Midterm Exam I

Thursday, February 26, 2009

Name \qquad
Section: 9:00 AM 2:00 PM

Score \qquad

Problem	Pts.	Score
1	10	
2	16	
3	6	
4	12	
5	6	
6	13	
7	4	
8	18	
9	15	
Total	100	

Please do not turn this page over until told to do so.

You may not use any books, calculators, or notes other than two sides of a 8.5 " x 11 " sheet of paper.

Problem 1 \{10 Points $\}$

Determine the continuous-time Fourier transform (CTFT) of $x_{1}(t)=e^{-5|t|}$. Let it be denoted by $X_{1}(\omega)$. The magnitude of $X_{1}(\omega)$ is given in Figure 1.

1. Sketch the phase of $X_{1}(\omega)$ in Figure 2.
2. Let $X_{2}(\omega)$ denote the CTFT of $x_{2}(t)=e^{-5|t-3|}$. Sketch the magnitude and phase of the $X_{2}(\omega)$ in Figures 3 and 4.

Figure 1: Magnitude of $X_{1}(\omega)$

Figure 2: Phase of $X_{1}(\omega)$

Figure 3: Magnitude of $X_{2}(\omega)$

Figure 4: Phase of $X_{2}(\omega)$

Problem 2\{16 Points $\}$

The nonzero elements of a discrete-time sequence $x(n)$ are: $x[-3]=-1, x[-1]=1, x[1]=1, x[3]=1$, $x[4]=2, x[5]=1, x[7]=-1$. For all other $n, x[n]=0$. Calculate the following WITHOUT obtaining $X_{d}(\omega)$ first.

1. (a) $X_{d}(0)$
(b) $\int_{-\pi}^{\pi} X_{d}(\omega) d \omega$
(c) $X_{d}(\pi)$
(d) $\int_{-\pi}^{\pi}\left|X_{d}(\omega)\right|^{2} d \omega$
(e) $\int_{-\pi}^{\pi}\left|\frac{d X_{d}(\omega)}{d \omega}\right|^{2} d \omega$
2. Let $Y_{d}(\omega)=\operatorname{Re}\left(X_{d}(\omega)\right)$. Find the discrete-time sequence $y[n]$ whose DTFT is $Y_{d}(\omega)$.

Problem 3\{6 Points $\}$

The continuous-time signal $x_{a}(t)$ has the continuous-time Fourier transform shown in the figure below. The signal $x_{a}(t)$ is sampled with sampling interval T to get the discrete-time signal $x[n]=x_{a}(n T)$.

Figure 5: $X_{a}(\Omega)$
a. Sketch $X_{d}(\omega)$ (the DTFT of $x[n]$) for the sampling intervals $\mathrm{T}=1 / 200$ and $1 / 50$ in the corresponding frames provided. Remember to label the axes and show associated values on the axes.

b. What is the minimum sampling rate f_{s} (Nyquist rate) such that no aliasing will occur in sampling the continuous-time signal?

Nyquist Rate $=$ \qquad

Problem 4\{12 Points $\}$

Compute the discrete-time Fourier transform (DTFT) of the following signals directly using the defining formula.
(a) $x[n]=\sin \left(\frac{3}{4} n\right)$
(b) $x[n]=-u[n+3]+u[n-3]$
(c) $x[n]=\left(0.4 e^{j \pi / 2}\right)^{n} u[n]$

Problem 5\{6 Points $\}$

Let $x_{a}(t)=\sin (7 \pi t)+0.75 \cos (5 \pi t)$. Let $\left\{X_{m}\right\}_{m=0}^{(M-1)}$ denote the order-M DFT of $x_{a}(t)$.

1. Given that the analog frequency corresponding to $X[51]$ is 3.984π, determine the relationship between M and T where T is the sampling period.
2. Given a 2 second long segment of $x_{a}(t)$, how would you choose the sampling interval T to resolve the sinusoidal components and avoid aliasing? State your criterion for resolvability.

Problem 6\{13 Points $\}$

Let $x[n]$ denote the input and $h[n]$ the impulse response of a linear time-invariant system. For the pairs of x and h given in parts (a)-(c), determine the output $y[n]$. You do not need to solve parts (b) and (c) independently; use your knowledge of linearity and time invariance to minimize the work in parts (b) and (c).
a. $x[n]=u[n]$ and $h[n]=a^{n} u[-n-1]$, with $|a|>1$.
b. $x[n]=u[n-4]$ and $h[n]=2^{n} u[-n-1]$.
c. $x[n]=u[n]$ and $h[n]=(0.5) 2^{n} u[-n]$.

Problem 7\{4 Points $\}$
Give two examples where zero-padding is useful in digital signal processing.

Problem 8\{18 Points $\}$

Suppose you are given the 4 -point discrete-time sequence $x[n]=\{2,1,2,1\}$ where the first element corresponds to $n=0$.
a. Compute the DFT of $X[m]$ of $x[n]$.
b. Suppose $x[n]$ is the sampled version of the continuous-time signal $x(t)$. Using standard notation, give the equation that relates $x(t)$ and $X[m]$.
c. What is the DFT of $X[m]$?
d. Suppose you are given another sequence $w[n]=\{1,2,3,4\}$. Let $C[m]$ denote the cyclic convolution of $x[n]$ and $w[n]$. Compute the values of $C[1]$ and $C[3]$.

Problem $9\{15$ Points $\}$

In (a)-(c), $x[n]$ denotes the input of a system and $y[n]$ denotes its output.
(a) $y[n]=x[2 n]$

Is the system causal? (Yes/No)
Justify your answer:
(b) $y[n]=n^{2} x[2 n]$

Is the system time-invariant? (Yes/No)
Justify your answer:
(c) $y[n]=x^{3}[2 n]$

Is the system linear? (Yes/No)
Justify your answer:

