University of Illinois

ECE 410

Profs. Ahuja & Liang

Midterm Exam I

Thursday, February 26, 2009

Name _____

Section: 9:00 AM 2:00 PM

Score _____

Problem	Pts.	Score
1	10	
2	16	
3	6	
4	12	
5	6	
6	13	
7	4	
8	18	
9	15	
Total	100	

Please do not turn this page over until told to do so.

You may not use any books, calculators, or notes other than two sides of a 8.5" x 11" sheet of paper.

GOOD LUCK!

Problem 1{10 Points}

Determine the continuous-time Fourier transform (CTFT) of $x_1(t) = e^{-5|t|}$. Let it be denoted by $X_1(\omega)$. The magnitude of $X_1(\omega)$ is given in Figure 1.

- 1. Sketch the phase of $X_1(\omega)$ in Figure 2.
- 2. Let $X_2(\omega)$ denote the CTFT of $x_2(t) = e^{-5|t-3|}$. Sketch the magnitude and phase of the $X_2(\omega)$ in Figures 3 and 4.

Figure 1: Magnitude of $X_1(\omega)$

Figure 2: Phase of $X_1(\omega)$

Figure 3: Magnitude of $X_2(\omega)$

 $\omega \text{ (rad/sec)}$

Figure 4: Phase of $X_2(\omega)$

Problem 2{16 Points}

The nonzero elements of a discrete-time sequence x(n) are: x[-3] = -1, x[-1] = 1, x[1] = 1, x[3] = 1, x[4] = 2, x[5] = 1, x[7] = -1. For all other n, x[n] = 0. Calculate the following WITHOUT obtaining $X_d(\omega)$ first.

- 1. (a) $X_d(0)$
 - (b) $\int_{-\pi}^{\pi} X_d(\omega) d\omega$
 - (c) $X_d(\pi)$
 - (d) $\int_{-\pi}^{\pi} |X_d(\omega)|^2 d\omega$
 - (e) $\int_{-\pi}^{\pi} |\frac{dX_d(\omega)}{d\omega}|^2 d\omega$
- 2. Let $Y_d(\omega) = Re(X_d(\omega))$. Find the discrete-time sequence y[n] whose DTFT is $Y_d(\omega)$.

Problem 3{6 Points}

The continuous-time signal $x_a(t)$ has the continuous-time Fourier transform shown in the figure below. The signal $x_a(t)$ is sampled with sampling interval T to get the discrete-time signal $x[n] = x_a(nT)$.

Figure 5: $X_a(\Omega)$

a. Sketch $X_d(\omega)$ (the DTFT of x[n]) for the sampling intervals T = 1/200 and 1/50 in the corresponding frames provided. Remember to label the axes and show associated values on the axes.

b. What is the minimum sampling rate f_s (Nyquist rate) such that no aliasing will occur in sampling the continuous-time signal?

Nyquist Rate = _____

Problem $4{12 Points}$

Compute the discrete-time Fourier transform (DTFT) of the following signals directly using the defining formula. (a) $x[n] = \sin(\frac{3}{4}n)$

(b)
$$x[n] = -u[n+3] + u[n-3]$$

(c) $x[n] = (0.4e^{j\pi/2})^n u[n]$

Problem 5{6 Points}

Let $x_a(t) = \sin(7\pi t) + 0.75\cos(5\pi t)$. Let $\{X_m\}_{m=0}^{(M-1)}$ denote the order-M DFT of $x_a(t)$.

1. Given that the analog frequency corresponding to X[51] is 3.984π , determine the relationship between M and T where T is the sampling period.

2. Given a 2 second long segment of $x_a(t)$, how would you choose the sampling interval T to resolve the sinusoidal components and avoid aliasing? State your criterion for resolvability.

Problem 6{13 Points}

Let x[n] denote the input and h[n] the impulse response of a linear time-invariant system. For the pairs of x and h given in parts (a)-(c), determine the output y[n]. You do not need to solve parts (b) and (c) independently; use your knowledge of linearity and time invariance to minimize the work in parts (b) and (c).

a. x[n] = u[n] and $h[n] = a^n u[-n-1]$, with |a| > 1.

b. x[n] = u[n-4] and $h[n] = 2^n u[-n-1]$.

c. x[n] = u[n] and $h[n] = (0.5)2^n u[-n]$.

Problem 7{4 Points}

Give two examples where zero-padding is useful in digital signal processing.

Problem 8{18 Points}

Suppose you are given the 4-point discrete-time sequence $x[n] = \{2, 1, 2, 1\}$ where the first element corresponds to n = 0.

a. Compute the DFT of X[m] of x[n].

b. Suppose x[n] is the sampled version of the continuous-time signal x(t). Using standard notation, give the equation that relates x(t) and X[m].

- c. What is the DFT of X[m]?
- d. Suppose you are given another sequence $w[n] = \{1, 2, 3, 4\}$. Let C[m] denote the cyclic convolution of x[n] and w[n]. Compute the values of C[1] and C[3].

Problem 9{15 Points}

In (a)-(c), x[n] denotes the input of a system and y[n] denotes its output.

(a) y[n] = x[2n]Is the system causal? (Yes/No) Justify your answer:

```
(b) y[n] = n^2 x[2n]
Is the system time-invariant? (Yes/No)
Justify your answer:
```

(c) $y[n] = x^3[2n]$ Is the system linear? (Yes/No) Justify your answer: