UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering ECE 410 Digital Signal Processing

Quiz Number 1 Solutions

Thursday, September 6, 2007

Problem 1 (10 points) Given that

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

plot the following discrete-time signal. Label the horizontal and vertical axes for full credit.

$$
x[n]=n u[-n+6] u[n-2]
$$

We have

$$
u[-n+6]= \begin{cases}1 & (-n+6) \geq 0 \Longleftrightarrow n \leq 6 \\ 0 & \text { elsewhere }\end{cases}
$$

and

$$
u[n-2]= \begin{cases}1 & (n-2) \geq 0 \Longleftrightarrow n \geq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

Thus,

$$
x[n]= \begin{cases}n & 2 \leq n \leq 6 \\ 0 & \text { elsewhere }\end{cases}
$$

Figure 1: $x[n]=n u[-n+6] u[n-2]$

Problem 2

(a) (15 points)

Determine the discrete-time Fourier Transform (DTFT) $X_{d}(\omega)$ of the following sequence.

$$
x[n]= \begin{cases}(-1)^{n} & 0 \leq n \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

Express $X_{d}(\omega)$ as $X_{d}(\omega)=R(\omega) e^{j \phi(\omega)}$, where $R(\omega)$ is a purely real function of ω.
(b) (15 points) Evaluate $X_{d}(\omega)$ at $\omega=\frac{\pi}{2}, \omega=\frac{2 \pi}{3}, \omega=\pi$. Express your solutions in magnitude/phase form (i.e., $A e^{j \phi}$, where A is a positive real number).
(a)

$$
\begin{aligned}
X_{d}(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} & =e^{-j \omega(0)}-e^{-j \omega(1)}+e^{-j \omega(2)}-e^{-j \omega(3)}+e^{-j \omega(4)}=e^{-j 2 \omega}\left(e^{j 2 \omega}-e^{j \omega}+1-e^{-j \omega}+e^{-j 2 \omega}\right) \\
& \Longrightarrow X_{d}(\omega)=[2 \cos (2 \omega)-2 \cos (\omega)+1] e^{-j 2 w}
\end{aligned}
$$

(b) i)

$$
X_{d}\left(\frac{\pi}{2}\right)=\left[2 \cos (\pi)-2 \cos \left(\frac{\pi}{2}\right)+1\right] e^{-j \pi}=(-2-0+1)(-1) \Longrightarrow X_{d}\left(\frac{\pi}{2}\right)=1 e^{j 0}
$$

ii)

$$
\begin{gathered}
X_{d}\left(\frac{2 \pi}{3}\right)=\left[2 \cos \left(\frac{4 \pi}{3}\right)-2 \cos \left(\frac{2 \pi}{3}\right)+1\right] e^{j \frac{-4 \pi}{3}}=\left[2\left(\frac{-1}{2}\right)-2\left(\frac{-1}{2}\right)+1\right] e^{j \frac{2 \pi}{3}} \\
\Longrightarrow X_{d}\left(\frac{2 \pi}{3}\right)=1 e^{j \frac{2 \pi}{3}}
\end{gathered}
$$

iii)

$$
X_{d}(\pi)=[2 \cos (2 \pi)-2 \cos (\pi)+1] e^{-j 2 \pi}=(2-(-2)+1)(1) \Longrightarrow X_{d}(\pi)=5 e^{j 0}
$$

Problem 3 (20 points) Given that the DTFT for a real discrete-time signal $x[n]$ is:

$$
X_{d}[\omega]= \begin{cases}6\left[\cos \left(-\frac{2 \pi}{3}\right)+j \sin \left(\frac{2 \pi}{3}\right)\right] & \text { for } \omega=-\frac{\pi}{7} \\ 12\left[\cos \left(\frac{\pi}{4}\right)-j \sin \left(-\frac{\pi}{4}\right)\right] & \text { for } \omega=\frac{3 \pi}{7} \\ ? ? ? ? & \text { elsewhere on }[-\pi, \pi]\end{cases}
$$

find $X_{d}\left(\frac{\pi}{7}\right)$ and $X_{d}\left(-\frac{3 \pi}{7}\right)$. Give your solution(s) both in rectangular and polar form.

Note that:

$$
\begin{gathered}
X_{d}\left(-\frac{\pi}{7}\right)=6\left[\cos \left(-\frac{2 \pi}{3}\right)+j \sin \left(\frac{2 \pi}{3}\right)\right]=6\left[\cos \left(\frac{2 \pi}{3}\right)+j \sin \left(\frac{2 \pi}{3}\right)\right]=6 e^{-j \frac{2 \pi}{3}}=-3+j 3 \sqrt{3} \\
X_{d}\left(\frac{3 \pi}{7}\right)=12\left[\cos \left(\frac{\pi}{4}\right)-j \sin \left(-\frac{\pi}{4}\right)\right]=12\left[\cos \left(\frac{\pi}{4}\right)+j \sin \left(\frac{\pi}{4}\right)\right]=12 e^{j \frac{\pi}{4}}=6 \sqrt{2}+j 6 \sqrt{2}
\end{gathered}
$$

Thus, by the symmetry properties of the DTFT for real-valued signals, we have:

$$
\begin{gathered}
X_{d}\left(\frac{\pi}{7}\right)=X_{d}^{*}\left(-\frac{\pi}{7}\right) \Longrightarrow X_{d}\left(\frac{\pi}{7}\right)=-3-j 3 \sqrt{3}=6 e^{j \frac{2 \pi}{3}} \\
X_{d}\left(-\frac{3 \pi}{7}\right)=X_{d}^{*}\left(\frac{3 \pi}{7}\right) \Longrightarrow X_{d}\left(-\frac{3 \pi}{7}\right)=6 \sqrt{2}-j 6 \sqrt{2}=12 e^{-j \frac{\pi}{4}}
\end{gathered}
$$

Problem 4 (20 points) Given that the DTFT of a certain signal $x[n]$ is:

$$
X_{d}(\omega)= \begin{cases}2 & \text { for }|\omega| \leq \frac{\pi}{2} \\ 0 & \text { elsewhere on }[-\pi, \pi]\end{cases}
$$

find the DTFT of $y[n]=x[n] \cos \left(\frac{\pi}{2} n\right)$ on $[-\pi, \pi]$. Determine a simplified expression for $y[n]$.

By the modulation property of the DTFT,

$$
y[n]=x[n] \cos \left(\frac{\pi}{2} n\right) \longleftrightarrow \frac{1}{2}\left[X_{d}\left(\omega-\frac{\pi}{2}\right)+X_{d}\left(\omega+\frac{\pi}{2}\right)\right]=Y_{d}(\omega)
$$

Considering that

$$
\left|\omega-\frac{\pi}{2}\right| \leq \frac{\pi}{2} \Longleftrightarrow-\frac{\pi}{2} \leq\left(\omega-\frac{\pi}{2}\right) \leq \frac{\pi}{2} \Longleftrightarrow 0 \leq \omega \leq \pi
$$

and

$$
\left|\omega+\frac{\pi}{2}\right| \leq \frac{\pi}{2} \Longleftrightarrow-\frac{\pi}{2} \leq\left(\omega+\frac{\pi}{2}\right) \leq \frac{\pi}{2} \Longleftrightarrow-\pi \leq \omega \leq 0,
$$

we have

$$
X_{d}\left(\omega-\frac{\pi}{2}\right)= \begin{cases}2 & \text { for } 0 \leq \omega \leq \pi \\ 0 & \text { elsewhere on }[-\pi, \pi]\end{cases}
$$

and

$$
X_{d}\left(\omega+\frac{\pi}{2}\right)= \begin{cases}2 & \text { for }-\pi \leq \omega \leq 0 \\ 0 & \text { elsewhere on }[-\pi, \pi]\end{cases}
$$

Thus,

$$
Y_{d}(\omega)=1 \text { on }[-\pi, \pi]
$$

Finally, since the DTFT of a signal is unique and $\sum_{n=-\infty}^{\infty} \delta[n] e^{-j \omega n}=1$, it follows that $y[n]=\delta[n]$.

Problem 5 (20 points) Simplify the following expression

$$
\frac{(1-j)^{8}}{8(\sqrt{3}-j)}+\frac{e^{j \frac{\pi}{6}}}{e^{j \pi}}-(1+j)
$$

Give your solution both in rectangular and polar form.

Note that

$$
\begin{gathered}
(1-j)^{8}=\left(\sqrt{2} e^{-j \pi / 4}\right)^{8}=16 e^{-j 2 \pi}=16 e^{j 0} \\
8(\sqrt{3}-j)=16\left(\frac{\sqrt{3}}{2}-\frac{j}{2}\right)=16 e^{-j \frac{\pi}{6}}
\end{gathered}
$$

Thus,

$$
\frac{(1-j)^{8}}{8(\sqrt{3}-j)}+\frac{e^{j \frac{\pi}{6}}}{e^{j \pi}}=\frac{16 e^{j 0}}{16 e^{-j \frac{\pi}{6}}}+\frac{e^{j \frac{\pi}{6}}}{-1}=e^{j \frac{\pi}{6}}-e^{j \frac{\pi}{6}}=0
$$

So

$$
\frac{(1-j)^{8}}{8(\sqrt{3}-j)}+\frac{e^{j \frac{\pi}{6}}}{e^{j \pi}}-(1+j)=0-(1+j)=-1-j=\sqrt{2} e^{-j \frac{3 \pi}{4}}
$$

