Course Information

Instructors:	Chandra Radhakrishnan	Peter Kairouz
Email:	cradhak@illinois.edu	kairouz2@illinois.edu
Office Hours:	T: 10:00 AM - 12:00 PM	R: 10:00 AM - 12:00 PM
Office:	120 CSL	119 CSL

Lectures: MTWRF, 8:30 AM - 9:50 AM
Everitt Lab 241
Recitation Session: R, 5:00 PM - 6:00 PM
EH 106B6
Web: http://courses.engr.illinois.edu/ece310/

Textbooks

- Required: D. Munson and A. Singer, ECE 310 Course Notes.

Prerequisites

- ECE 210 (Analog Signal Processing) or consent of instructor.

Course Philosophy

Upon completion of this course, you should be able to recognize the terminology that is used in the Digital Signal Processing (DSP) field, explain the theory and concepts behind the construction of DSP systems, and analyze basic DSP building blocks; including analog-to-digital (A/D) and digital-to-analog (D/A) converters, digital filters, spectrum analyzers, sample rate converters (up-sampling and down-sampling), and the fast Fourier transform (FFT) algorithm. This course should give you the necessary tools to design and synthesize these building blocks and use them effectively in applications and evaluate DSP systems and justify choices among alternative designs. The requirement from you, however, is to think critically, ask questions, and apply problem-solving techniques.

Grading

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exams (2)</td>
<td>40%</td>
</tr>
<tr>
<td>Homework (8)</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Late assignments will reduce the grade by 20% per day
- There will be two midterm exams. The exam dates and locations are tentatively scheduled as follows: Wednesday, July 6, 2011 and Wednesday, July 27, 2011 at 5:00 PM in EH 106B1.
- All exams are closed-book. However, you can bring one 8.5'×11' sheet of handwritten notes to the exam.
- Final exam is comprehensive; you are allowed to bring two previously handwritten notes (from midterms 1 & 2) in addition to a new one.
<table>
<thead>
<tr>
<th>Week</th>
<th>MATERIALS</th>
</tr>
</thead>
</table>
| 1 | DSP overview
Continuous-time (CT) and discrete-time (DT) signals
Complex numbers
Impulses
Fourier transform (FT)
Discrete-time Fourier transform (DTFT)
Discrete Fourier transform (DFT) |
| 2 | DFT spectral analysis
Sampling
Ideal A/D (analog-to-digital) converter
LSI Systems
Convolution |
| 3 | Impulse response
Difference equations
z-transform
Poles and zeros
Inverse z-transform |
| 4 | Convolution via z-transform
System analysis
BIBO stability
Frequency response |
| 5 | DT processing of CT signals
A/D and D/A converters
Analog frequency response of a digital processor
Applications of DSP systems |
| 6 | Digital filter structures
FIR and IIR filters
Generalized linear phase
FIR filter design: truncation, windows, min-max, and frequency sampling |
| 7 | IIR filter design
IIR design via bilinear transformation
Applications of digital filtering
Downsampling and upsampling |
| 8 | Oversampling A/D and D/A
Digital interpolation
Fast Fourier transforms (FFT)
Fast convolution
Applications and review |