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Implementation of Ideal D/A 
 
Consider 
 

 
yn  ya(t)D/A

 
 

Recall that any D/A we encounter in this course can be modeled by 
 

 ya(t) = yn ga (t – nT)
n= –∞

∞
∑  (1) 

 
and that the Fourier-domain relation is 
 
 Ya(Ω) = Ga(Ω) Yd(ΩT) (2) 
 

For the ideal D/A, we have ga(t) = sinc 
π
T

t 
 

 
 , giving 

 

 ya(t) = yn
n= –∞

∞
∑  sinc 

π
T

(t – nT) 
 

 
 
 (3) 

 
and 
 

 Ga(Ω) = 
T Ω ≤

π
T

0 else

 

 
 

  
 

 
so that (2) gives 
 

 Ya(Ω) =  
T Yd(ΩT) Ω ≤

π
T

0 else

 

 
 

  
 (4) 

 
How might we implement the ideal D/A, described by (3)? 
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Conceptually, we might think along the lines of: 
 

T

∑
k

yk δa (t-kT)

impulse response δa (t-kT)
k
∑

Ideal
Analog
LPF

ga(t) = sinc 
π
T t

yn ya(t)

 
 

Then: 
 
 ya(t) = ga(t) * yn

n
∑  δa (t–nT) = yn

n
∑  ga(t–nT)  as desired. 

 
For an actual implementation, we might consider approximating the impulse train by a periodic 
sequence of very tall, narrow pulses.  However, this would be difficult in practice.  As a 
result, D/A’s are not implemented as suggested above! 
 
In practice, the ideal D/A is approximated with the following two-stage system: 
 
 

 
Zero
Order
Hold

ya(t)
ya(t)Fa(Ω)yn

 
  ↑ 
  in manufacturer’s catalog just the ZOH may be called a D/A 
 
What is a zero-order hold (ZOH)?  It is a D/A that uses rectangular pulses, i.e., 
 
 ya(t) = yn pa (t – nT)

n
∑   (5) 

 
where 
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⇒

pa(t)

1

T t

y0

y1

y2

y3

_
ya(t)  

tT  
 

Thus, the ZOH output is a staircase approximation to the desired ya(t).  This staircase must be 
smoothed by Fa(Ω) to produce the proper ya(t). 
 
The Fourier-domain relation for the ZOH has the form given by (2), but now 
 

 Ga(Ω) = 
0

T

∫ 1 • e–jΩt dt 

 

  = 
e– jΩt

– jΩ

T

0
  =  

e– jΩT – 1
–jΩ

 

 

  = 
e

– jΩ T
2 e

– jΩ T
2 – e

jΩ T
2

 

  
 

  

–jΩ
  =  e

– jΩ T
2

2 sin
ΩT
2

Ω
 

 

  = T e
– jΩ T

2
 
sinc 

ΩT
2

 

 
Thus, 
 

 Ya (Ω) = T e
– jΩ T

2
 
sinc 

ΩT
2

 
 

 
  Yd(ΩT)  (6) 

 
Before deciding how to choose Fa(Ω), which follows the ZOH, let’s see how the effect of the 
ZOH differs from the ideal D/A, in the Fourier domain. 
 
Example 
 
Suppose have 
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Yd(ω)

–π π ω

1

 
 

Sketch Ya(Ω), the Fourier transform of the output of an ideal D/A, and Ya (Ω), the Fourier 
transform of the output of a ZOH. 
 
Using (4), we have for the ideal D/A: 
 

Ya(Ω)

T

–π
T

π
T

Ω
 

 
For the ZOH, let’s plot Ya (Ω) .  The terms in (6) look like: 
 

1

–4π
T

–3π
T

–2π
T

–π
Τ

π
Τ

2π
T

4π
T

Yd(ΩT)

Ω

sinc ΩT
2

3π
T  

 
Ya (Ω)  is T times the product of the above two curves: 
 

T

–4π
T

–3π
T

–2π
T

–π
Τ

π
Τ

2π
T

3π
T

4π
T

Ω

Ya(Ω)

 
 



9.5 

Notice that unlike Ya(Ω) for the ideal D/A, Ya (Ω)  for the ZOH has frequency content that 
extends all the way to Ω = ± ∞.  This is not surprising, since ya(t), for the ZOH, is a staircase 
function with discontinuities.  Sharp edges (discontinuities) always correspond to a frequency 
content extending to ± ∞. 
 
Now, if we have Ya (Ω) from the ZOH, how do we choose Fa(Ω) to produce Ya(Ω)?  The above 

sketches suggest that we need Fa(Ω) to be a LPF with cutoff at Ωc = ± 
π
T

.  To investigate this 

thoroughly, note that for the ZOH system we have 
 
 Ya(Ω) = Fa(Ω) Ya (Ω) 
 

  = Fa(Ω) T e
– j ΩT

2
 
sinc 

ΩT
2

 
 

 
  Yd(ΩT)  (7) 

 
For the ideal D/A, the relation is given by (4).  To have (7) correspond to (4) we must have 
 

 Fa(Ω) T e
– j ΩT

2
 
sinc 

ΩT
2

 
 

 
  Yd(ΩT)  =  

T Yd(ΩT) Ω ≤
π
T

0 else

 

 
 

  
 

 
or 
 

 Fa (Ω) =

e jΩT
2

sinc
ΩT
2

 
 

 
 

Ω ≤
π
T

0 Ω >
π
T

 

 
  

 
 
 

 

 
 

The first zero-crossing of sinc 
ΩT
2

 occurs when 
ΩT
2

 = π ⇒ Ω = 
2π
T

. 
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–2π
T

–π
T

π
T

2π
T

Ω

sinc
ΩT

2






 
 
 
So, Fa (Ω)  looks like: 
 

Fa (Ω)

–π
T

π
T

Ω

 
 

Thus, the ideal Fa(Ω) is a LPF that emphasizes the higher frequencies in its passband.  
(Surprising!) 
 

Fa(Ω) has finite support  ⇒  fa(t) has infinite support.  fa(t) might look something like: 
 

fa(t)

–T
 2

t

 
 
In practice, we would use a filter with a causal impulse response f a (t) with  f a (t) ≈ fa(t–d) ua(t) 
(delayed and truncated version of fa(t)). 
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t

d

fa(t)

 
 
 
Using f a (t) will delay the desired output by d seconds, but this is no problem in most 
applications if d is small. 
 
Notes: 
 

1. In cheaper D/As, we may use a very simple R-C network to crudely approximate the 
desired Fa(Ω).   

 
2. The high-frequency emphasis within the passband of Fa(Ω) can be performed digitally as 

part of the digital filter function.  For example, if wish to realize an analog LPF using 
 

 

T D/Axa(t) Hd(ω) ya(t)

 
 

 
then instead of using 
 

Hd(ω)

–π ωc π ω 
 

 
 

could use 
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Hd(ω)

–π ωc π ω–ωc  
 

In this case, we still need an Fa(Ω) after the ZOH, but now Fa(Ω) can be a regular LPF 
with a flat response in the passband: 

 

Ω

Fa (Ω)

–π
T

π
T  

 
 
 
A/D and D/A Circuits 
 
A/D consists of sample and hold followed by a quantizer. 
 
In catalogs, just the quantizer is called an A/D (unless A/D is referred to as a “sampling A/D”).  
As we shall see, the sample and hold is very simple, whereas the quantizer is much more 
complicated. 
 
Sample and Hold: 

 

transistor switch
controlled by
a clock “voltage follower”

high input impedance,
low output impedance

+

—
xs(t)

xa(t)

 
 
A/D (Quantizer) 
 
Uses comparators: 
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2(t)

2(t)

x1(t)

x2(t) 

 1 x1(t)≥x

0 x1(t)< x

+

-
 

 
 
Two popular types of A/D’s: 
 
a) Successive Approximation 
 
 ~ for low and medium sampling rates; uses a D/A! 
 
 

•    •    •    •

+ –

Successive
Approximation
Register

Binary

Output

Word

Clock

D/A

UP/DOWN COUNTER

x  (t)s

Runs at a much higher 

frequency than 1
T  

 
Here, xs(t) is the input from the sample and hold.  The above system quantizes xs(t) to fit into a 
computer register.  The comparator output signal causes the up-down counter to either increment 
or decrement, at a high rate, until it contains a binary approximation of xs(t).  When the counter 
has settled around the correct digital representation of xs(t), it simply toggles back and forth in 
its least significant bit until the value of xs(t) changes. 
 
Succcessive approximation A/D’s are fairly slow (and thus used for low and medium bandwidth 
applications) because it may take several clock cycles for the counter to settle on a new value of 
xs(t). 
 
b) Parallel or Flash A/D 
 
 For high speed (8 bits/sample at 500 MHz is currently possible). 
 
 Uses 2N–1 comparators for N-bit output word. 
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Example 2 bit quantizer: 
 
 

+

–

+

–

+

–

X

Y

Z

0 or 1

0 or 1

0 or 1

MSB = YDigital

Logic

3
4

 V

1
4

 V

xs(t)

LSB = X or (Z and Y)

1
2 V

 
 

Here,  0 ≤ xs(t) < 
1
4

 is mapped to (0, 0), 
1
4

 ≤ xs(t) < 
1
2

 is mapped to (0, 1), 
1
2

 ≤ xs(t) < 
3
4

 is 

mapped to (1, 0),  and xs(t) ≥ 
3
4

 is mapped to (1, 1). 

 
D/A Converters ~ Zero Order Hold (ZOH) 
 
The contents of a binary register containing yn are the input to a D/A.  Let B0, B1, B2, …, BN–1[ ]  
be the binary representation of yn.  The Bi change with period T as yn+1 replaces yn in the D/A 
input register. 
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One popular type of D/A uses a resistor ladder (can also use a capacitor ladder): 
 
 

Vout

–
+

•  •  •
R R R

2R 2R 2R 2R 2RVref

Rf

–

+

V0 V1 V2 VN–1

B0 B1 B2 BN–1

 
 
 
The switches are transistors, where the Bi control whether the transistors conduct to ground (left 
position, Bi = 0) or to the op amp (right position, Bi = 1).  The op amp then adds all signals input 
to its minus terminal, with a weighting determined by the resistor values.  To find the exact 
relationship between Vout and the Bi, first apply KCL at Node N–1 at the upper right, to give: 
 
 

 
VN–1
2R

 + 
VN–1
2R

 + 
VN–1 – VN–2

R
 = 0 

 
 ⇒ VN–1 + VN–1 – VN–2 = 0 ⇒  VN–2 = 2 VN–1 
 
Similarly:  Vn–1 = 2Vn  n = 1, 2,  … , N–2 
 
 ⇒ Vn = VN–1 2N–1–n 
 
Using KCL at the minus terminal of the op amp gives: 
 

 
1

2R i=0

N –1
∑ Bi Vi  =  

0 – Vout
Rf

 

 
where each Bi is 0 or 1. 
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⇒ Vout  =  
–Rf
2R i=0

N–1
∑ Bi VN–1 2N–1–i 

 

 = 
–Rf
2R

 VN–1 2N–1 B0 + 2N–2 B1 +…+ 2 BN–2 + BN–1[ ] 

 
So, Vout is proportional to the number stored in the binary register representing yn.  This number 
changes according to a clock (yn → yn+1), so Vout(t) is a staircase function (edges won’t be 
perfectly square, though — op amp has a nonzero rise time).  
 
The ZOH is followed with the analog LPF, below, as discussed previously. 

 

Ω–π
T

π
T

Fa(Ω)

 
 

 
 
 


