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Chapter 1: Foundations
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1.2: Axioms of probability

A random experiment is modeled by a probability space, which is a triplet (Ω,F , P ).

• Ω represents the set of all possible outcomes. For example, for a random experiment that involves
rolling a six sided fair die, Ω = {1, 2, 3, 4, 5, 6}. Ω is said to be finite if it has finitely many elements.

• An event A is a subset of Ω. An event A is said to occur or to be true if the outcome of a random
experiment ω is an element of A. For example, for the above die experiment, A can be equal to {1, 3, 5},
the set of odd numbers.

• F represents the set of all possible events. You can think of F as the the set of all subsets of Ω.

• P is a probability measure on F , which assigns a probability P (A), to each event A ∈ F . For example,

for a finite Ω, you can set P (A) = |A|
|Ω| , where |A| represents the number of elements A.

Observe that A ∪Ac = Ω and A ∩Ac = ∅. Two events A,B are said to be mutually exclusive if A ∩B = ∅.
They are said to be mutually exhaustive if A ∪ B = Ω. Sets A and B form a partition if they are mutually
exclusive and exhaustive. Similarly, we have that

• A1, A2, · · · are mutually exclusive if Ai ∩Aj = ∅ for all i and j

• A1, A2, · · · are mutually exhaustive if A1 ∪A2 ∪ · · · = Ω

• The list of events A1, A2, · · · forms a partition if A1, A2, · · · are mutually exclusive and exhaustive

De Morgan’s law:

• (A ∪B)
c

= Ac ∩Bc

• (A ∩B)
c

= Ac ∪Bc

Event axioms:

1. Ω ∈ F

2. If A ∈ F , then Ac ∈ F

3. If A,B ∈ F , then A ∪B ∈ F . More generally, if A1, A2, · · · are all in F , then A1 ∪A2 ∪ · · · is in F .

Event properties: If the above axioms are satisfied, then F has the following properties.

• ∅ ∈ F

• If A,B ∈ F , then A ∩B ∈ F . More generally, if A1, A2, · · · are all in F , then A1 ∪A2 ∪ · · · is in F .

Probability axioms:

1. ∀A ∈ F , P (A) ≥ 0

2. If A,B ∈ F and are mutually exclusive, then P (A∪B) = P (A) + P (B). More generally, if A1, A2, · · ·
are all in F and are mutually exclusive, then P (A1 ∪A2 ∪ · · · ) = P (A1) + P (A2) + · · · .

3. P (Ω) = 1

Probability measure properties: If the above axioms are satisfied, then P has the following properties.
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• ∀A ∈ F , P (Ac) = 1− P (A)

• ∀A ∈ F , P (A) ≤ 1

• P (∅) = 0

• If A ⊆ B, then P (A) ≤ P (B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

1.3: Calculating the size of various sets

Principle of counting: If there are m ways to select one variable and n ways to select another variable,
and if these two selections can be made independently, then there is a total o mn ways to make the pair of
selections. For example, there are 28 possible 8-bit binary strings.

Orderings and permutations: The number of ways to order n distinct objects is n! = n · (n− 1) · · · 2 · 1.
For example, there are 4! orderings of the letters A, B, C, and D. An ordering of n distinct objects is called
a permutation.

Principle of over counting: If an object appears k times in a list of n objects and if the other n − k
objects are all distinct, then we can order the n objects in n!/k! distinct ways. More generally, if objects
1, 2, ..., l appear k1, k2, ..., kl times, respectively, and if the other n− k1 · · · − kl objects are all distinct, then
we can order the n objects in

n!

k1! · k2! · · · kl!
distinct ways. For example, there are 6!/(3! · 2!) distinct orderings of the letters ILLINI.

Choosing k unordered objects from a set of n distinct objects: The number of subsets of size k of
a set of n distinct objects is given by (

n

k

)
=

n!

(n− k)!k!
.

Notice that the order of the k elements doesn’t matter here because sets are “unordered”. Also, observe
that

(
n
k

)
=

(
n

n−k
)

because instead of choosing k objects, we can choose n− k objects and consider the other

k objects. For example, there are
(

9
5

)
ways to choose 5 out of 9 basketball players.

1.4: Probability experiments with equally likely outcomes

Please read examples 1.4.1, 1.4.2, and 1.4.3 carefully.

1.5: Sample spaces with infinite cardinality

If a random experiment can generate infinitely many outcomes, then |Ω| =∞. We distinguish between two
important types of sample spaces with infinite cardinality.

• If Ω = {ω1, ω2, · · · }, then Ω is countably infinite (i.e., we can list the elements Ω sequentially without
skipping any intermediate elements). For example, if Ω = N (the set of natural numbers), Ω = Z (the
set of all integers), or Ω = Q (the set of all rational numbers), then Ω is countably infinite.

• If Ω = {ω : 0 ≤ ω ≤ 1} or Ω = R, then Ω is uncountably infinite. Equivalently, we say that Ω is not
countable.

The concept of countable and uncountable sample spaces applies not only to probability sample spaces, but
also for arbitrary spaces/sets.


