
ECE 313: Probability with Engineering Applications

Chapter 2: Discrete-Type Random Variables

Instructor: Peter Kairouz

2.1: Random variables and probability mass functions

For a probability space (Ω,F , P ), a random variable X is a real-valued function on Ω. In other words, X
maps ω, the outcome of a probability experiment, to a real value. For example, X can be the sum of the
numbers showing on a pair of fair dice when they are rolled. Here, Ω = {ω = (i, j) : 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}
and X(ω) = i+ j.

Discrete random variables. A random variable X is said to be of discrete-type if it can take finitely many
values x1, · · · , xn or countably infinitely many values x1, x2, · · · .

Probability mass function. The probability mass function (PMF) for a discrete-type random variable
X, pX is defined as pX(x) = P (X = x). Note that the PMF always sums to 1,

∑
i pX(xi) = 1, and for any

event A ∈ F , P (X ∈ A) =
∑
xi∈A pX(xi).

2.2: The mean and variance of a random variable

The mean (also called expectation) of a random variable X with PMF pX is denoted by E[X] and is defined
by E[X] =

∑
xi
xipX(xi), where x1, x2, · · · is the list of values that X can take. For example, if X is the

sum of the two numbers showing on a pair fair dice when they are rolled, then E[X] = 7.

The law of the unconscious statistician (LOTUS). If Y = g(X), then E[Y ] =
∑
xi
g(xi)pX(xi), where

the summation is taken over the list of values that X can take. For example, if X1 and X2 are the two
numbers showing when two fair dice are rolled, and Y = X1X2, then E[Y ] = (1/36)

∑6
i=1

∑6
j=1 ij = 12.25.

Linearity of the expectation operator. If g(X) and h(X) are functions of X, and a, b, and c are
constants, then ag(X) + bh(X) + c is also a function of X, and

E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + c.

The expectation operator E[.] is a linear one: E[aX + b] = aE[X] + b.

Variance and standard deviation. The variance of a random variable X is a measure of how spread
out the PMF of X is. Let µX = E[X], the variance is defined by Var(X) = E[(X − µX)2]. An alternative
expression for the variance is given by Var(X) = E[X2]−µ2

X . Sometimes, Var(X) is referred to as the mean

square deviation of X around its mean. The variance is often denoted by σ2
X , where σX =

√
Var(X) is called

the standard deviation of X. The variance operator Var(.) is not linear. In fact,

Var(X + b) = Var(X)

Var(aX) = a2Var(X).

The random variable Y = X−µX

σX
is called the standardized version of X. This is because no matter what

µX and σX are, µY = 0 and σY = 1.

The moment of a random variable. For an integer i ≥ 1, the ith moment of X is defined to be E[Xi].
Note that the variance of X is equal to its second moment minus the square of its first moment (its mean).

The mode of a random variable. The mode of a random variable X is the value x with the highest
probability. In other words, if x is the mode of X, then pX(x) ≥ pX(u) for all u.
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2.3: Conditional probabilities

Let A and B be two events in F for some probability experiment (Ω,F , P ). The conditional probability of
B given A is defined by

P (B|A) =

{
P (A∩B)
P (A) if P (A) > 0

undefined if P (A) = 0.

In general, P (B|A) can be smaller than, larger than, or equal to P (B). For example, if we roll two fair dice,
and let A =“the sum is six” and B =“the numbers are not equal”. Then P (B) = 5/6 while P (B|A) = 4/5.
Therefore, P (B|A) < P (B), which should be interpreted as: if we know that ω ∈ A, then the probability of
ω being in B decreases.

Properties of conditional distributions. The following properties follow from the definition of condi-
tional probabilities.

1. P (B|A) ≥ 0

2. P (B|A) +P (Bc|A) = 1. More generally, if B1, B2, · · · is a list of mutually exclusive sets, then P (B1 ∪
B2 ∪ · · · |A) = P (B1|A) + P (B2|A) + · · · .

3. P (Ω|A) = 1

4. P (A ∩B) = P (A)P (B|A)

5. P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B)

The first three properties imply that P (.|A) is a probability measure that satisfies the three probability
axioms. Finally, observe that in general, P (B|A) need not be equal to P (A|B).

2.4: Independence and the binomial distribution

Two events A and B are said to be independent if P (B|A) = P (B). This condition is equivalent to
P (A∩B) = P (A)P (B). For example, if we roll a die and let A be the event that the outcome is even, and B
be the event that the outcome is a multiple of 3. Then A and B are independent because P (A ∩B) = 1/6,
P (A) = 1/2, and P (B) = 1/3. Note that the definition of independence is symmetric in A and B. Therefore,
if A is independent of B, B is also independent of A (and vice versa). To emphasize this, some people like
to say A and B are mutually independent.

Physically independent events. Two events A and B are physically independent if they depend on
physically separated random experiments. For example, if a fair coin is flipped and a die is rolled, and
A = {Heads} and B = {number showing = 6}, then A and B are physically independent.

Equivalent independence conditions. The following 4 statements are equivalent.

1. A and B are independent

2. Ac and B are independent

3. A and Bc are independent

4. Ac and Bc are independent

Therefore, to show that A and B are independent, it suffices to prove that any one of the four above state-
ments is true.

Pairwise vs. mutual independence. Events A,B, and C are pairwise independent if P (A ∩ B) =
P (A)P (B), P (A ∩ C) = P (A)P (C), and P (C ∩ B) = P (C)P (B). Pairwise independence does not imply
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that any one of the events is independent of the intersection of the other two events! In order to have such
notion of independence, called mutual independence, a stronger condition is needed. Events A,B, and C are
mutually independent if

1. they are pairwise independent and

2. P (A ∩B ∩ C) = P (A)P (B)P (C).

Suppose that A,B,C are mutually independent. Then A is independent of any event that can be made from
B and C. For example, A is independent of B ∪ C or B ∩ C.

Independence of random variables. Let X and Y be two random variables defined over the same ran-
dom experiment. The joint PMF of X and Y is given by P (X = i, Y = j). X and Y are independent if
P (X = i, Y = j) = pX(i)pY (j) for all i, j. Independence of random variables will be discussed in more detail
in later lectures.

Bernoulli distribution. A random variable X is said to have a Bernoulli distribution with parameter p,
where 0 ≤ p ≤ 1, if X ∈ {0, 1}, and P (X = 1) = p and P (X = 0) = 1 − p. Note that E[X] = p and
Var(X) = p(1− p).

Binomial distribution. Suppose that n independent Bernoulli trials are conducted, each resulting in a 1
with probability p and a 0 with probability 1 − p. Let X be the total number of ones occurring in the n
trials. Then X ∈ {0, · · · , n} follows a binomial distribution. Moreover, the PMF of X is

pX(k) =

(
n

k

)
pk(1− p)n−k.

Thus, the binomial distribution is parameterized by n (the number of Bernoulli trials) and p (the probability
of getting a 1 in each trial). The mean, variance of a binomial random variable X are given by

E[X] = np

Var(X) = np(1− p)
Mode(X) = largest integer ≤ (n+ 1)p.

2.5: Geometric distribution

2.6: Random Process

A discrete time random process Xk is a collection of random variables {X1, X2, · · · }, representing a sequence
of random experiments over time. The kth random variable Xk indicates the outcome of the kth random
experiment. The Bernoulli process is a special case where each Xk is the outcome of an independent
Bernoulli trial. Therefore, Xk = 1 with probability p and Xk = 0 with probability 1 − p. More generally,
P (X1 = 1, X3 = 1, X5 = 0, X12 = 1, X15 = 0) = p3(1− p)2.


