ECE 313: Probability with Engineering Applications

Chapter 2: Discrete-Type Random Variables

Instructor: Peter Kairouz

2.1: Random variables and probability mass functions

For a probability space (Ω, \mathcal{F}, P) , a random variable X is a real-valued function on Ω . In other words, X maps ω , the outcome of a probability experiment, to a real value. For example, X can be the sum of the numbers showing on a pair of fair dice when they are rolled. Here, $\Omega = \{\omega = (i, j) : 1 \le i \le 6, 1 \le j \le 6\}$ and $X(\omega) = i + j$.

Discrete random variables. A random variable X is said to be of *discrete-type* if it can take finitely many values x_1, \dots, x_n or **countably** infinitely many values x_1, x_2, \dots .

Probability mass function. The probability mass function (PMF) for a discrete-type random variable X, p_X is defined as $p_X(x) = P(X = x)$. Note that the PMF always sums to $1, \sum_i p_X(x_i) = 1$, and for any event $A \in \mathcal{F}, P(X \in A) = \sum_{x_i \in A} p_X(x_i)$.

2.2: The mean and variance of a random variable

The mean (also called expectation) of a random variable X with PMF p_X is denoted by E[X] and is defined by $E[X] = \sum_{x_i} x_i p_X(x_i)$, where x_1, x_2, \cdots is the list of values that X can take. For example, if X is the sum of the two numbers showing on a pair fair dice when they are rolled, then E[X] = 7.

The law of the unconscious statistician (LOTUS). If Y = g(X), then $E[Y] = \sum_{x_i} g(x_i) p_X(x_i)$, where the summation is taken over the list of values that X can take. For example, if X_1 and X_2 are the two numbers showing when two fair dice are rolled, and $Y = X_1 X_2$, then $E[Y] = (1/36) \sum_{i=1}^6 \sum_{j=1}^6 ij = 12.25$.

Linearity of the expectation operator. If g(X) and h(X) are functions of X, and a, b, and c are constants, then ag(X) + bh(X) + c is also a function of X, and

$$E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + c.$$

The expectation operator E[.] is a linear one: E[aX + b] = aE[X] + b.

Variance and standard deviation. The variance of a random variable X is a measure of how spread out the PMF of X is. Let $\mu_X = E[X]$, the variance is defined by $\operatorname{Var}(X) = E[(X - \mu_X)^2]$. An alternative expression for the variance is given by $\operatorname{Var}(X) = E[X^2] - \mu_X^2$. Sometimes, $\operatorname{Var}(X)$ is referred to as the mean square deviation of X around its mean. The variance is often denoted by σ_X^2 , where $\sigma_X = \sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X. The variance operator $\operatorname{Var}(.)$ is not linear. In fact,

$$\operatorname{Var}(X+b) = \operatorname{Var}(X)$$

 $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X).$

The random variable $Y = \frac{X - \mu_X}{\sigma_X}$ is called the *standardized version* of X. This is because no matter what μ_X and σ_X are, $\mu_Y = 0$ and $\sigma_Y = 1$.

The moment of a random variable. For an integer $i \ge 1$, the i^{th} moment of X is defined to be $E[X^i]$. Note that the variance of X is equal to its second moment minus the square of its first moment (its mean).

The mode of a random variable. The mode of a random variable X is the value x with the highest probability. In other words, if x is the mode of X, then $p_X(x) \ge p_X(u)$ for all u.

Let A and B be two events in \mathcal{F} for some probability experiment (Ω, \mathcal{F}, P) . The *conditional probability* of B given A is defined by

$$P(B|A) = \begin{cases} \frac{P(A \cap B)}{P(A)} & \text{if } P(A) > 0\\ \text{undefined} & \text{if } P(A) = 0. \end{cases}$$

In general, P(B|A) can be smaller than, larger than, or equal to P(B). For example, if we roll two fair dice, and let A = "the sum is six" and B = "the numbers are not equal". Then P(B) = 5/6 while P(B|A) = 4/5. Therefore, P(B|A) < P(B), which should be interpreted as: if we know that $\omega \in A$, then the probability of ω being in B decreases.

Properties of conditional distributions. The following properties follow from the definition of conditional probabilities.

- 1. $P(B|A) \ge 0$
- 2. $P(B|A) + P(B^c|A) = 1$. More generally, if B_1, B_2, \cdots is a list of mutually exclusive sets, then $P(B_1 \cup B_2 \cup \cdots \mid A) = P(B_1|A) + P(B_2|A) + \cdots$.
- 3. $P(\Omega|A) = 1$

4.
$$P(A \cap B) = P(A)P(B|A)$$

5. $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$

The first three properties imply that P(.|A) is a probability measure that satisfies the three probability axioms. Finally, observe that in general, P(B|A) need not be equal to P(A|B).

2.4: Independence and the binomial distribution

Two events A and B are said to be *independent* if P(B|A) = P(B). This condition is equivalent to $P(A \cap B) = P(A)P(B)$. For example, if we roll a die and let A be the event that the outcome is even, and B be the event that the outcome is a multiple of 3. Then A and B are independent because $P(A \cap B) = 1/6$, P(A) = 1/2, and P(B) = 1/3. Note that the definition of independence is symmetric in A and B. Therefore, if A is independent of B, B is also independent of A (and vice versa). To emphasize this, some people like to say A and B are *mutually independent*.

Physically independent events. Two events A and B are physically independent if they depend on physically separated random experiments. For example, if a fair coin is flipped and a die is rolled, and $A = \{\text{Heads}\}$ and $B = \{\text{number showing} = 6\}$, then A and B are physically independent.

Equivalent independence conditions. The following 4 statements are equivalent.

- 1. A and B are independent
- 2. A^c and B are independent
- 3. A and B^c are independent
- 4. A^c and B^c are independent

Therefore, to show that A and B are independent, it suffices to prove that any one of the four above statements is true.

Pairwise vs. mutual independence. Events A, B, and C are pairwise independent if $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$, and $P(C \cap B) = P(C)P(B)$. Pairwise independence does not imply

that any one of the events is independent of the intersection of the other two events! In order to have such notion of independence, called *mutual independence*, a stronger condition is needed. Events A, B, and C are *mutually independent* if

1. they are pairwise independent and

2.
$$P(A \cap B \cap C) = P(A)P(B)P(C)$$
.

Suppose that A, B, C are mutually independent. Then A is independent of any event that can be made from B and C. For example, A is independent of $B \cup C$ or $B \cap C$.

Independence of random variables. Let X and Y be two random variables defined over the same random experiment. The *joint* PMF of X and Y is given by P(X = i, Y = j). X and Y are independent if $P(X = i, Y = j) = p_X(i)p_Y(j)$ for all i, j. Independence of random variables will be discussed in more detail in later lectures.

Bernoulli distribution. A random variable X is said to have a *Bernoulli distribution* with parameter p, where $0 \le p \le 1$, if $X \in \{0, 1\}$, and P(X = 1) = p and P(X = 0) = 1 - p. Note that E[X] = p and Var(X) = p(1-p).

Binomial distribution. Suppose that *n* independent Bernoulli trials are conducted, each resulting in a 1 with probability *p* and a 0 with probability 1 - p. Let *X* be the total number of ones occurring in the *n* trials. Then $X \in \{0, \dots, n\}$ follows a *binomial distribution*. Moreover, the PMF of *X* is

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Thus, the binomial distribution is parameterized by n (the number of Bernoulli trials) and p (the probability of getting a 1 in each trial). The mean, variance of a binomial random variable X are given by

$$E[X] = np$$

Var(X) = $np(1-p)$
Mode(X) = largest integer $\leq (n+1)p$.

2.5: Geometric distribution

2.6: Random Process

A discrete time random process X_k is a collection of random variables $\{X_1, X_2, \dots\}$, representing a sequence of random experiments over time. The k^{th} random variable X_k indicates the outcome of the k^{th} random experiment. The Bernoulli process is a special case where each X_k is the outcome of an independent Bernoulli trial. Therefore, $X_k = 1$ with probability p and $X_k = 0$ with probability 1 - p. More generally, $P(X_1 = 1, X_3 = 1, X_5 = 0, X_{12} = 1, X_{15} = 0) = p^3(1 - p)^2$.