ECE 410 DIGITAL SIGNAL PROCESSING
University of Illinois Chapter 9

Implementation of Ideal D/A

Consider

Yn —| D/A +—»ya(t)

Recall that any D/A we encounter in this course can be modeled by

ya(t) = Z Ynga(t—nT)

n=-oo
and that the Fourier-domain relation is

Ya(€2) = Ga(©2) Yq(Q2T)

For the ideal D/A, we have g,(t) = sinc (% t) , giving

ya(t) = n:i Ogln sinc [% (t- nT)}
and
1 <L
Ga(Q) = 1 =5
0 else
so that (2) gives
{TYd(QT) <=
Ya(Q2) = T T
0 else

How might we implement the ideal D/A, described by (3)?
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Conceptually, we might think along the lines of:

2 Yk 8a (t-KT) |deal
Yn K Analog [ g yyt)
LPF
5 54(t-KT) Z Impul se response
: 0(t) = Snc T t

Cq
Then:
Ya(t) = ga() * Dy, 8a (t-nT) =Dy, ga(t-nT) as desired.
n n

For an actual implementation, we might consider approximating the impulse train by a periodic
sequence of very tall, narrow pulses. However, this would be difficult in practice. As a
result, D/A’s are not implemented as suggested above!

In practice, the ideal D/A is approximated with the following two-stage system:

Zero Q)
Yy ——— | Order

Hold
T

in manufacturer’s catalog just the ZOH may be called a D/A

Fa(Q) V()

4

What is a zero-order hold (ZOH)? It is a D/A that uses rectangular pulses, i.e.,
Ya(t) = 2 Yo Pa(t —0T) ()
n

where



pa(t)

Thus, the ZOH output is a staircase approximation to the desired y,(t). This staircase must be
smoothed by F,(Q2) to produce the proper y,(t).

The Fourier-domain relation for the ZOH has the form given by (2), but now

T

Ga(2) =

Thus,

Ya(Q)

Before deciding how to choose F,(€2), which follows the ZOH, let’s see how the effect of the
ZOH differs from the ideal D/A, in the Fourier domain.
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Sketch Ya(Q), the Fourier transform of the output of an ideal D/A, and Ya (Q), the Fourier
transform of the output of a ZOH.

Using (4), we have for the ideal D/A:
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ﬁ(a (Q)l is T times the product of the above two curves:
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Notice that unlike Y4(Q) for the ideal D/A, ﬁ{a (Q)l for the ZOH has frequency content that
extends all the way to Q ==+ oo. This is not surprising, since ;1 a(1), for the ZOH, is a staircase
function with discontinuities. Sharp edges (discontinuities) always correspond to a frequency
content extending to + oo.

Now, if we have Ya (Q) from the ZOH, how do we choose F4(Q2) to produce Y,(€2)? The above
sketches suggest that we need F,(Q2) to be a LPF with cutoff at Q; =+ % . To investigate this

thoroughly, note that for the ZOH system we have

Ya(Q) = Fa(Q) Ya(Q)

.QT
Fa(Q)Te 2 sinc (%) Y4(QT) (7)

For the ideal D/A, the relation is given by (4). To have (7) correspond to (4) we must have

ar Ty, @t <=
Fa@ Te |2 sinc (%) vaom = | 48P 47

0 else

or
QT
( e’ n
— st
F,(Q) = { sinc KTJ
0 o> =
T

QT QT 2
The first zero-crossing of sinc T occurs when T =n=>Q= ?n .
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So, |Fa(Qj looks like:

|F(Q)]

I
T T

Thus, the ideal F,(Q) is a LPF that emphasizes the higher frequencies in its passband.
(Surprising!)

F,(Q) has finite support = f,(t) has infinite support. f,(t) might look something like:

fo(t)
N\ | £\ t
~— _ 1 4 ~—
=T
2

In practice, we would use a filter with a causal impulse response fa (t) with fa (t) = fy(t=d) u,y(t)
(delayed and truncated version of f,(t)).
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fa(t)

Using fa (t) will delay the desired output by d seconds, but this is no problem in most
applications if d is small.

Notes:

1. In cheaper D/As, we may use a very simple R-C network to crudely approximate the
desired F,(Q).

2. The high-frequency emphasis within the passband of F,(€2) can be performed digitally as
part of the digital filter function. For example, if wish to realize an analog LPF using

Xa(t) Hg(w) DIA — Ya(t)

then instead of using

Hg ()|

could use
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Ha(o)]
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In this case, we still need an F,(Q) after the ZOH, but now F,(€2) can be a regular LPF
with a flat response in the passband:

|F(Q)]

A/D and D/A Circuits

A/D consists of sample and hold followed by a quantizer.

In catalogs, just the quantizer is called an A/D (unless A/D is referred to as a “sampling A/D”).

As we shall see, the sample and hold is very simple, whereas the quantizer is much more
complicated.

Sample and Hold:

Xa(t) / [

= X(t)

transistor switch

controlled by
aclock — “voltage follower”
- high input impedance,
low output impedance
A/D (Quantizer)

Uses comparators:
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M) —— + A xa®2x o)

O

o) — | L0 x1(t)< X(t)

Two popular types of A/D’s:
a) Successive Approximation

~ for low and medium sampling rates; uses a D/A!

Xs(t) D/A
A A i
oo Binary
Output
vt » | Word

Successive
™ Approximation < Clock

(///;1' Register (;:2”'

UP/DOWN COUNTER uns at a much higher

frequency than %

Here, x4(t) is the input from the sample and hold. The above system quantizes x4(t) to fit into a

computer register. The comparator output signal causes the up-down counter to either increment
or decrement, at a high rate, until it contains a binary approximation of xy(t). When the counter

has settled around the correct digital representation of x¢(t), it simply toggles back and forth in
its least significant bit until the value of x4(t) changes.

Succcessive approximation A/D’s are fairly slow (and thus used for low and medium bandwidth
applications) because it may take several clock cycles for the counter to settle on a new value of

Xs(1).
b) Parallel or Flash A/D

For high speed (8 bits/sample at 500 MHz is currently possible).

Uses 2N—1 comparators for N-bit output word.
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Example 2 bit quantizer:

Xs(t)
5 +\| X
/ Oor 1
3
2V _I_
+
Dl |
Logic
/ Oorl
1
>V _I_
= — LSB=Xor (ZandY)
+\‘ :
/ Oorl
1y
4

_;_

1 1 1 1 3
Here, 0 <x((t) < Z is mapped to (0, 0), Z <xg(t) < E is mapped to (0, 1), 5 <xg(t) < Z is

3
mapped to (1, 0), and x4(t) = Z 1s mapped to (1, 1).

D/A Converters ~ Zero Order Hold (ZOH)

The contents of a binary register containing y,, are the input to a D/A. Let [BO, B, Bs, ..., BN—I]

be the binary representation of y,. The B; change with period T as y,;+ replaces y,, in the D/A
input register.
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One popular type of D/A uses a resistor ladder (can also use a capacitor ladder):

VN-1

— Vout

The switches are transistors, where the B; control whether the transistors conduct to ground (left
position, B; = 0) or to the op amp (right position, B; = 1). The op amp then adds all signals input
to its minus terminal, with a weighting determined by the resistor values. To find the exact
relationship between V;; and the B;, first apply KCL at Node N—1 at the upper right, to give:

VNt INer , I -V
2R 2R R

= VN P VN~ VN2 =0= VN =2V
Similarly: V-1 =2V, n=1,2, ... ,N-2
= V= VN g 2N-In
Using KCL at the minus terminal of the op amp gives:

1 Nt 0-V
—_ z B;V; = ~_ ‘out

where each B is 0 or 1.
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Bi Vn_1 IN-1-i

= —f VN—I [ZN_l BO +2N_2 Bl +...+2 BN—2 + BN—I]

So, Vout 1s proportional to the number stored in the binary register representing y,. This number
changes according to a clock (y, = yn+1), S0 Vui(t) is a staircase function (edges won’t be

perfectly square, though — op amp has a nonzero rise time).

The ZOH is followed with the analog LPF, below, as discussed previously.

|F(Q))




