ECE 313: Probability with Engineering Applications

Chapter 1: Foundations
Instructor: Peter Kairouz

1.2: Axioms of probability

A random experiment is modeled by a probability space, which is a triplet (Ω, \mathcal{F}, P).

- Ω represents the set of all possible outcomes. For example, for a random experiment that involves rolling a six sided fair die, $\Omega=\{1,2,3,4,5,6\}$. Ω is said to be finite if it has finitely many elements.
- An event A is a subset of Ω. An event A is said to occur or to be true if the outcome of a random experiment ω is an element of A. For example, for the above die experiment, A can be equal to $\{1,3,5\}$, the set of odd numbers.
- \mathcal{F} represents the set of all possible events. You can think of \mathcal{F} as the the set of all subsets of Ω.
- P is a probability measure on \mathcal{F}, which assigns a probability $P(A)$, to each event $A \in \mathcal{F}$. For example, for a finite Ω, you can set $P(A)=\frac{|A|}{|\Omega|}$, where $|A|$ represents the number of elements A.

Observe that $A \cup A^{c}=\Omega$ and $A \cap A^{c}=\emptyset$. Two events A, B are said to be mutually exclusive if $A \cap B=\emptyset$. They are said to be mutually exhaustive if $A \cup B=\Omega$. Sets A and B form a partition if they are mutually exclusive and exhaustive. Similarly, we have that

- A_{1}, A_{2}, \cdots are mutually exclusive if $A_{i} \cap A_{j}=\emptyset$ for all i and j
- A_{1}, A_{2}, \cdots are mutually exhaustive if $A_{1} \cup A_{2} \cup \cdots=\Omega$
- The list of events A_{1}, A_{2}, \cdots forms a partition if A_{1}, A_{2}, \cdots are mutually exclusive and exhaustive

De Morgan's law:

- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- $(A \cap B)^{c}=A^{c} \cup B^{c}$

Event axioms:

1. $\Omega \in \mathcal{F}$
2. If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$
3. If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$. More generally, if A_{1}, A_{2}, \cdots are all in \mathcal{F}, then $A_{1} \cup A_{2} \cup \cdots$ is in \mathcal{F}.

Event properties: If the above axioms are satisfied, then \mathcal{F} has the following properties.

- $\emptyset \in \mathcal{F}$
- If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$. More generally, if A_{1}, A_{2}, \cdots are all in \mathcal{F}, then $A_{1} \cup A_{2} \cup \cdots$ is in \mathcal{F}.

Probability axioms:

1. $\forall A \in \mathcal{F}, P(A) \geq 0$
2. If $A, B \in \mathcal{F}$ and are mutually exclusive, then $P(A \cup B)=P(A)+P(B)$. More generally, if A_{1}, A_{2}, \cdots are all in \mathcal{F} and are mutually exclusive, then $P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots$.
3. $P(\Omega)=1$

Probability measure properties: If the above axioms are satisfied, then P has the following properties.

- $\forall A \in \mathcal{F}, P\left(A^{c}\right)=1-P(A)$
- $\forall A \in \mathcal{F}, P(A) \leq 1$
- $P(\emptyset)=0$
- If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$

1.3: Calculating the size of various sets

Principle of counting: If there are m ways to select one variable and n ways to select another variable, and if these two selections can be made independently, then there is a total o $m n$ ways to make the pair of selections. For example, there are 2^{8} possible 8 -bit binary strings.

Orderings and permutations: The number of ways to order n distinct objects is $n!=n \cdot(n-1) \cdots 2 \cdot 1$. For example, there are 4 ! orderings of the letters A, B, C, and D. An ordering of n distinct objects is called a permutation.

Principle of over counting: If an object appears k times in a list of n objects and if the other $n-k$ objects are all distinct, then we can order the n objects in $n!/ k!$ distinct ways. More generally, if objects $1,2, \ldots, l$ appear $k_{1}, k_{2}, \ldots, k_{l}$ times, respectively, and if the other $n-k_{1} \cdots-k_{l}$ objects are all distinct, then we can order the n objects in

$$
\frac{n!}{k_{1}!\cdot k_{2}!\cdots k_{l}!}
$$

distinct ways. For example, there are $6!/(3!\cdot 2!)$ distinct orderings of the letters ILLINI.
Choosing k unordered objects from a set of n distinct objects: The number of subsets of size k of a set of n distinct objects is given by

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Notice that the order of the k elements doesn't matter here because sets are "unordered". Also, observe that $\binom{n}{k}=\binom{n}{n-k}$ because instead of choosing k objects, we can choose $n-k$ objects and consider the other k objects. For example, there are $\binom{9}{5}$ ways to choose 5 out of 9 basketball players.

1.4: Probability experiments with equally likely outcomes

Please read examples 1.4.1, 1.4.2, and 1.4.3 carefully.

1.5: Sample spaces with infinite cardinality

If a random experiment can generate infinitely many outcomes, then $|\Omega|=\infty$. We distinguish between two important types of sample spaces with infinite cardinality.

- If $\Omega=\left\{\omega_{1}, \omega_{2}, \cdots\right\}$, then Ω is countably infinite (i.e., we can list the elements Ω sequentially without skipping any intermediate elements). For example, if $\Omega=\mathbb{N}$ (the set of natural numbers), $\Omega=\mathbb{Z}$ (the set of all integers), or $\Omega=\mathbb{Q}$ (the set of all rational numbers), then Ω is countably infinite.
- If $\Omega=\{\omega: 0 \leq \omega \leq 1\}$ or $\Omega=\mathbb{R}$, then Ω is uncountably infinite. Equivalently, we say that Ω is not countable.

The concept of countable and uncountable sample spaces applies not only to probability sample spaces, but also for arbitrary spaces/sets.

