ECE 410
DIGITAL SIGNAL PROCESSING
D. Munson

University of Illinois

Implementation of Ideal D/A

Consider

Recall that any D/A we encounter in this course can be modeled by

$$
\begin{equation*}
\mathrm{y}_{\mathrm{a}}(\mathrm{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{y}_{\mathrm{n}} \mathrm{~g}_{\mathrm{a}}(\mathrm{t}-\mathrm{nT}) \tag{1}
\end{equation*}
$$

and that the Fourier-domain relation is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{a}}(\Omega)=\mathrm{G}_{\mathrm{a}}(\Omega) \mathrm{Y}_{\mathrm{d}}(\Omega \mathrm{~T}) \tag{2}
\end{equation*}
$$

For the ideal D / A, we have $g_{a}(t)=\operatorname{sinc}\left(\frac{\pi}{T} t\right)$, giving

$$
\begin{equation*}
\mathrm{y}_{\mathrm{a}}(\mathrm{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{y}_{\mathrm{n}} \operatorname{sinc}\left[\frac{\pi}{\mathrm{~T}}(\mathrm{t}-\mathrm{nT})\right\rfloor \tag{3}
\end{equation*}
$$

and

$$
\mathrm{G}_{\mathrm{a}}(\Omega)= \begin{cases}\mathrm{T} & |\Omega| \leq \frac{\pi}{\mathrm{T}} \\ 0 & \text { else }\end{cases}
$$

so that (2) gives

$$
Y_{a}(\Omega)= \begin{cases}\mathrm{TY}_{\mathrm{d}}(\Omega \mathrm{~T}) & |\Omega| \leq \frac{\pi}{\mathrm{T}} \tag{4}\\ 0 & \text { else }\end{cases}
$$

How might we implement the ideal D/A, described by (3)?

Conceptually, we might think along the lines of:

Then:

$$
\mathrm{y}_{\mathrm{a}}(\mathrm{t})=\mathrm{g}_{\mathrm{a}}(\mathrm{t}) * \sum_{\mathrm{n}} \mathrm{y}_{\mathrm{n}} \delta_{\mathrm{a}}(\mathrm{t}-\mathrm{nT})=\sum_{\mathrm{n}} \mathrm{y}_{\mathrm{n}} \mathrm{~g}_{\mathrm{a}}(\mathrm{t}-\mathrm{nT}) \text { as desired. }
$$

For an actual implementation, we might consider approximating the impulse train by a periodic sequence of very tall, narrow pulses. However, this would be difficult in practice. As a result, D/A's are not implemented as suggested above!

In practice, the ideal D / A is approximated with the following two-stage system:

in manufacturer's catalog just the ZOH may be called a D/A
What is a zero-order hold (ZOH) ? It is a D / A that uses rectangular pulses, i.e.,

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{a}}(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{y}_{\mathrm{n}} \mathrm{p}_{\mathrm{a}}(\mathrm{t}-\mathrm{nT}) \tag{5}
\end{equation*}
$$

where

Thus, the ZOH output is a staircase approximation to the desired $y_{a}(t)$. This staircase must be smoothed by $\mathrm{F}_{\mathrm{a}}(\Omega)$ to produce the proper $\mathrm{y}_{\mathrm{a}}(\mathrm{t})$.

The Fourier-domain relation for the ZOH has the form given by (2), but now

$$
\begin{aligned}
\mathrm{G}_{\mathrm{a}}(\Omega) & =\int_{0}^{T} 1 \cdot e^{-j \Omega t} d t \\
& =\left.\frac{e^{-j \Omega t}}{-j \Omega}\right|_{0} ^{T}=\frac{e^{-j \Omega T}-1}{-j \Omega} \\
& =\frac{e^{-j \Omega \frac{T}{2}}\left(e^{-j \Omega \frac{T}{2}}-e^{j \Omega \frac{T}{2}}\right)}{-j \Omega}=e^{-j \Omega \frac{T}{2}} \frac{2 \sin \frac{\Omega T}{2}}{\Omega} \\
& =T e^{-j \Omega \frac{T}{2}} \operatorname{sinc} \frac{\Omega T}{2}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\overline{\mathrm{Y}}_{\mathrm{a}}(\Omega)=\mathrm{T}^{-\mathrm{j} \Omega \frac{\mathrm{~T}}{2}} \operatorname{sinc}\left(\frac{\Omega \mathrm{~T}}{2}\right) \mathrm{Y}_{\mathrm{d}}(\Omega \mathrm{~T}) \tag{6}
\end{equation*}
$$

Before deciding how to choose $\mathrm{F}_{\mathrm{a}}(\Omega)$, which follows the ZOH , let's see how the effect of the ZOH differs from the ideal D/A, in the Fourier domain.

Example

Suppose have

Sketch $Y_{a}(\Omega)$, the Fourier transform of the output of an ideal D / A, and $\bar{Y}_{a}(\Omega)$, the Fourier transform of the output of a ZOH .

Using (4), we have for the ideal D/A:

For the ZOH , let's plot $\overline{\mathrm{Y}}_{\mathrm{a}}(\Omega) \mid$. The terms in (6) look like:

$\left|\overline{\mathrm{Y}}_{\mathrm{a}}(\Omega)\right|$ is T times the product of the above two curves:

Notice that unlike $\mathrm{Y}_{\mathrm{a}}(\Omega)$ for the ideal $\mathrm{D} / \mathrm{A}, \widehat{\mathrm{Y}}_{\mathrm{a}}(\Omega) \mid$ for the ZOH has frequency content that extends all the way to $\Omega= \pm \infty$. This is not surprising, since $\bar{y}_{\mathrm{a}}(\mathrm{t})$, for the ZOH , is a staircase function with discontinuities. Sharp edges (discontinuities) always correspond to a frequency content extending to $\pm \infty$.

Now, if we have $\overline{\mathrm{Y}}_{\mathrm{a}}(\Omega)$ from the ZOH , how do we choose $\mathrm{F}_{\mathrm{a}}(\Omega)$ to produce $\mathrm{Y}_{\mathrm{a}}(\Omega)$? The above sketches suggest that we need $\mathrm{F}_{\mathrm{a}}(\Omega)$ to be a LPF with cutoff at $\Omega_{\mathrm{c}}= \pm \frac{\pi}{\mathrm{T}}$. To investigate this thoroughly, note that for the ZOH system we have

$$
\begin{align*}
\mathrm{Y}_{\mathrm{a}}(\Omega) & =\mathrm{F}_{\mathrm{a}}(\Omega) \overline{\mathrm{Y}}_{\mathrm{a}}(\Omega) \\
& =\mathrm{F}_{\mathrm{a}}(\Omega) \mathrm{T} \mathrm{e}^{-\mathrm{j} \frac{\Omega \mathrm{~T}}{2} \operatorname{sinc}\left(\frac{\Omega \mathrm{~T}}{2}\right) \mathrm{Y}_{\mathrm{d}}(\Omega \mathrm{~T})} \tag{7}
\end{align*}
$$

For the ideal D/A, the relation is given by (4). To have (7) correspond to (4) we must have

$$
F_{a}(\Omega) T e^{-j \frac{\Omega T}{2}} \operatorname{sinc}\left(\frac{\Omega T}{2}\right) Y_{d}(\Omega T)= \begin{cases}T Y_{d}(\Omega T) & |\Omega| \leq \frac{\pi}{T} \\ 0 & \text { else }\end{cases}
$$

or

$$
F_{a}(\Omega)= \begin{cases}\frac{e^{j \frac{\Omega T}{2}}}{\operatorname{sinc}\left(\frac{\Omega T}{2}\right)} & |\Omega| \leq \frac{\pi}{T} \\ 0 & |\Omega|>\frac{\pi}{T}\end{cases}
$$

The first zero-crossing of sinc $\frac{\Omega \mathrm{T}}{2}$ occurs when $\frac{\Omega \mathrm{T}}{2}=\pi \Rightarrow \Omega=\frac{2 \pi}{\mathrm{~T}}$.

So, $\left|\mathrm{F}_{\mathrm{a}}(\Omega)\right|$ looks like:

Thus, the ideal $\mathrm{F}_{\mathrm{a}}(\Omega)$ is a LPF that emphasizes the higher frequencies in its passband. (Surprising!)
$F_{a}(\Omega)$ has finite support $\Rightarrow f_{a}(t)$ has infinite support. $f_{a}(t)$ might look something like:

In practice, we would use a filter with a causal impulse response $\bar{f}_{a}(t)$ with $\bar{f}_{a}(t) \approx f_{a}(t-d) u_{a}(t)$ (delayed and truncated version of $f_{a}(t)$).

Using $\bar{f}_{a}(t)$ will delay the desired output by d seconds, but this is no problem in most applications if d is small.

Notes:

1. In cheaper $\mathrm{D} /$ As, we may use a very simple R-C network to crudely approximate the $\operatorname{desired} \mathrm{F}_{\mathrm{a}}(\Omega)$.
2. The high-frequency emphasis within the passband of $\mathrm{F}_{\mathrm{a}}(\Omega)$ can be performed digitally as part of the digital filter function. For example, if wish to realize an analog LPF using

then instead of using

could use

In this case, we still need an $\mathrm{F}_{\mathrm{a}}(\Omega)$ after the ZOH , but now $\mathrm{F}_{\mathrm{a}}(\Omega)$ can be a regular LPF with a flat response in the passband:

A/D and D/A Circuits

A/D consists of sample and hold followed by a quantizer.
In catalogs, just the quantizer is called an A / D (unless A / D is referred to as a "sampling A / D "). As we shall see, the sample and hold is very simple, whereas the quantizer is much more complicated.

Sample and Hold:

transistor switch controlled by a clock

A/D (Quantizer)

Uses comparators:

Two popular types of A/D's:
a) Successive Approximation
\sim for low and medium sampling rates; uses a D / A !

Here, $x_{s}(t)$ is the input from the sample and hold. The above system quantizes $x_{S}(t)$ to fit into a computer register. The comparator output signal causes the up-down counter to either increment or decrement, at a high rate, until it contains a binary approximation of $x_{s}(t)$. When the counter has settled around the correct digital representation of $x_{5}(t)$, it simply toggles back and forth in its least significant bit until the value of $\mathrm{x}_{\mathrm{s}}(\mathrm{t})$ changes.

Succcessive approximation A/D's are fairly slow (and thus used for low and medium bandwidth applications) because it may take several clock cycles for the counter to settle on a new value of $\mathrm{x}_{\mathrm{s}}(\mathrm{t})$.
b) Parallel or Flash A/D

For high speed ($8 \mathrm{bits} /$ sample at 500 MHz is currently possible).
Uses $2^{\mathrm{N}}-1$ comparators for N -bit output word.

Example 2 bit quantizer:

Here, $0 \leq \mathrm{x}_{\mathrm{s}}(\mathrm{t})<\frac{1}{4}$ is mapped to $(0,0), \frac{1}{4} \leq \mathrm{x}_{\mathrm{s}}(\mathrm{t})<\frac{1}{2}$ is mapped to $(0,1), \frac{1}{2} \leq \mathrm{x}_{\mathrm{s}}(\mathrm{t})<\frac{3}{4}$ is mapped to $(1,0)$, and $x_{s}(t) \geq \frac{3}{4}$ is mapped to $(1,1)$.

D/A Converters ~ Zero Order Hold (ZOH)

The contents of a binary register containing y_{n} are the input to a D / A. Let $\left[B_{0}, B_{1}, B_{2}, \ldots, B_{N-1}\right]$ be the binary representation of y_{n}. The B_{i} change with period T as y_{n+1} replaces y_{n} in the D / A input register.

One popular type of D / A uses a resistor ladder (can also use a capacitor ladder):

The switches are transistors, where the B_{i} control whether the transistors conduct to ground (left position, $B_{i}=0$) or to the op amp (right position, $B_{i}=1$). The op amp then adds all signals input to its minus terminal, with a weighting determined by the resistor values. To find the exact relationship between $V_{\text {out }}$ and the B_{i}, first apply KCL at Node $N-1$ at the upper right, to give:

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{N}-1}}{2 \mathrm{R}}+\frac{\mathrm{V}_{\mathrm{N}-1}}{2 \mathrm{R}}+\frac{\mathrm{V}_{\mathrm{N}-1}-\mathrm{V}_{\mathrm{N}-2}}{\mathrm{R}}=0 \\
\Rightarrow & \mathrm{~V}_{\mathrm{N}-1}+\mathrm{V}_{\mathrm{N}-1}-\mathrm{V}_{\mathrm{N}-2}=0 \Rightarrow \mathrm{~V}_{\mathrm{N}-2}=2 \mathrm{~V}_{\mathrm{N}-1}
\end{aligned}
$$

Similarly: $\mathrm{V}_{\mathrm{n}-1}=2 \mathrm{~V}_{\mathrm{n}} \mathrm{n}=1,2, \ldots, \mathrm{~N}-2$

$$
\Rightarrow \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{N}-1} 2^{\mathrm{N}-1-\mathrm{n}}
$$

Using KCL at the minus terminal of the op amp gives:

$$
\frac{1}{2 \mathrm{R}} \sum_{\mathrm{i}=0}^{\mathrm{N}-1} \mathrm{~B}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\frac{0-\mathrm{V}_{\text {out }}}{\mathrm{R}_{\mathrm{f}}}
$$

where each B_{i} is 0 or 1 .
9.12

$$
\begin{aligned}
\Rightarrow \quad V_{\text {out }} & =\frac{-R_{f}}{2 R} \sum_{i=0}^{N-1} B_{i} V_{N-1} 2^{N-1-i} \\
& =\frac{-R_{f}}{2 R} V_{N-1}\left[2^{N-1} B_{0}+2^{N-2} B_{1}+\ldots+2 B_{N-2}+B_{N-1}\right]
\end{aligned}
$$

So, $V_{\text {out }}$ is proportional to the number stored in the binary register representing y_{n}. This number changes according to a clock $\left(\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}_{\mathrm{n}+1}\right)$, so $\mathrm{V}_{\text {out }}(\mathrm{t})$ is a staircase function (edges won't be perfectly square, though - op amp has a nonzero rise time).

The ZOH is followed with the analog LPF, below, as discussed previously.

