( 2)

Y z z A A
z z z z

− −
= = +

+ + +
 

Since we have repeated roots, we first seek the coefficient of the highest order root, A2.  By cross 
multiplying, we obtain 

1 28 4 ( 2) .z A z A− − = + +  
From this equation, we can actually identify both coefficients. First by selecting z = -2, we obtain 

2 –2
( 8 4) 12

z
A z

=
= − − = . 

We can also immediately identify A1 by matching terms of z on both sides, since the constant 
terms on each side yield 

1

1

8
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A
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− =

 

Putting these terms into the PFE, we obtain 

2

8 12( )
( 2) ( 2)

z zY z
z z
−

= +
+ +

. 

We can now use linearity of the z-transform to invert each of the terms separately, obtaining,  
,   [ ] 8( 2) 6 ( 2) 0.n ny n n n= − − − − ≥  
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We now consider a case where the difference equation contains an input, or drive term, such that 
we no longer have a homogenous difference equation. 
 
Example 
 
Consider the following linear constant coefficient difference equation. 

3 1 1[ 2] [ 1] [ ] [ ],   [0] 4, [1] 0 
2 2 3

n

y n y n y n u n y y + − + + = = = 
 

 

Taking the unilateral z-transform of both sides and using the advance property, we obtain 
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We can now solve for ( )Y z  and keep the terms on the right hand side separated into two groups, 
namely, 

2

2

1( ) 4 613 1 term due 
32 2 to initial 

conditionsterm due
to input

zY z z z
zz z
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. 

We can now write the z-transform as a sum of two terms, one due to the input, and one due to the 
initial conditions.  Recall from our analysis of linear constant coefficient difference equations 
that these correspond to the zero-state response and the zero-input response of the system.  
Taking these two terms separately, again through linearity of the transform, we have that 

1 2( ) ( ) ( )Y z T z T z= +  
where 
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Here, 1( )T z is the z-transform of the zero-state response, and 2 ( )T z is the z-transform of the zero-
input response.  We can then take a partial fraction expansion of each of the terms 
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independently.  For the first term, we find it convenient to express the partial fraction expansion 
as 

( )
31 1 2( ) 1

1 1 1 1–1– ( –1) – – –
2 3 2 3

AT z A A
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This leads to  
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and the resulting zero-state response is given by 
1 1[ ] 12 3 9 , 0
2 3

n n

xy n n   = − + + ≥   
   

. 

For the zero-input response term, we have that  

( )
2 1 2( ) 4 – 6

1 1 –1– ( –1) –
2 2

T z z B B
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from which we can quickly solve for the constants, yielding 
1 28,   4B B= = − , 

which gives the PFE for the zero-input response as 
 

2
8 4( ) 1 1–

2

z zT z
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= −
−
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So, zero-input response is 
1[ ] 8 4 ,  0
2

n

sy n u n = − ≥ 
 

. 

 

Putting the zero-state response and the zero-input response together, we obtain the total response 
as 

1 1[ ] [ ] [ ] 4 1 9 ,    0
2 3

n n

x sy n y n y n n   = + = − − + ≥   
   

. 

In general, this method of solution can be applied to linear constant coefficient difference 
equations of arbitrary order.  Note that while in this particular case we applied the time-advance 
property of the unilateral z-transform, when solving a difference equation of the form 

1[ ] [ 1] [ ] [ ],   0Ny n a y n a y n N x n n+ − + + − = ≥ , 
with initial conditions y[-k], k =1, ... N,  use the Delay Property #2.  
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General Form of Solution of Linear Constant Coefficient Difference Equations (LCCDE)s 
  
In this section, we will derive the general form of a solution to a linear constant coefficient 
difference equation.  We will prove that the zero-state response (response to the input, when 
state is initially zero) is given by a convolution.  Consider the following difference equation  

1[ ] [ 1] [ ] [ ],   0Ny n K a y n K a y n x n n+ + + − + + = ≥  
together with initial conditions y[k],  k = 0, 1, … , K – 1.  Taking the one-sided z-transform of 
both sides, and using the Advance Property, we obtain 
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we have that 
1

1( )[ ] ( ) ( ),K K
KY z z a z a X z S z−+ + + = +  

where the characteristic polynomial is given by 
1

1
K K

Kz a z a−+ + + . 
We now define the transfer function H(z), 

–1
1

1( ) K K
K

H z
z a z a

=
+ +…+

, 
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Notice that the decomposition property holds with 
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Both homogeneity and superposition hold with respect to ys and yx because the z-transform is 
linear.  Linear constant coefficient difference equations (LCCDE)s describe linear systems, 
which we have already explored in the time-domain (sequence-domain).  It is worthwhile to 
consider the form of the solution that ys[n] will take.   
 
Consider first the case when the roots of the characteristic polynomial are distinct. In this case, 
we have 

1 2

1 2

( ) ( )
– – –

K

K

S z H z B B B
z z r z r z r

= + + + . 

From the definition of S( z ), z is a factor in S( z ), so there is no need for a B0/z term in the partial 
fraction expansion.  Multiplying by z, we have 
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from which we can easily recover the sequence 
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1
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which is in the same form as yH[n] that we have already seen in the sequence-domain solution of 
LCCDEs. 
 
We can now observe the form of yx[n].  Since we have that 

{ }1[ ] ( ) ( )xy n Z H z X z−= , 
the partial fraction expansion shows that [ ]xy n will involve terms both in y[n] and in x[n].  We 
can also rewrite yx[n] using the convolution property: 
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which is in the same form as yH[n] and ys[n] for n ≥ 1.  So, we see that yx[n] is given by a 

convolution of the input with h[n] = Z–1 {H(z)}.  What is { }
0

[ ]
n

h n ∞
=

?  This can be interpreted as 

the system unit pulse response (u.p.r.), or impulse response, assuming zero initial conditions. 
 
Definition  
The unit-pulse sequence, or the discrete-time impulse, is given by 

1 0
[ ]

0 0
n

n
n

δ
=

=  ≠
. 

The system response to a unit pulse, or impulse, is given by, 

0
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n

x
m
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=
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↓

∑ . 

 
We can explore the use of the impulse response to derive the response to more general signals 
through another example.  
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Example 
 
Consider the following linear system with input x[n] and output y[n] as shown 

[ ]    linear system   [ ]x n y n→ →  

Suppose that when the input x[n] = δ[n] with zero initial conditions, then the output satisfies 
y[n]=an for n ≥ 0.  Again, assuming zero initial conditions (i.e. the system is initially at rest), 
find y[n] due to the input x[n] = bn , n ≥ 0. 
 
Solution: 
 
Given h[n] = an,   n ≥ 0, we know that the output satisfies y[n] = yx[n], since the initial 
conditions are all zero, i.e. the system is initially at rest.  From Equation 10-1Equation 10-1, we 
have that 
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Comments 
 
This discussion and these examples lead us to a number of conclusions about the solutions to 
linear constant coefficient difference equations.  First, we can show (and we will see in the next 
sections) that the solution to a linear constant coefficient difference equation will have a 
essentially the same form when the input is merely shifted in time.  Also, we will see that a 
similar for is maintained for inputs that are linear combinations of shifted versions of the input.  
For example, the response to an input of the form x[n] will be similar in form to the response to 
the input x[n] – 2 x[n – 1].  We will also see that the solution methods developed here, as well as 
the unilateral z-transform, can be modified to accommodate situations when the input is applied 
earlier or later than for n = 0.  While we discussed situations here that included both the zero-
input response and the zero-state response, in practice we are generally interested in the zero-
state response, or equivalently, we are interested in the response to an input when the system of 
interest is initially at rest.  The reason for this is that we either have a system where the initial 
conditions are all zero, or for a stable system, such that the roots of the characteristic polynomial 
are all of modulus less than unity, 1ir < , and that after some time, ys[n] has sufficiently 
decayed, such that for time scales of interest for a given application, y[n] ≈ yx[n].  As a result, 
from this point forward, we will assume that systems under discussion are initially at rest, and 
that all initial conditions are set to zero.  As a result, the output of a linear system will be taken 
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as the zero-state response, and we will be interested in the convolution relationship between the 
input and the output. 
 
System Block Diagrams 
 
Common 2nd-Order Digital Filter Structures 
 
Direct Form 1: 
 

a  y[n]x[n]      

z–1

z–1

a1

a2

b1

b2

z–1

z–1

 
 

Students:  Write D. E. and take z-transform of both sides to show 
 

 H(z) = 
a0 + a1 z–1 + a2 z–2

1 – b1z–1 – b2 z–2  

 
Direct Form 2: 

 

ynxn

z–1

z–1

b1

b2

a1

a0

a2

qn

 
 
 

Has same transfer function as Direct Form 1.  Let’s show this. 
Hard to write yn in terms of xn.  Introduce “dummy variable” qn.  Write two D.E.’s. 
 
 1) yn = a0 qn + a1 qn-1 + a2 qn-2 
 
  ⇒  Y(z) = a0 Q(z) + a1 z-1 Q(z) + a2 z-2 Q(z)       
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   2) qn = xn + b1 qn-1 + b2 qn-2 
 
  ⇒  Q(z) 1– b1 z–1 – b2 z–2[ ]= X(z)  
 
  ⇒  Y(z) = a0 + a1 z–1 + a2 z –2[ ] X(z)

1 – b1z –1 – b2 z–2  

 

  ⇒  H(z) =  
a0 + a1 z–1 + a2 z–2

1– b1 z–1 − b2 z–2  ✓  

 
Example   
 
Find H(z) for 
 

+ +xn
qn yn

a

c

bz–1 z–1

z–1
 

 
Can write D.E.’s and then z-transform them, or else just write z-transforms directly: 
 
 Y(z) = Q(z) + b z–1 Y(z) (1) 
 
 Q(z) = X(z) + a z–1 Q(z) + c z–1 Y(z) (2) 
 
 (1) ⇒ Q(z) = Y(z) 1– b z–1[ ] 
 
Substitute into (2): 
 
 Y(z) 1– b z–1[ ] = X(z) + a z–1 Y(z) 1– b z–1[ ] + c z–1 Y(z) 
 
⇒ Y(z) 1– b z–1 – a z–1 + ab z–2 – cz –1[ ] = X(z) 
 
⇒    H(z) =

1
1 – (a + b + c)z–1 + abz–2  

 
 
Notes on digital filter implementation 
 

hn{ } and H(z) are input-output descriptions of digital filters.  Given an input xn{ }, we can use 
either hn{ } or H(z) to determine the output yn{ }.  In this sense, both hn{ } and H(z) summarize 
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the behavior of the system.  However, neither hn{ } nor H(z) tell us what the internal structure of 
the digital filter looks like.  Indeed, for any given H(z), there are an infinite number of filter 
structures that will all have this same transfer function.  For a second-order transfer function 
 

  H(z) = 
a0 + a1 z–1 + a2 z–2

1– b1 z–1 – b2 z–2  

 
the Direct Form 1 and Direct Form 2 structures are just the two most obvious possibilities. 
 
At this point, you may wonder how the filter structure or diagram relates to the actual filter 
implementation.  The answer is multifaceted.  Let’s consider the Direct Form I structure as an 
example. 

a0 ynxn

z–1

z–1

a1

a2

b1

b2

z–1

z–1

 
 

Suppose we implement this filter in a DSP microprocessor.  Then, the first thing we must realize 
is that the system is clocked.  The clock is not shown in our digital filter diagram. Ordinarily it 
takes many clock cycles, corresponding to many microprocessor instructions, to compute a 
single value of the output sequence yn{ }.  For example, if our DSP has a single 
multiplier/accumulator, then the clock might trigger the following instructions: 
 

1) multiply xn by a0 
2) multiply xn–1 by a1 and add to 1) 
3) multiply xn–2 by a2 and add to 2) 
4) multiply yn–1 by b1 and add to 3) 
5) multiply yn–2 by b2 and add to 4) to give yn. 

 
The values of xn, xn–1, xn–2, yn–1, yn–2 are stored in memory locations.  You might expect that 
after yn is computed, then in preparation to compute yn+1, we should use a sequence of 
instructions to move xn+1 to the old xn location, xn to the old xn–1 location, xn–1 to the old xn–2 
location, yn to the old yn–1 location, and yn–2 to the old yn–1 location.   However, especially in 
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higher order filters, this would be a huge waste of clock cycles (instructions).  Instead, a pointer 
is used to address the proper memory location at each clock cycle.  Thus, it is not necessary to 
move data from memory location to memory location after computing each yn. 
 
Just as there are a large number of filter structures that implement the same transfer function, 
there are many algorithms (for a specific DSP) that can implement a given filter structure.  What 
are the considerations in choosing a structure/algorithm?  There are generally two: 
 

1) Speed (number of clock cycles per output) 
2) Error due to finite register length. 

 
We have not yet addressed 2).  The fact that the DSP has finite-length registers, both for memory 
locations and the arithmetic unit, means that the digital filtering algorithm is not implemented in 
an exact way.  There will be error at the filter output due to coefficient quantization and 
arithmetic roundoff.  Of course, the longer the register lengths, the lower the error at the filter 
output.  Generally, there is a tradeoff between 1) and 2).  For a fixed register length, error usually 
can be reduced by using a more complicated (than Direct Form) filter structure, requiring more 
multiplications, additions, and memory locations.  This in turn reduces the speed of the filter.  
The filter structure used in practice depends on H(z) (some transfer functions are more difficult 
to implement with low error), on the available register length, and on the number of clock cycles 
available per output. 
 
Example 
 
Find the transfer function of the system below and sketch a Direct Form 2 filter structure that 
implements the same transfer function. 
 

xn 2

4

–3

z–1
z–1

2
5

6 yn
qn

 
 

We establish the intermediate quantity qn and then write: 
 

(i) Y(z) = 6 Q(z) + 4 X(z) 
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(ii) Q(z) = 2 X(z) – 3 z–1 Q(z) + 
2
5

 z–1 Y(z) 

 
Solve (i) for Q(z) and substitute into (ii): 
 

 (i) ⇒ Q(z) = 
1
6

 Y(z) – 
2
3

 X(z) 

 

 (ii) ⇒ 
1
6

 Y(z) – 
2
3

 X(z) = 2 X(z) – 3 z–1 
1
6

Y(z) –
2
3

X(z) 
 

 
 

+
2
5

z–1 Y(z) 

 

⇒ Y(z) 
1
6

+
1
2

z–1 –
2
5

z–1 
 

 
 
 = X(z) 

2
3

+ 2 + 2 z–1 
 

 
 
 

 

⇒ H(z) = 

8
3

+ 2 z–1

1
6

+ 1
10

z–1
  

 
Now, the quickest way to map H(z) into a Direct Form filter structure is to first normalize the 

denominator of H(z) to have a leading term equal to one.  Thus, multiply both the numerator and 

denominator of H(z) by 6 to give 

 

   H(z) = 
16 +12 z–1

1 + 3
5

z–1
  

 
The Direct Form 2 structure having this transfer function is then 
 

z–1

16

12

ynxn

3
5

–
 

 
This structure is far simpler than the previous one and it computes exactly the same output yn{ }. 
 
Important Note:  Digital filter structures cannot have delay-free loops. 
 
 
Example  Consider the filter structure 
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ynxn

z–1

2

3
 

This system is unrealizable because 
 
   yn = xn + 2 yn–1 + 3 yn 
 
Since the system is clocked and the elements of yn{ } are computed one at a time, we cannot 

have element yn depend on itself as in the above equation. 

 
A handy fact: 
 

F(z)

G(z)

xn yn

 
 
⇒ H(z) = 

F(z)
1 – F(z)G(z)

 

 
Proof: 
 
 Y(z) = F(z) [X(z) + G(z) Y(z)] 
 
⇒ Y(z) [1 – F(z) G(z)] = F(z) X(z) 
 
⇒ H(z) = 

Y(z)
X(z)

 = 
F(z)

1 – F(z)G(z)
 ✓  

 
 
Cascade (series) and parallel connections: 
 

X(z) Y(z)H1(z) H2(z)

TF = H1(z) H2(z)  

W(z)

 
 
Proof: 
 
 Y(z) = H2(z) W(z) 
 
  = H2(z) H1(z) X(z)[ ] 
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⇒ H(z) = 
Y(z)
X(z)

 = H1(z) H2(z) ✓  

 
 

X(z) Y(z)

H2(z)

TF = H1(z) + H2(z)  

+

H1(z)

 
 

Proof: 
 
 Y(z) = H1(z) X(z) + H2(z) X(z) 
 
  = H1(z) + H2(z)[ ] X(z) 
 
⇒ H(z) = 

Y(z)
X(z)

 = H1(z) + H2(z) ✓  

 
Complex Systems 
 
In a previous lecture, we pointed out that systems with complex-valued inputs, outputs, adders, 

and multipliers are realizable.  That is, they are implemented using real adders, real multipliers, 

and real delays.  The following example gives further insight into how this can be done. 

 
Example 
 
Draw a block diagram of a system that implements yn = hn * xn where {xn} and{yn} are 

complex-valued and hn = 
j
3

 
 

 
 

n  
un .  All adders, multipliers, and delays should be real. 

 
Solution 
 
We have 
 

 H(z) = 
z

z – j
3

 = 
1

1 – j
3

z–1
 

 

So, we might consider 
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j
3

ynxn

z–1

 
 
Here, though, {xn} and {yn} are each pairs of real-valued sequences.  Write xn = xR(n), xI (n)( ) 
and yn = yR(n), yI (n)( ).  Then, recalling the definitions of complex multiplication and addition, 
we have 
 

 
j
3

yn–1 = 0,
1
3

 
 

 
 • yR(n – 1), yI(n –1)( )= –

1
3

yI (n – 1),
1
3

yR(n – 1) 
 

 
  . 

 
Then 

 yn = yR(n), yI (n)( ) = xn + 
j
3

yn–1 
 

  = xR(n), xI (n)( )+ –
1
3

yI (n – 1),
1
3

yR(n – 1) 
 

 
  

   

  = xR(n) –
1
3

yI (n – 1), xI(n) +
1
3

yR(n – 1) 
 

 
  

 
Thus, 
 

 yR(n) = xR(n) – 
1
3

 yI(n–1) 

 

 yI(n) = xI(n) + 
1
3

 yR(n–1) 

 
These last two equations tell us exactly how to implement the system: 
 

1
3

– z–1

1
3

z–1

xR(n)

xI(n)

yR(n)

yI(n)
 

 
This is a physical implementation of the previous block diagram.   
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Approaching the implementation problem in an alternate way, we can find a more complicated, 

but equivalent, physical realization.  Write 

 

 yR(n) + j yI(n) = hR(n) + j hI (n)( )∗ xR(n) + j xI (n)( ) 
 

  = hR(n) ∗ xR (n) – hI (n)∗ xI(n)( )+ j hR(n) ∗ xI(n) + hI (n) ∗xR (n)( ) (∆) 
 
Furthermore, we can write 
 
 H(z) = HR(z) + j HI(z) 
 
where HR(z) is the z-transform of hR(n) and HI(z) is the z-transform of hI(n).  Since both hR(n) 

and hI(n) are real-valued, the coefficients of both HR(z) and HI(z) must be real-valued.  How do 

we find HR(z) and HI(z)?  There are two ways.  The easiest is to write 

 H(z) = 
z

z – j
3

  =  
z

z – j
3

z +
j
3

z + j
3

    =    
z2 + j

1
3

z

z2 + 1
9

 

 

  = 
1

1 + 1
9

z–2
  +  j 

1
3

z–1

1 + 1
9

z–2
 

 
Thus, 

 HR(z) = 
1

1 + 1
9

z–2
 ,       HI(z)  =   

1
3

z–1

1 + 1
9

z–2
 (∆∆) 

Using this, with Eq. (∆) above, our implementation of H(z) has two copies of HR(z) and two 
copies of HI(z), with inputs xR(n) and xI(n).  The outputs of the copies of HR(z) and HI(z) are 
then interconnected to produce yR(n) and yI(n).  Since HR(z) and HI(z) are nearly the same in 
this example, however, the diagram can be simplified to 
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xR(n)

xI(n) yI(n)

yR(n)

1
9

–

1
3

z–1

z–1

1
9

–

z–1

z–1

1
3

–

 
 
Although this diagram is quite different from our earlier implementation, it is equivalent in the 

sense that it computes the same yR(n) and yI(n). 

Note:  (∆∆) can be derived in an alternate, but lengthier way.  Since hn = 
j
3

 
 

 
 

n
 un, we have 

 hR(n) = 1 0 
–1
9

 0 
1
81

 0 … 

 hI(n) = 0 
1
3

 0 
–1
27

 0 
1

243
 … 

 

Taking z-transforms of these sequences gives (∆∆). 

In general 
 
 Y(z) = HR(z) + jHI (z)( ) XR(z) + j XI (z)( ) 
 

  = HR(z) XR(z) – HI (z)XI (z)( )+ j HR(z) XI(z) + HI (z) XR(z)( ) 
 
 

so that a possible implementation is always 
 

HR(z)

HI(z)

HR(z)

HI(z)

xR(n)

xI(n)

yR(n)

yI(n)

–

 



7.18 

 
 
System Analysis 
 
As we have seen, the input-output relationship of a linear-shift invariant (LSI) system is captured 
through its response to a single input, that due to a discrete-time impulse, or the impulse 
response of the system.  There are a number of important properties of LSI systems that we can 
study by observing properties of its impulse response directly.  Perhaps one of the more 
important properties of such systems is whether or not they are stable, that is, whether or not the 
output of the system will remain bounded for all time when the input to the system is bounded 
for all time.  While for continuous-time systems and circuits stability may be required for 
ensuring that components do not become damaged as voltages or currents grow unbounded in a 
system, for discrete-time systems, stability can be equally important.  For example, practical 
implementations of many discrete-time systems involve digital representations of the signals.  To 
ensure proper implementation of the operations involved, the numerical values of the signal 
levels must remain within the limits of the number system used to represent the signals.  If the 
signals are represented using fixed-point arithmetic, there may be strict bounds on the dynamic 
range of the signals involved.  For example, any real number 1 1x− ≤ ≤  can be represented as an 
infinite binary string in two’s complement notation as 

0
1

2 k
k

k
x b b

∞
−

=
= − + ∑ . 

In a practical implementation, only finite-precision representations are available, such that all 
values might be represented and computed using fixed-point two’s compliment arithmetic where 
any signal at a given point in time would be represented as a B+1-bit binary string 1 [ ] 1x n− ≤ < , 

0
1

[ ] 2
B

k
k

k
x n b b −

=
= − + ∑ . 

Now, if the input signal such a system was carefully conditioned such that it was less than 1 in 
magnitude, it is important that not only does the output remain less than 1 in magnitude, but also 
all intermediate calculations must also.  If not, then the numbers would overflow, and produce 
incorrect results, i.e. they would not represent the true output of the LSI system to the given 
input.  If the discrete-time system were used to control a mechanical system such as an aircraft, 
such miscalculations due to instability of the discrete-time system could produce erratic or even 
catastrophic results.   
 
Stability 
 
A system is bounded-input, bounded-output (BIBO) stable if for every bounded input, the 
resulting output is bounded.  That is, if there exists a fixed positive constant α, such that  

[ ] ,  for all ,x n nα≤ < ∞  
then there exists a fixed positive constant β, such that 

[ ] ,  for all ,y n nβ≤ < ∞  
where the constants α and β fixed, i.e. they do not depend on n.  Pictorially, if every bounded 
x[n]: 
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xn

������������������
������������������
������������������
������������������

α

n

–α

 
causes a bounded y[n]: 

yn

������������������
������������������
������������������
������������������
������������������
������������������β

n

–β

 
then system is BIBO stable.  Note that BIBO stability is a property of the system and not the 
inputs or outputs.  While it may be possible to find specific bounded inputs such that the outputs 
remain bounded, a system is only BIBO stable if the output remains stable for all possible inputs.  
If there exists even one input for which the output grows unbounded, then the system is not 
stable in the BIBO sense. 
 
How do we check if a system is BIBO stable?  We cannot possibly try every bounded input and 
check that the resulting outputs are bounded.  Rather, the input-output relationship must be used 
to prove that BIBO stability holds.  Similarly, the following theorems can be used to provide 
simple tests for BIBO stability. 
 
Theorem 1 An LSI system with impulse response h[n] is BIBO stable if and only if the impulse 

response is absolutely summable.  That is, the system is BIBO stable if and only if  

–
[ ]

n
h n

∞

= ∞
< ∞∑  . 

Proof:  First, to prove sufficiency, we must show that absolute summability implies BIBO 
stability.  That is, given that [ ]

n
h n γ∞

=−∞
< < ∞∑ , we for any [ ]x n  and real-valued, positive α < 

∞ satisfying [ ]x n  < α for all n, we have from the convolution sum 
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–

–

–

–

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ]

m

m

m

m

y n h m x n m

h m x n m

h m x n m

h mα

αγ

∞

= ∞

∞

= ∞

∞

= ∞

∞

= ∞

= −

≤ −

= −

≤

≤ < ∞

∑

∑

∑

∑

 

which implies that the output is bounded, i.e., [ ]y n β αγ< = < ∞   for all n.  To prove necessity, 
we need to show that when the impulse response is not absolutely summable, then there exists a 
sequence x[n] that is bounded, but for which the output of the system is not bounded.  That is,  
given m mh∞

=−∞ = ∞∑ , we need to show that there exists a bounded sequence [ ]x n  that produces 
an output y[n] such that y[n0] = ∞ for some fixed no, i.e., y[n] is not bounded.  From the 
convolution sum, we have  

0
–

[ ] [ ] [ – ]o
m

y n x m h n m
∞

= ∞
= ∑ . 

By selecting the sequence x[n] to be such that *
0 0[ ] [ ] / | [ ] |,x m h n m h n m= − −  (for real-valued 

h[n], this amounts to 0[ ] sgn( [ ]) 1x m h n m= − = ± ), then we have that  

0 0
–

*
0 0

– 0

0 0
–

–

[ ] [ ] [ ]

[ ] [ ]
| [ ] |

| [ ] |,    letting 

| [ ] |

m

m

m

k

y n x m h n m

h n m h n m
h n m

h n m k n m

h k

∞

= ∞

∞

= ∞

∞

= ∞

∞

= ∞

= −

− −
=

−

= − = −

= = ∞

∑

∑

∑

∑

 

which shows that the output is unbounded, completing the proof.   
 
BIBO stablility of a system can also be directly determined from the transfer function H(z), 
relating the z-transform of the input to the z-transform of the output. 
 
Theorem 2  An LSI system with a rational transfer function (in minimal form) is BIBO stable if 

and only if its region of convergence, ROCH, includes the unit circle. 
 
Proof:  First, to prove sufficiency, assume the region of convergence ROCH includes the unit 
circle.  Next, to illustrate that this implies absolute summability, i.e. | [ ] |n h n∞

=−∞ < ∞∑ , we 
consider the poles of the system function in two groups.  First, the poles (roots of the 
denominator polynomial) that lie inside the unit circle, i.e. those that correspond to right-sided 
inverse z-transforms, are labeled pi

RHS in the figure below.  Second, the poles that lie outside the 



7.21 

unit circle correspond to left-sided inverse z-transforms and are labled pi
LHS in the figure below. 

For these two sets of poles, we have that  pi
RHS < 1 and pi

LHS > 1.   

1

ROC

x

x

x

x

x

pi
RHS

pi
LHS

 
The inverse z-transform, as determined using partial fraction expansion has the form 

hn = 

( )

( )

( ) ( )

1

1

1 1

0
[ ]

0

[ ] [ 1]

K nRHS
i i

i

L nLHS
i i

i

K Ln nRHS LHS
i i i i

i i

a p n
h n

b p n

a p u n b p u n

=

=

= =

 ≥= 
 <


= + − −

∑

∑

∑ ∑

 

when there are no repeated poles (the results extend easily to the repeated-roots case).  Since we 
have that | | 1LHS

ip >  and| | 1RHS
ip < , we have that 

( ) ( )

( ) ( )
1 1

1

1 10

1

1 10

1 1

| [ ] | [ ] [ 1]

1
1 1

K Ln nRHS LHS
i i i i

i in n

K Ln nRHS LHS
i i i i

i in n

K Ln nRHS LHS
i i i i

i in n

K L
i i
RHS LHS

i ii i

h n a p u n b p u n

a p b p

a p b p

a b
p p

∞ ∞

= ==−∞ =−∞

∞ −

= == =−∞

∞ −

= == =−∞

= =

= + − −

= +

≤ +

 
= + − < ∞ − − 

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑
 

To show necessity, assume BIBO stability, and hence absolute summability of the impulse 
response, and then, for any point z on the unit circle, we have that  



7.22 

–
| | 1 | | 1–

–

– | | 1

–

–

( ) [ ]

[ ]

[ ] |1|

[ ] ,

n
z zn

n

n z

n

n

n

H z h n z

h n z

h n

h n

∞

= == ∞

∞

= ∞ =

∞
−

= ∞

∞

= ∞

=

≤

=

= < ∞

∑

∑

∑

∑

 

which implies that the region of convergence includes the unit circle and completes the proof.   
 
Corollary of Theorem 2:  A causal LSI system with a rational transfer function (in minimal 
form) is BIBO stable if and only if all of its poles are inside the unit circle. 
 
Proof:  A causal system has all poles between origin and ROCH with at least one pole on the 
inner radius of ROCH.  So, all of the poles are inside unit circle if and only if ROCH includes the 
unit circle.  However, by Theorem 2, ROCH includes the unit circle if and only if the system is 
BIBO stable. 
 
These properties are explored in the following examples. 
 
Example 
Consider the following LSI system with impulse response h[n], we have that  

0

[ ] (cos ) [ ]

| [ ] | | cos |

.
n n

h n n u n

h n n

θ

θ
∞ ∞

=−∞ =

=

=

= ∞

∑ ∑  

Therefore, the system is not BIBO stable. 
 
Example 
Consider the following transfer function for a causal LSI system,  

2
–

3 2
–

3 2( )
2 –1

2

z zH z zz z

+
=

+
. 

Factoring the denominator, we have that  

( ) 22

( –1) ( – 2) –1( ) 11 – 2
22

z z zH z
zz z

= =
  ++ 
 

, 

which has poles at / 2j± .  The system is therefore causal and has all of its poles inside the unit 
circle.  Therefore the system is BIBO stable.  Note that as done in this example, factors that are 
common to the numerator and denominator must be cancelled before applying the stability test. 
 
Example 
Consider the following system function of an LSI system,  
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( ) ,| | 100
100
zH z z

z
= <

+
. 

 
Since ROCH includes the unit circle, the system therefore must be BIBO stable. In this example, 
the impulse response h[n] happens to be left-sided. 
 
Example 
Consider the following impulse response of an LSI system,  

6

6

4 0 10

1[ ] 10 1
2

0 0

n

n

n

h n n n

n

 ≤ ≤

  = + ≤ < ∞  

 
 <

 

Testing for absolute summability, we have that  
6

6

10

– 0 10 1

14
2

n
n

n
n n n

h n
∞ ∞

= ∞ = = +

 = +  
 

∑ ∑ ∑  <     ∞, 

therefore the system is indeed BIBO stable. 
 
 
We continue exploring the properties of LSI systems through observation of their system 
functions (that is, the z-transform of the impulse response), with a focus on the relationship 
between the region of convergence of the z-transform and the stability and causality of the 
system. 
 
Example 
 
Consider the following system function of a stable LSI system, 

( )
1– ( – 2)
4

zH z
z z

=
 
 
 

. 

 
Can system be causal?   
 
Answer:  No, it cannot be causal.  First, note that although the region of convergence is not 
explicitly stated, it is implicitly determined.  Noting that the system is stable, we know that the 
region of convergence must include the unit circle. Given the pole locations, we know that the 
region of convergence must be 1

4{ : | | 2}z z< < implying that the impulse response will have left-
sided and right-sided components and that h[n] must be two-sided.  Since the impulse response is 
two-sided, this implies that the system cannot be causal, i.e. h[n] is non-zero for n < 0 and from 
the convolution sum,  

[ ] [ ] [ ]
m

y n h m x n m
∞

=−∞

= −∑ , 

we see that y[n] will depend on future values of the input x[n]. 
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Example 
 
Consider the following discrete time system,  

2[ ] ( [ ])y n x n= . 
Is it stable?   
 
Answer: This system is not linear.  Therefore, we cannot apply a stability test involving either 
the unit-pulse response or transfer function, since the tests discussed so far apply only to LSI 
systems.  Since this system is not LSI, the convolution sum does not hold, so that the input 
output relationship does not satisfy y[n]=x[n]*h[n] or Y(z) = H(z) X(z).  Instead, we appeal to the 
definition of BIBO stability.  Suppose that x[n] is bounded, then we have 

| [ ] |x n α< < ∞  
and subsequently 

2 2| [ ] | | [ ] |y n x n α= < < ∞ . 
Therefore, we have shown that any bounded input produces a bounded output and that the 
system is BIBO stable. 
 
Unbounded Outputs 
 
Given an unstable LSI system, how do we find a bounded input that will cause an unbounded 
output?  This will be illustrated by example for some causal systems in the following examples. 
 
Example 
 
Consider the following causal LSI 
system with pole-zero plot shown to 
the right and with system function 
H(z) given by 

( ) ,| | 2
– 2
zH z z

z
= >  

Im(z)

unit circle

2 Re(z)

 
The impulse response is therefore given by h[n] = 2n u[n] and is itself unbounded.  Since h[n] 
grows without bound, almost any bounded input will cause the output to be unbounded.  For 
example, taking x[n] = δ[n] would yield y[n] = h[n]. 
 
Example 
  
Now consider the following LSI 
system with pole-zero plot and 
system function given right and 
below, respectively. 

( ) ,| | 1
–1
zH z z

z
= >  

Im(z)

Re(z)1
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Although the system is not stable, the impulse response remains bounded, as h[n] = u[n], in this 
case.  Here we could choose x[n] = u[n] (which is bounded) so that y[n] will be a linear ramp in 
time.  Looking at the z-transform of the output, this corresponds to forcing Y(z) to have a double 
pole at z = 1, i.e. 

2

2( ) ( ) ( )
( –1)

zY z H z X z
z

= = , 

which for the region of convergence of this output corresponds to a sequence that grows linearly 
in time. 
 
 
Example 
  
Here we consider an LSI system with a 
complex-conjugate pole pair on the unit 
circle.   

2
–

–

cos( ) ,| | 1
( – ) ( – )j j

z zH z z
z e z eα α

α
= >  

 

Im(z)

Re(z)

x α

x

 
 

The complex conjugate pair of poles on the unit circle corresponds to a sinusoidal oscillating 
impulse response 

h[n] =  cos(αn) u[n]. 
Thinking of the z-transform of the output, note that choosing x[n] = h[n] will cause Y(z) to have 
double poles at z = e±jα, which will in turn cause y[n] to have the form of n times cos α n, which 
is unbounded. 
 
From these examples with causal systems, we see that for systems with poles outside the unit 
circle, since the impulse response itself grows unbounded, substantial effort would be required to 
find a bounded input that will not cause an unbounded output.  For poles on the unit circle, it is 
more difficult to find bounded inputs that ultimately cause the output to be unbounded.  In some 
fields, such as dynamic systems or control, LSI systems with poles on the unit circle are called 
“marginally stable” systems.  In our terminology, they are simply unstable systems.   
 
 
Impulse Distributions 
 
To continue our discussion of discrete-time systems and aid in the development of the discrete-
time Fourier transform, it will be convenient to recall some of the properties of continuous-time 
impulse distributions.  While much of this discussion will be review, it is important to recall the 
“behavioral definition” of continuous-time impulses.  That is, an impulse is defined only by what 
it does inside of an integral and cannot be considered to be a function in and of itself.   
 
Definition.  A distribution is a mapping from a function to a number. 
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Definition  The impulse δ is the distribution: 
  
 

  [ ]( ) (0)f t fδ , (1) 
 
where f(t) may be any continuous function of the real variable t.  We often write the distribution 
δ as δ(t) and use the notation 

  
–

( ) ( ) (0)t f t dt fδ
∞

∞
∫ . (2) 

As a special case, when the function f(t) = 1, we have that  

–

( ) 1t dtδ
∞

∞

=∫ . 

The use of impulse distributions within expressions that contain functions and integrals, 
however, might give the mistaken impression that they are in fact functions and that these 
integrals are well-defined.  However it is important to remember that such expressions are in fact 
not integrals at all, and that the integral calculus cannot be applied or assumed to hold in 
expressions containing impulses.  It is important to recall that 
 a) δ(t) is not a function. 
 b) The integral sign in (2) is not an integral in any meaningful sense. 
 c) Equation (2) is just alternate notation for the more explicit notation in Equation (1). 
Once the notion of a distribution is understood, it can be generalized to a broader family of 
impulse distributions, such as  
   [ ]

0 0( ) ( )t f t f tδ . (3) 
 
The notation usually used involves placing the impulse distribution under an integral, as in 

   0 0
–

( – ) ( ) ( )t t f t dt f tδ
∞

∞
∫  (4) 

however, once again, equation (4) is just alternate notation for that of equation (3).  Engineering 
intuition might be obtained in some contexts by thinking of δ(t) as the limit of a sequence of tall, 
narrow pulses, each having area = 1, e.g., 
    δ(t) = lim

ε→o
pε(t) with 

pε(t)

t
ε/2

1
ε

–ε/2  
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However, in fact, this limit does not exist at t = 0; and therefore δ is not a function.  However, 
we might obtain some intuition by considering what happens (for well-behaved functions f(t)) to 
the following integral 

  
– –

(0) lim ( ) ( ) ( ) ( )
o

f p t f t dt t f t dtεε
δ

∞ ∞

→
∞ ∞

= =∫ ∫ , (5) 

where the second integral in equation (5) is interpreted as defined in equation (2).  Similarly, we 
can write 

                         0 0 0
0 – –

( ) lim ( – ) ( ) ( – ) ( )f t p t t f t dt t t f t dtε
ε

δ
∞ ∞

→ ∞ ∞

= =∫ ∫ ,          (6) 

where the second integral in equation (6) is again as defined in equation (4).  By attempting to 
define the impulse distribution as a function determined by the limit of the sequence of functions  
  δ(t) = 

0
lim
ε →

pε(t),       (7) 

or 
  δ( t – t0 ) = lim

ε→o
 pε ( t – t0 ),  (8) 

and then applying that definition to the integrals in equation (2) or (4), in comparison with 
equations (5) and (6), would be to bring the limit inside the integral.  This is mathematically 
incorrect and is an abuse of notation.  Equations (7) and (8) actually imply (i.e. should be 
interpreted as) equations (5) and (6), respectively.  To facilitate working with impulse 
distributions, although they are not functions, it is convenient to have a symbolic notation that 
enables visualizing distributions in a manner similar to how we plot functions.  Since they are 
not functions, and cannot be interpreted as such, they cannot be plotted.  However, the following 
graphical notation is typically used for visualizing a single impulse δ(t): 

δ(t)

t

1

 

where the number written above the vertical arrow indicates the scale factor that is applied to 
f(0).  This can also be thought of as the “area” of the impulse, when written in integral notation.  
The vertical arrow is placed at the location from which the distribution selects the value of the 
function to which it is applied.  As such, δ(t–to) is pictured as 

δ(t–t0)

t

1

t0  
here, the “area” of the impulse is indicated by the height of the impulse located at the time to.  
 



7.28 

Example 
 
As an example, we could consider the following distribution,  

g(t) = 
1
2

 δ(t) + δ(t–1) + 
3
2

 δ(t+1), 

where the distribution g(t) needs to be again treated as a mapping from a function to a number.  
We have  

31
2 2

– –

31
2 2

– – –
31

2 2

( ) ( ) ( ( ) ( 1) ( 1)) ( )

( ) ( ) ( 1) ( ) ( 1) ( )

(0) (1) ( 1).

g t f t dt t t t f t dt

t f t dt t f t dt t f t dt

f f f

δ δ δ

δ δ δ

∞ ∞

∞ ∞

∞ ∞ ∞

∞ ∞ ∞

= + − + +

= + − + +

= + + −

∫ ∫

∫ ∫ ∫  

Graphically, g(t) can be pictured as follows: 
3/2

1

1/2

–1 1
t

 
 


