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ECE 410 DIGITAL SIGNAL PROCESSING D. Munson 
University of Illinois Chapter 8 A. Singer 
 
 
Frequency Response of Linear Shift Invariant (LSI) Systems 
 
We know that LSI systems have input and output sequences, x[n] and y[n], respectively, that satisfy 
the convolution sum, that is,  
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where h[n] is the impulse response of the LSI system.  Taking the DTFT of both sides, we have 
that, 
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where, ( )dH ω is the DTFT of the impulse response h[n] and is referred to as the frequency 
response of the LSI system. This leads us to the relationship in the frequency domain, between 
the DTFT of the input sequence and that of the output sequence,  

( ) ( ) ( )d d dY H Xω ω ω= . 
If input is xn = ejωon then 
 

 yn = hm
m=–∞

∞
∑  ejωo(n-m) 

 

  = ejωon hm
m=–∞

∞
∑  e-jωom 

 
  = Hd(ωo) ejωon  (❑ ) 
 
So output is same as input except scaled by the constant Hd(ωo), 
i.e.,    ↑ 
    depends on 
    input "frequency" 
 
ejωon            hn           Hd(ωo) ejωon 
 
ejωon is called an “eigen-sequence.” 
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Digression 
What does this mean: 
 
 ejωon            h(n)          y(n)  ? 
 
  
If h(n) is real valued then this means: 
 

 y(n)  = h(n) * cos ωon + j sin ωon[ ] 
 

  = h(n) * cos ωon + j h(n) * sin ωon 
 
i.e., the diagram above is a concise representation of a pair of systems having real-valued inputs 
and outputs: 
 
 cos ω on            h(n)            yR(n) 
 
 sin ω on             h(n)            yI(n) 
 
 

with 
 

y(n)  ∆
= yR(n),yI(n)( ) 

 
  = yR(n) + j yI(n) 
 
Note that we can build this system. 
 
If h(n) is complex-valued, then as we saw in Lecture 18, we can still build system: 
 

 

Write h(n) = hR(n) + j hI(n)

real  
Then 
 
 y(n)  = hR(n) + j hI (n)( )∗ cosωon + j sin ωon( ) 
 
  = hR(n) * cos ωon – hI(n) * sin ωon 
 
  + j hI(n) ∗ cosωon + hR(n)∗ sinωon[ ] 
 
An implementation is: 
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hR(n)

hI(n)

hR(n)

hI(n)

cos ωo n

sin ωo n

yR(n)

yI(n)

–

 
 

(End of Digression) 
 
 
Now, let’s go back and use (❑ ).  This equation implies that the response to 
 

 cos ωοn = 
1
2

ejωo n + e–jωo n( ) 

is 
 

for real hm

yn =
1

2
Hd (ωo) e jωon +

1

2
Hd(–ωo ) e–jωon

hm ejωom =
m
∑ hm e –jωom

m
∑ ∗

 
 
  = Hd

∗ (ωo) 
 

⇒ yn =
1

2
Hd (ωo) e j∠ Hd (ωo ) ejωo n

+
1

2
Hd(ωo) e–j∠ Hd(ωo) e– jωon

Hd
* (ωo)

Hd(ωo)
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 = 
1
2

Hd ωo( ) ej ωon+∠Hd ωo( )[ ]+ e– j ωon+∠Hd ωo( )[ ]{ } 

 
 = Hd ωo( ) cos ωon + ∠Hd ωo( )( ) 
 
Picture: 
 
  
 cos(ωon)            hn            Hd(ωo) cos ωon + ∠Hd(ωo)( ) 
 
So, response to cosωon{ }n= −∞

∞
 is also a cos with 

 
 a) Same frequency 
 b) Amplitude  Hd(ωo)  
 c) Phase ∠Hd(ωo) 
 
Note: This result assumes H(z) is stable, because Hd(ω) exists only if ROCH includes the unit 

circle. 
 
Example 
 
Given  yn = xn + 2xn–1 
 

find the output due to xn = cos 
π
2

 n        ∀   n. 

 
Solution 
 
 Yd(ω) = Xd(ω) + 2 e–jω Xd(ω) 
 

⇒ Hd(ω) = 
Yd(ω)
Xd(ω)

  =  1 + 2 e–jω 

 

Know   yn = Hd
π
2

 
 

 
  cos 

π
2

n + ∠Hd
π
2

 
 

 
 

 
 

 
  

 

Have   Hd 
π
2

 
 

 
   =  1 + 2 e

– j π
2

  =  1 – j 2 = 5  e–j63.43˚ 

 

⇒  yn  = 5  cos 
π
2

n – 63.43Þ 
 

 
  
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Example 
 
Given   H(z) = 

z

z – 1
2

 

 

find the output due to xn = cos 
π
4

   n    ∀  n. 

 
Solution 
 
  Hd(ω)  = 

1

1 – 1
2

e– jω
 

 
 

⇒ Hd 
π
4

 
 

 
 =

1

1 – 1
2

e
– j

π
4

=
1

1–
2
4

+ j
2
4

  =  1.36 e–j28.68˚ 

 

⇒  yn = 1.36 cos 
π
4

n – 28.68Þ 
 

 
  

 
 
But, why call ωo in cos (ωon) “frequency?” 
 

Suppose ωo = 
π
30

.  Plot xn = cos 
π
30

 n: 

 

“low frequency”
in sense that  xn – xn–1
is small

cos 

n

π
30

n

1

–1

 
 

Suppose ωo = 
π
2

.  Plot xn = cos 
π
2

 n: 
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n

cos 
π
2 n

1

–1

“higher frequency” signal in sense that  xn – xn–1  is larger  
 

 
 
Lowest digital frequency: 
 
 ωo = 0  ⇒  xn = cos(0•n) = 1 = constant. 
 
Highest digital frequency: 
 
 ωo = π  ⇒  xn = cos(πn) = (–1)n so that xn – xn–1  is maximized for sinusoid of unit amplitude. 
 
 
 
Why is Hd(ω) periodic with period 2π?  Has to be!  Note: 
 
 
xn = cosωon Hd(ω) Hd(ωo) • cos ωon + ∠ Hd(ωo)( )

xn = cos(ωo+2π)n Hd(ω)

⇑
⇓

Hd(ωo + 2π) • cos (ωo + 2π)n + ∠ Hd(ωo + 2π)[ ]  
 
 
But, these two inputs with “different frequencies” are in fact identical sequences.  So, 
 
⇒ Hd ωo( ) = Hd ωo +2π( ) 
 
and 
 
 ∠Hd(ωo) = ∠Hd(ωo+2π) 
 
⇒    Hd(ωo) = Hd(ωο+2π) 
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Ideal digital low-pass filter (LPF) frequency response: 
 

1

–2π –π ωc π 2π
ω

Hd(ω)

 
 

“Passes” all sinusoids having ωo  ≤ ωc.  Completely attenuates all others. 
 
 
Ideal digital high-pass filter (HPF) frequency response: 
 

 

1

–π
ωc 2π–ωc

2π
ω

π

Hd(ω)

 
 

“Passes” all sinusoids having ωc ≤ ωo  ≤ 2π – ωc.  Attenuates all others. 
 
Ideal digital band-pass filter (BPF) frequency response: 
 

-2π –π π 2π–ωo 2π – ωo−2π + ωo ωo

1

Hd(ω)

ω
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Passes all frequencies in band centered at ωo.  Attenuates all others. 
 
Ideal digital band-stop filter (BSF) frequency response: 
 

 
Hd(ω)

–2π –π π 2π

1

–ωo ωo

ω

 
 
Attenuates all frequencies in band centered at ω0.  When the stop-band is narrow, this is also 
called a notch filter. 
 
Actual frequency responses using finite-order H(z) give only an approximation to ideal Hd(ω). 
 
Example 

z-1

xn yn

 
 

Have: 
 

  yn = xn + xn–1 
 
⇒ H(z) = 1 + z–1 

 
⇒ Hd(ω) = 1 + e–jω 

 
⇒ Hd(ω)  = 2 + 2cosω  

 

2

–π π 2π

Hd(ω)

ω
 

 

So, this is a crude LPF. 
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Example 

z-1

xn yn

-1
 

 
Have: 
 
 yn = xn – xn–1 
 

⇒H(z) = 1 – z–1 
 

⇒Hd(ω) = 1 – e–jω 
 

 Hd(ω)  = 2 – 2cosω  
Hd(ω)

2ππ–π

2

ω
 

 

So, this is a crude HPF. 
 
Example 

 
 

xn yn

z-1

z-1

 
 
Have: 
 
Hd(ω) = 1 + e–j2ω 
 

  = e–jω e jω + e– jω( ) 
 

  = e–jω 2 cosω 
 

⇒ Hd(ω) = 2 cosω  
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–π

2

Hd(ω)

–π
2

π
2

π
ω

 
So, this is a crude BSF with stopband centered at ω = 

π
2

 . 

 
Note: In these last few examples, we have looked at frequency responses of simple 

nonrecursive filters.  We can achieve responses that are much closer to ideal (as close as 
we would like) by considering nonrecursive filters with more coefficients, and through 
use of recursive filters.  The design of such filters will be an important topic later in the 
course. 

 
 
Phase of Frequency Response 
 
Suppose 
 

 
xn Hd(ω) yn

 
 
with 
 
 xn = cos ω1n + cos ω2n + cos ω3n 
 
and 
 

1

ω1 ω2 ωc ω3 π
ω

Hd(ω)
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Suppose values of ω1, ω2 and ω3 are unknown, but do know ω1, ω2 < ωc and ω3 > ωc.  
Furthermore, suppose ω3 is a contaminating sinusoid and you wish to recover just the sinusoids 
at ω1 and ω2. 
 
Thus, want 
 
 yn = cos ω1n + cos ω2 n (*) 
 
How does ∠Hd(ω) affect yn? 
 
Know: 
 
 yn = cos ω1n + ∠Hd ω1( )( ) + cos ω2n + ∠Hd ω2( )( ) 
 
If want (*) then need  
 
   ∠Hd(ω) = 0 for all ω in passband. 
 
⇒ Hd(ω) = Hd(ω)  ej0 =  Hd(ω)  
 

⇒  hn = 
1

2π
Hd(ω)

–π

π

∫ e jωn dω  

 

   = 
1

2π
1 ejωn dω

–ωc

ωc

∫  

 

   = 
ωc
π

 sinc (ωcn) 

    ↑ 
    noncausal, and large for n < 0. 
 
 
If we wish to design a causal filter, this type of hn cannot be well approximated. 
 
Suppose we are willing to accept a delayed version of the two lower-frequency sinusoids.  That 
is, suppose instead of (*), we are satisfied with 
 
 yn = cos ω1 (n – M)[ ] + cos ω2 (n – M)[ ] 
 
What ∠Hd(ω) and hn does this correspond to? 
 
Answer:  ∠Hd(ω) = – Mω ~ linear phase 
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Note:  It makes sense that we need to shift a higher frequency signal more in phase to get the 
same delay: 
 

 
 
 

 
Now, what is hn for the case with linear phase? 
 

 hn = 
1

2π
Hd(ω)

–π

π

∫ e jωn dω  

 

  =  
1

2π
1• e– jωM ejωn dω

–ωc

ωc

∫  

 

  = 
1

2π
e jω(n–M) dω

–ωc

ωc

∫  

 

  = 
ωc
π

 sinc ωc (n – M)[ ] 

 
hn

M

nearly causal

n

 
 

By truncating this to the left of the origin, we get a causal hn and this changes Hd(ω)  only 
slightly. 
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In general, linear phase just adds a delay (which is often acceptable): 
 
 

 

xn Hd(ω) e–jωM yn = yn–m
^

xn Hd(ω) yn

⇒
 

 
 
Proof: 
 

 ˆ y n  = 

  

1
2π

Hd (ω) e –jMω Xd(ω)
ˆ Y d(ω)

� 	 � � � 
 � � � 
–π

π

∫ ejωn  dω  

      
 

  = 

  

1
2π

Hd (ω) Xd(ω)
Yd(ω )

� 	 � � 
 � � 
–π

π

∫  ejω(n–M) dω 

 
  = yn–M ✔  
 
What about nonlinear phase? Answer:  Usually don’t want it. 
 
 
Example 
 
If 

 
xn Hd(ω) yn

 
 
with 
 

Hd(ω)Xd(ω)

-π π -π +π

and
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then consider three possibilities for the phase:  zero, linear, and nonlinear. 
 

∠ Hd(ω) = 0

–π π  

⇒   Hd(ω) = Hd(ω)  
 
⇒  Yd (ω) = Xd (ω)  
 
⇒  yn = xn  
 

 
 
 
     

 
∠ Hd(ω)

π–π
  slope = –M

 

 
 
 
⇒ All frequencies delayed by same 
amount 
 
⇒ yn = xn–M 

∠ Hd(ω)

π–π

 

 
 
 
 
 
⇒  yn not even close to xn because 
different frequencies get delayed 
by different amounts. 

 
Definition: 
 
Will say Hd(ω) is linear phase if Hd(ω) =

 

Hd(ω)
nonnegative

� 	 
 e–jωM 
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Comment: 
 
Later in the course, we will consider frequency responses having generalized linear phase where 
 
 Hd(ω) = R(ω) e–jωM 
 
with R(ω) real-valued, but not necessarily nonnegative. 
 
 
 
Analog Frequency Response of a Digital Processor 
 
Consider 
 

A/D ya(t)
{xn} {yn}

xa(t) Hd(ω) D/A
 

 
This overall system has an analog input and an analog output.  We wish to discover how the 
analog frequency response depends on Hd(ω).  So, find 
 

 Ha(Ω) = 
Ya(Ω)
Xa(Ω)

. 

 
We will see that the formula for Ya(Ω) in terms of Xa(Ω) is very complicated, and that in general 
we can’t find this ratio.  However, it is possible to find this ratio if we assume that xa(t) is 
bandlimited and that we sample above the Nyquist rate.  To find Ya(Ω) in terms of Xa(Ω), 
consider the components in the overall system one at a time, in the frequency domain.  
 
 
1) A/D 
 

A/D: xa(t)
T

Q(•) xn
 

 
In the analysis, we will neglect the quantizer.  Consider 
 

  
xa(t)

T
xn = xa(nT)

 
 
We have shown that:  
   

 Xd(ω) =
1
T

Xa
ω + 2πn

Τ
 
 

 
 

n= –∞

∞
∑                      (◊)  

    ↑ 
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  extremely important 
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 2) Digital Filter 
 
  Yd(ω) = Hd(ω) Xd(ω) 
 

  =
↑

by (◊)

1
T

Hd (ω) Xa
ω + 2πn

T
 
 

 
 

n= –∞

∞
∑      (◊◊)  

   
 
3) D/A:  Model as 
 

  ya(t) = yn ga(t − nT)
n= –∞

∞
∑      ( ) 

 
so that ya(t) is a weighted pulse train.  For example, if ga(t) is a rectangular pulse then ya(t) is a 
staircase function: 
 

1

T t T 2T 3T 4T

t
⇒

ga(t) ya(t)

y0

y1

y2

y3

y4

 
 
We have shown that: 
 
   Ya (Ω) = Ga(Ω)Yd(ΩT)  
 
 
Substituting for Yd from (◊◊) gives us the expression for Ya(Ω) in terms of Xa: 
 

 Ya (Ω) =
1
T

Ga(Ω)Hd (ΩT) Xa Ω +
2πn
T

 
 

 
 

n=–∞

∞
∑        ( )  

 
Now, take a rest! 
 
This equation is cumbersome and in general we cannot solve for Ya(Ω)

Xa (Ω)
 .  Indeed, we cannot 

define Ha(Ω) because, although the overall system is linear, in general it is shift-varying so that 
the system is not describable by a frequency response.  Fortunately, ( )  simplifies 
tremendously if we assume a bandlimited input with Nyquist-rate sampling, and an ideal D/A 
converter.  Under these conditions the overall system is shift-invariant and it can be described by 
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a frequency response.  Let’s consider this.  Suppose xa(t) is bandlimited to B rad/sec and we 

choose T < 
π
B

 .  Then, supposing 

 

B

Xa(Ω)

Ω  
 

gives 
 

Ω
B

Ω+
Tn

Σ 



2πn

Xa

n = + 1 term n = 0 term n = – 1 term

–2π
T

–π
T

π
T

2π
T  

 
⇒ No aliasing, so that: 
 

 Xa
n= –∞

∞
∑ Ω +

2πn
T

 
 

 
  =  Xa(Ω),    |Ω| ≤ 

π
T

 

 
Now, assume an ideal D/A so that 
 

 ga(t)  =  sinc 
π t
T

  =   
sin

π t
T

π t
T

 

 
Considering the Fourier transform of this pulse, we see that for an ideal D/A, Ga(Ω) has the 
shape of an ideal LPF: 
 
 
 

Ga(Ω) = 
T Ω ≤ π

T
0 Ω > π

T

 

 
 

  
 

T

–π
T

π
T

Ω
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Now, let’s picture the terms that multiply Hd in ( ) : 
 

n = + 1 term

Ga(Ω)

–2π
T

–π
T

B π
T

– B2π
Τ

2π
T

Ω

n = – 1 term

n = 0 term

i.e., 1
T

Xa(Ω)

Xa Ω +
2πn

T




n

∑

 
 
So: 

 Ga(Ω) Xa Ω +
2πn
T

 
 

 
 

n= –∞

∞
∑   =   

T • Xa (Ω) Ω ≤
π
T

0 Ω >
π
T

 

 
 

  
 

 
Using this in ( )  gives: 
 

 Ya(Ω) = 
Hd (ΩT)Xa (Ω) Ω ≤

π
T

0 Ω >
π
T

 

 
 

  
 

 
The analog frequency response of the A/D, digital filter, and D/A is 
 

 Ha(Ω) = 
Ya(Ω)
Xa(Ω)

 

 
 
⇒ Ha(Ω) = 

Hd (ΩT) Ω ≤
π
T

0 Ω >
π
T

 

 
 

  
            (✰ ) 

  
This is the entire connection between analog and digital filtering!  This equation is extremely 
important!  
With a change of variable, ω = ΩT, (✰ ) becomes: 
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 Ha 
ω
T

 
 

 
  = 

Hd (ω) ω ≤ π

0 ω > π

 
 
 

 

 
 
 

⇒ 
  
Hd (ω) = Ha

ω
T

 
 

 
      ω ≤ π          ( ✰✰ ) 

 
So, given a desired Ha(Ω), Hd(ω) has the same shape, but on just the center interval |ω| ≤ π. 

 
If the desired analog cutoff frequency is Ω = Ωc how do we choose the digital cutoff? 

 
Ha(Ω)

Ωc
Ω

 

 –π π

Hd (ω) = Ha
ω
T







ωc = Ωc T  
 

Remember: 
 

ωc = Ωc T  
 
 
This equation is very handy in specifying cutoff frequencies of digital filters.  Likewise, it can be 
used to find the analog cutoff of a digital system operating with parameters T and ωc, i.e., 
Ωc = ωc/T. 
 
 
 
Example xa(t)    BL to 50 kHz 
 
Implement analog LPF with  
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 Ωc = 2π (25,000) rad/sec. 
 

Choose T according to Nyquist: 
1
T

 = 100,000 samples/sec.  

 
⇒ T = 10–5 
 

 ωc = ΩcT = 2π (25,000) 10–5  =  
π
2

 

 
So, 
 

Ha(Ω)

Ω
2π • 25,000  

 
is realized by T = 10–5 and using 
 

π–π

Hd(ω)

–π
2

π
2

ω

 
Note:  In this example the ratio of the desired analog cutoff to the analog bandwidth was 

1
2 .  

Likewise, the passband of Hd(ω) filled half of the digital frequency band |ω| ≤ π.  This 
proportional relationship will always hold if we sample at the Nyquist rate. 
 
Question:  Why did we sample at the Nyquist rate instead of above it?  Why not sample at a rate 
much greater than 100,000 samples per second?  Answer:  This would increase hardware cost 
since it would require a faster A/D and digital filter. 
 
Example 
 
xa(t) is BL to 2π × 106 rad/sec.  Implement analog HPF with fc = 250,000 Hz.   
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Choose 
1
T

 =  2 
2π ×106

2π
 
  

 
   = 2 × 106 

 

⇒ T = 
1

2 ×106  

 

 ωc = ΩcT = 2π (250,000) 
1

2 ×106  

 

  = 
π
4

 

 
So, 
 

Ha(Ω)

2π (250,000) Ω

 
 

is realized by choosing T = 
1

2 ×106  

 
and using: 
 

–π
4

ω

Hd(ω)

–2π –π π 2ππ
4  

 
Note:  In this situation the overall digital system implements a bandpass filter, but this is 
equivalent to a HPF because xa(t) is bandlimited and sampled according to Nyquist. 
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Filtering 
 

Ω

Xa(Ω)

2π • 106  
with 
 

2π (250,000)

Ha(Ω)

Ω

1

 
or 
 

 

Ω

Ha(Ω)

2π • 1062π (250,000)

1

 
 
 
gives exactly the same result.  The digital system implements the latter (D/A cuts off all 
frequencies above 2π • 106). 
 
Example   
 
Design a digital version of an echo generator: 
 

+

α

xa(t) ya(t)

Analog
Delay τd Hard to build

 
So, we want a digital system that implements 
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 ya(t) = xa(t) + α xa (t–τd) 
 
Assume xa(t) is bandlimited to 20 kHz. 
 
 a) Choose sampling period T.  
 b) Find desired analog response Ha(Ω). 
 
 c) Find needed digital filter response Hd(ω). 
 
 d) Assuming τd = kT, draw a block diagram of the digital filter. 
 
Solution  
 a) T < 

π
Ω

 = 
π

2π• 20 kHz
= 

1
40,000

 

 
  Choose 
 
   T =

1
40,000

 

 
 b) Ya(Ω) = Xa(Ω) + α Xa(Ω) e–jΩτd 
 
  ⇒  Ha(Ω) = 1 + α e–jΩτd 

 
c) To find Hd(ω) in this example, we cannot simply apply ωc = ΩcT, because Ha(Ω) is not a 

LPF, HPF, or BFF.  There is no Ωc! Instead, must go back to (✩✩ ).  From (✩✩ ): 
 

   Hd(ω)  = Ha 
ω
T

 
 

 
  |ω| ≤ π 

 

     =      1 + α e
– jωτd

T  
 
 d) If τd = kT then: 
 

   Hd(ω) = 1 + α e
– jω kT

T  
 
     = 1 + α e–jkω 
 
  ⇒ H(z) = 1 + α z–k 
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So, the digital filter structure is: 
 

•  •  •  •

xn

k delays

α z–1 z–1 z–1

yn

 
 
This result completely agrees with our intuition.  We could have guessed this! 
 
Notes: 
 

1) Using this digital filter between an A/D and D/A implements the desired Ha(Ω). 
 
2) If τd ≠ kT then H(z) is not a rational function in the variable z–1, and we can only 

approximate the desired Hd(ω).  Filter design (approximation) will be a major topic later 
in the course. 
 
 

 
Example 
 
Consider the following system 
 

T
xa(t)

xn yn
Hd(ω) ya(t)Ideal

D/A
 

 
 

with T = 
1

3 ×105       and  

 

2π × 105

Xa(Ω)

Ω

1

 
ω

Hd(ω)

1

–π ππ
4  

 
 
Sketch Xd(ω), Yd(ω), and Ya(Ω). 
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Solution 
 

Xd
1/

2π

Τ

−π
3

  2 ππ  ω −2π −π π
4

Y ( ω )

π 2π ω

1/Τ

d( ω )

 

For an ideal D/A, Ya(Ω) = Ga(Ω) Yd(ΩT) with Ga(Ω) = 
T Ω ≤

π
T

0 else

 

 
 

  
    .  Thus, 

 

Yd(ΩT)
Ga(Ω)

2π
T

–2π
T

–π
T

π
4T

π
T

Ω

1
T

Ya(Ω)

π
4T

= 3π
4

× 105
Ω

1

 
 

Notice that if the D/A is nonideal, and Ga(Ω) does not cut off abruptly at ± π
T

, but instead is 

nonzero for |Ω| > π
T

 , then Ya(Ω) will have undesired high-frequency components due to the 

periodic nature of Yd.  Thus, a critical job of the D/A is to suppress these high-frequency 

replicas. 
 
 


