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The Staircase Mechanism in Differential Privacy
Quan Geng, Peter Kairouz, Sewoong Oh, and Pramod Viswanath, Fellow, IEEE

Abstract—Adding Laplacian noise is a standard approach in
differential privacy to sanitize numerical data before releasing it.
In this paper, we propose an alternative noise adding mechanism:
the staircase mechanism, which is a geometric mixture of uniform
random variables. The staircase mechanism can replace the
Laplace mechanism in each instance in the literature and for the
same level of differential privacy, the performance in each instance
improves; the improvement is particularly stark in medium-low
privacy regimes. We show that the staircase mechanism is the
optimal noise adding mechanism in a universal context, subject to
a conjectured technical lemma (which we also prove to be true for
one and two dimensional data).

Index Terms—Data privacy, randomized algorithm.

I. INTRODUCTION

D IFFERENTIAL privacy is a formal framework to quan-
tify to what extent individual privacy in a statistical data-

base is preserved while releasing useful aggregate information
about the database. It provides strong privacy guarantees by re-
quiring the indistinguishability of whether an individual is in the
dataset or not based on the released information. The key idea
of differential privacy is that the presence or absence of any in-
dividual data in the database should not affect the final released
statistical information significantly, and thus it can give strong
privacy guarantees against an adversary with arbitrary auxiliary
information. For motivation and background of differential pri-
vacy, we refer the readers to the survey [1] by Dwork.
Since its introduction in [2] by Dwork et al., differential pri-

vacy has spawned a large body of research in differentially pri-
vate data-releasingmechanism design and performance analysis
in various settings. Differential privacy is a privacy-preserving
constraint imposed on the query output releasing mechanisms,
and to make use of the released information, it is important to
understand the fundamental tradeoff between utility(accuracy)
and privacy. The basic problem setting in differential privacy
for statistical database is as follows: suppose a dataset curator
is in charge of a statistical database which consists of records
of many individuals, and an analyst sends a query request to
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the curator to get some aggregate information about the whole
database. Without any privacy concerns, the database curator
can simply apply the query function to the dataset, compute the
query output, and send the result to the analyst. However, to
protect the privacy of individual data in the dataset, the dataset
curator should use a randomized query-answering mechanism
such that the probability distribution of the query output does
not differ too much whether any individual record is in the data-
base or not.
Formally, consider a vector real-valued query function

(1)

where is the set of all possible datasets. The vector real-valued
query function will be applied to a dataset, and query output is
a real vector. Two datasets are called neighboring
datasets if they differ in at most one element, i.e., one is a proper
subset of the other and the larger dataset contains just one addi-
tional element [1]. A randomized query-answering mechanism
for the query function will randomly output a number with

probability distribution depends on query output , where
is the dataset.
Definition 1 ( -Differential Privacy [1]): A randomized

mechanism gives -differential privacy if for all data sets
and differing on at most one element, and all

,

(2)

where is the random output of the mechanism when the
query function is applied to the dataset .
The differential privacy constraint (2) essentially requires that

for all neighboring datasets, the probability distributions of the
output of the randomized mechanism should be approximately
the same. Therefore, for any individual record, its presence or
absence in the dataset will not significantly affect the output of
the mechanism, which makes it hard for adversaries with ar-
bitrary background knowledge to make inference on any indi-
vidual from the released query output information. The param-
eter quantifies how private the mechanism is: the
smaller is , the more private the randomized mechanism is.
The query function will be applied to a dataset

, and query output can be written as
, which is a -dimensional

vector of real numbers.
The global sensitivity of multidimensional query function is

defined as:
Definition 2 (Query Sensitivity [1]): For a multidimensional

real-valued query function , the sensitivity of is
defined as

(3)
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Fig. 1. One dimensional Staircase-Shaped Probability Density Function.

for all differing in at most one element.
The standard approach to preserving the differential privacy

is to add noise to the query output1. Let be the value of the
query function evaluated at , the noise-adding mecha-
nism will output

where is the noise added by the mech-
anism to the output of query function. Specifically, the most
popular approach in the literature is to add Laplace noise:
Definition 3 (Laplacian Mechanism [2]): For a multidimen-

sional real-valued query function with sensitivity
, the Laplacian mechanism will output

where is a random variable with probability density
function

and all Laplacian random variables are independent.
Since its introduction in [2], the Laplacian mechanism has be-

come the standard tool in differential privacy and has been used
as the basic building block in a number of works on differential
privacy analysis in other more complex problem settings, e.g.,
[4]–[41]. Despite this near-universal use of the Laplacian mech-
anism there is no single demonstration of its optimality in any
setting.
In this paper we propose an alternative noise distribution, that

can replace Laplacian noise in each instance in the literature and
for the same privacy level add “lesser amount” of noise, in a
strong universal sense.

1Under the setting that the query function is real-valued and the released query
output is also real-valued (either scalar or vector), all privacy preserving mech-
anisms can be viewed as noise-adding mechanisms, where the noise can be de-
fined as the difference between the true query output and the released query
output, and the noise can be either dependent on or independent of the true
query output. In this paper we restrict ourselves to query-output independent
noise-addingmechanisms, andwe conjecture that the optimality of query-output
independent noise-adding mechanisms also holds for the multidimensional set-
ting, as for the single dimensional setting in [3].

Fig. 2. Two dimensional Staircase-Shaped Probability Density Function.

II. STAIRCASE MECHANISM

Consider a class of multidimensional probability distribu-
tions with symmetric and staircase-shaped probability density
function defined as follows. Given , define as the
probability distribution with probability density function
defined as

for , where is the normalization factor to make

(4)

Define , and define

where by convention is defined as 1. Then the closed-form
expression for is

It is straightforward to verify that is a valid proba-
bility density function and satisfies the differential privacy
constraint (9). Indeed, the probability density function
satisfies

which implies (9). We plot the probability density function
in Fig. 1 for and in Fig. 2 for . The nomen-

clature “staircase-shaped” is the visual structure of the pdf of
the noise, as seen in these illustrations. More generally, one can
visualize to be multi-dimensional staircase-shaped.
The staircase mechanism can be viewed as a geometric mix-

ture of uniform random variables and is very easy to generate
algorithmically. For the case of , a simple algorithmic im-
plementation is provided in Algorithm 1.
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Algorithm 1 Generation of Random Variable with
Staircase Distribution

Input: , , and .
Output: , a random variable (r.v.) with staircase
distribution specified by and .
Generate a r.v. with .
Generate a geometric r.v. with
for integer , where .
Generate a r.v. uniformly distributed in .
Generate a binary r.v. with

and
.

.
Output .

In the formula,

(5)
• determines the sign of the noise,
• determines which interval the noise lies
in,

• determines which subinterval of and
the noise lies in,

• helps to uniformly sample the subinterval.

III. COMPARISON WITH PRIOR WORK

In existing work on studying the tradeoff between accuracy
and privacy in differential privacy, the usual metric of accuracy
is in terms of the variance, or the expectation of the magnitude
of the noise added to the query output. For example, Hardt and
Talwar [42] study the tradeoff between privacy and error for
answering a set of linear queries over a histogram in a differ-
entially private way, where the error is defined as the worst ex-
pectation of the -norm of the noise among all possible query
output. [42] derives lower and upper bounds on the error given
the differential privacy constraint. Nikolov, Talwar and Zhang
[43] extend the result on the tradeoff between privacy and error
to the case of -differential privacy. Li et al.[9] study how
to optimize linear counting queries under differential privacy,
where the error is measured by the mean squared error of query
output estimates, which corresponds to the variance of the noise
added to the query output to preserve differential privacy.
More generally, the error can be a general function depending

on the additive noise (distortion) to the query output. Ghosh,
Roughgarden, and Sundararajan [44] study a very general
utility-maximization framework for a single count query with
sensitivity one under differential privacy, where the utility
(cost) function can be a general function depending on the noise
added to the query output. [44] shows that there exists a univer-
sally optimal mechanism (adding geometric noise) to preserve
differential privacy for a general class of utility functions under
a Bayesian framework. Brenner and Nissim [45] show that
for general query functions, no universally optimal differen-
tial privacy mechanisms exist. Gupte and Sundararajan [46]
generalize the result of [44] to a minimax setting. McSherry
and Talwar [47] introduce the exponential mechanism which
is a generic differentially private mechanism and can apply
to general abstract settings. In the multidimensional setting in

this paper, the exponential mechanism can be reduced to the
Laplacian mechanism.
The staircase mechanism was introduced in [3], for the single

dimension case ( ). There it is proved that given an -dif-
ferential privacy constraint, under a general utility-maximiza-
tion (equivalently, cost-minimization) model:
• adding query-output independent noise is indeed optimal
(under a mild technical condition);

• the optimal noise distribution is not Laplacian distribution;
instead, the optimal one has a staircase-shaped probability
density function.

These results are derived under the following settings:
• when the domain of the query output is the entire real line
or the set of all integers;

• nothing more about the query function is known beyond its
global sensitivity;

• either local sensitivity [48] of the query function is un-
known or it is the same as global sensitivity (as in the im-
portant case of count queries).

If any of these conditions are violated (the output domain has
sharp boundaries, or the local sensitivity deviates from the
global sensitivity [48], or we are restricted to specific query
functions [16]), then the optimal privacy mechanism need
not be data or query output dependent. The work in [3] has
utility model same as the one adopted in [44] and [46], but the
real-valued query function can have arbitrary sensitivity.
The contribution of this work is to generalize the results of

[3] from the single dimensional setting to the multidimensional
setting.

IV. OPTIMALITY OF STAIRCASE MECHANISMS

Let be the value of the query function evaluated at
, the noise-adding mechanism will output

where is the independent noise added
by the mechanism to the output of the query function. We first
derive the differential privacy constraint on the probability dis-
tribution of from (2).

(6)

where .
Since (2) holds for all measurable sets , and

, from (6) we have

(7)

for all measurable sets and for all such that
. Equation (7) is very similar to the sliding property in

[48]. In terms of the probability density function, the differential
privacy condition is equivalent to

(8)
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such that . Consider a cost function
which is a function of the added noise . Our goal is to mini-
mize the expectation of the cost subject to the -differential pri-
vacy constraint (7).
More precisely, let denote the probability distribution of

and use denote the probability . The optimiza-
tion problem we study is

(9)

We solve the above functional optimization problem
and derive the optimal noise probability distribution for

. Consider the cost function:

(10)
Let be the set of all probability distributions which sat-

isfy the differential privacy constraint (9). Our main result is
that the staircase mechanism is optimal for the cost function,
stated below and proved subject to the validity of two technical
lemmas, proved to be true for and left as a conjecture
more generally.
Theorem 1: For and the cost function

, then

Proof: We briefly discuss the main proof idea and tech-
nique. For the full proof, we defer to Section VII.
First, by using a combinatorial argument, we show that given

any noise probability distribution satisfying the -differential
privacy constraint, we can discretize the probability distribu-
tion by averaging it over each layer without increasing the
cost. Therefore, we only need to consider those probability dis-
tributions with the probability density function being a piece-
wise constant function of the -norm of the noise. Second, we
show that to minimize the cost, the probability density function
as a function of the -norm of the noise should be monotoni-
cally and geometrically decaying. Lastly, we show that the op-
timal probability density function should be staircase-shaped.
Therefore, the optimal noise probability distribution to pre-

serve -differential privacy for multidimensional real-valued
query function has a staircase-shaped probability density
function, which is specified by three parameters , and

.

We conjecture that Theorem 1 holds for arbitrary dimension
. To prove this conjecture, one can reuse the whole proof in
Section VII and only need to prove that Lemma 4 and Lemma 8
hold for arbitrary , which we believe are true. Lemma 4 shows
that when , we can discretize the probability distribution
by averaging it over each layer without increasing the cost,
and the new probability distribution also satisfies the differen-
tial privacy constraint. We give a constructive combinatorial ar-

gument to prove Lemma 4 for , and believe it holds for
arbitrary . We prove Lemma 8 for by studying the
monotonicity of the ratio between the cost and volume over each

layer. Indeed, to prove Lemma 8, one only needs to show
that , which is defined in Equation (144) in Section V.E of
[50], first decreases and then increases as a function of , and

. For fixed , one can derive the explicit formula for
and verify whether satisfies this property (we show it is

true for in our proof). Based on this discussion and the
conjectured validity of the technical lemmas for , we state
the generalization of Theorem 1.
Theorem 2: For dimensional query, under the conjec-

ture that Lemma 4 and Lemma 8 hold for arbitrary , the stair-
case mechanism has the least cost function
among all query-output independent noise-adding -differ-

entially private mechanisms, i.e.,

V. IMPLICATIONS

There are three parameters in the staircase mechanism: ,
and . The parameter is set by the differential privacy con-
straint, the parameter is set by the global sensitivity of the
query functions considered. The final parameter is
a free parameter that can be tuned to the specific cost function
being considered. For instance, [3] studies the setting of for
the setting in general. We recall these results briefly here.
Tominimize the expectation of the amplitude of noise, the op-

timal noise probability distribution has probability density func-
tion with

(11)

and the minimum expectation of noise amplitude is

(12)

On the other hand, the expectation of the amplitude of noise with
Laplace distribution is

(13)

By comparing and , it is easy to see that in the high
privacy regime ( is small) Laplacian mechanism is asymptoti-
cally optimal, and the additive gap from optimal value goes to 0
as ; in the low privacy regime ( is large), ,
while . In the high privacy regime ( is
small),

(14)

as . In the low privacy regime ( is large),

(15)

(16)
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as . Thus the gains of the staircase mechanism are
particularly significant when is large, i.e., in the medium-low
privacy regimes.
We now generalize this result to the multidimensional setting.

Specifically, consider the setting of . Let denote the
optimal cost for the cost function with . We have
Corollary 3: In the high privacy regime,

and in the low privacy regime,

The Laplacian mechanism adds independent Laplacian noise
to each component of the query output, and the cost is .
Therefore, in the high privacy regime, the gap between optimal
cost and the cost achieved by Laplacianmechanism goes to zero,
as , and we conclude Laplacian mechanism is approxi-
mately optimal in the high privacy regime. However, in the low
privacy regime (as ), the optimal cost is proportional
to , while the cost of Laplacian mechanism is proportional
to . We conclude the gap is significant in the low privacy
regime.

VI. DISCUSSION

The differential privacy constraint on the pdf of the noise,
from (8), implies that the ratio of the pdf evaluated at two dif-
ferent instances that are “neighbors” of each other is in the range

. A closer look at the staircase mechanism reveals that
its pdf satisfies the condition that the ratio of the pdf evaluated
at two different instances that are “neighbors” of each other is
exactly one of three discrete values: . Motivated by
the results here, any generic family of such differentially private
mechanisms are denoted as abstract staircase mechanisms in
[49]. In that work, it is also shown that staircase mechanisms are
extremal points of the (convex) space of differentially private
mechanisms and optimality of a large class of utility maximiza-
tion problems is achieved by one of these staircase mechanisms.

VII. PROOF OF MAIN RESULT
In this section we provide details of the proof of The-

orem 1, and, due to space limitations, occasionally defer to
[50, Section V] for the full details. The proof consists of 4 steps
in total, and in each step we narrow down the set of probability
distributions where the optimal probability distribution should
lie in:
• Step 1 proves that we only need to consider probability dis-
tributions which have symmetric piecewise constant prob-
ability density functions.

• Step 2 proves that we only need to consider those sym-
metric piecewise constant probability density functions
which are monotonically decreasing.

• Step 3 proves that optimal probability density function
should periodically decay.

• Step 4 proves that the optimal probability density function
is staircase-shaped in the multidimensional setting, and it
concludes the proof.

A. Step 1

Given , define

(17)

Define

(18)

Our goal is to prove that
.

If , then due to the definition of , we have

(19)
and thus

. So we only need to consider the case ,
i.e., is finite. Therefore, in the rest of the proof, we assume

is finite.
First we show that given any probability measure ,

we can use a sequence of probability measures with multidi-
mensionally piecewise constant probability density functions to
approximate .
Given and , define

(20)

It is easy to calculate the volume of , which is

(21)

Lemma 4: Given with , any positive
integer , define as the probability distribution with
probability density function defined as

(22)

Then and .
We conjecture that Lemma 4 holds for arbitrary dimension
, and prove it for the case . Before proving Lemma 4
for , we prove an auxiliary Lemma which shows that for
probability mass function over satisfying -differential pri-
vacy constraint, we can construct a new probability mass func-
tion by averaging the old probability mass function over each

ball and the new probability mass function still satisfies the
-differential privacy constraint.
Lemma 5: For any given probability mass function defined

over the set satisfying that

(23)

define the probability mass function via

(24)

where .
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Then is also a probability mass function satisfying the dif-
ferential privacy constraint, i.e.,

(25)

Proof: Due to the way how we define , we have

(26)

and thus is a valid probability mass function defined over .
Next we prove that satisfies (25). To simplify notation, de-

fine . Then we only need to prove that for any
such that , we have . Due

to the symmetry property, without loss of generality, we can as-
sume . The easiest case is . When , we
have and

(27)

The number of distinct pairs satisfying is
for . Sum up all inequalities in (27), and we get
. For general , let . Define

via

(28)

Then the differential privacy constraint (23) implies that

(29)
and . The set of points in forms a
rectangle, which has 4 corner points and interior points
on the edges. For each corner point in , which appears in the
left side of (29), there are points in close to it with
an distance of . And for each interior point in , there
are points in close to it with an distance of .
Therefore, there are in total
distinct inequalities in (29).
If we can find certain nonnegative coefficients such that mul-

tiplying each inequality in (29) by these nonnegative coeffi-
cients and summing them up gives us

(30)
then (25) holds. Therefore, our goal is to find the “right” coef-
ficients associated with each inequality in (29). We formulate it
as a matrix filling-in problem in which we need to choose non-
negative coefficients for certain entries in a matrix such that the
sum of each row is , and the sum of each column
is 1.
More precisely, label the points in by

, where we label the topmost point by 1
and sequentially label other points clockwise. Similarly, we
label the points in by , where
we label the topmost point by 1 and sequentially label other
points clockwise.
Consider the following by matrix , where each row

corresponds to the point in and each column corresponds to

the point in , and the entry in the th row and th column
is the coefficient corresponds to inequality involved with the
points and . If there is no inequality associated with the
points and , then . In the case and ,
the zeros/nonzeros pattern of has the following form:

(31)

where denotes an entry which can take any nonnegative
coefficient.
For general and , the pattern of is that the first,
th, th and th rows can have nonzero

entries, and all other rows can have nonzero entries.
We want to show that

or equivalently,

Therefore, our goal is to find nonnegative coefficients to sub-
stitute each in the matrix such that the sum of each column
is 1 and the sum of each column is . We will give
explicit formulas on how to choose the coefficients. The case

is trivial. Indeed, one can set all diagonal entries to be
1, and set all other nonzero entries to be 1/2. Therefore, we can
assume . Consider two different cases: and

. We first consider the case . Due to the
periodic patterns in , we only need to consider rows from 1
to . Set all entries to be zero except that we set

(32)
(33)

(34)

Further set for
and

for . It is
straightforward to verify that the above matrix satisfies the
properties that the sum of each column is 1 and the sum of each
row is . Therefore, we have

.
Next we solve the case . Again due to the periodic

patterns in , we only need to consider the nonzero entries
in rows from 1 to . We use the following procedures to
construct :
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1) For the first row, set and set all other nonzero
entries to be .

2) For the second row, is uniquely determined to be
. Set the next nonzero entries in the second

row to be , i.e., for . The
last nonzero entry is uniquely determined to be

(35)

3) For the third row, the first nonzero entry is uniquely
determined to be . Set the
next nonzero entries to be , i.e.,
for . The last nonzero entry is
uniquely determined to be

(36)

4) In general, for the th row ( ), the first nonzero
entry is set to be , and the next

nonzero entries are , and the last nonzero entry
.

5) For th row, by symmetry, we set
and set other nonzero entries to be .

6) The nonzero entries in the th row are uniquely deter-
mined. Indeed, we have

(37)

(38)

(39)

It is straightforward to verify that each entry in is nonneg-
ative and satisfies the properties that the sum of each column
is 1 and the sum of each row is . Therefore, we have

.
Therefore, for all such that , we have

. This completes the proof of Lemma 5.
We defer the (conceptually straightforward) proof of Lemma

4 to [50, Section V], due to space limitations. Define
for , i.e., is the set of probability

distributions satisfying differential privacy constraint (9) and
having symmetric piecewise constant (over )
probability density functions.
Due to Lemma 4, we have that

. Therefore, to characterize ,
we only need to study probability distributions with symmetric
and piecewise constant probability density functions.

B. Step 2

Given , we call the den-
sity sequence of , where is defined in (22)

.
Next we show that indeed we only need to consider those

probability distributions with symmetric piecewise constant
probability density functions the density sequences of which
are monotonically decreasing. Define

, and the density sequence of is monotonically
decreasing. Then
Lemma 6:

(40)

Proof: Due to the space limit, we refer the readers to Sec-
tion V.C of [50] for the proof.

C. Step 3

Next we show that among all symmetric piecewise constant
probability density functions, we only need to consider those
which are geometrically decaying. More precisely, given posi-
tive integer , we have and has
density sequence satisfying

, then
Lemma 7:

(41)

Proof: Due to the space limit, we refer the readers to Sec-
tion V.D of [50] for the proof.
Due to Lemma 7, we only need to consider probability distri-

bution with symmetric, monotonically decreasing, and geomet-
rically decaying piecewise constant probability density func-
tion. Because of the properties of symmetry and periodically
(geometrically) decaying, for this class of probability distribu-
tions, the probability density function over is completely de-
termined by the probability density function over the set

. Next, we study what the optimal probability
density function should be over the set . It
turns out that the optimal probability density function over the
set is a step function. We use the fol-
lowing three steps to prove this result.

D. Step 4

Lemma 8: Consider a probability distribution
( ) with density sequence . Then
there exists an integer and a probability distribution

with density sequence such
that

(42)

(43)

and

(44)

Proof: Due to the space limit, we refer the readers to Sec-
tion V.E of [50] for the proof.
Therefore, due to Lemma 8, for sufficiently large , we only

need to consider probability distributions with den-
sity sequence satisfying

(45)

(46)
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More precisely, define has density
sequence satisfying (45) and (46). Then
due to Lemma 8,
Lemma 9:

(47)

Next, we argue that for each probability distribution
( ) with density sequence , we

can assume that there exists an integer ,
such that

(48)
(49)

More precisely,
Lemma 10: Consider a probability distribution

( ) with density sequence . Then there
exists a probability distribution with density se-
quence such that there exists an integer

with

(50)
(51)

and

(52)

Proof: If there exists an integer
such that

(53)
(54)

then we can set . Otherwise, let be the smallest
integer in such that ,
and let be the biggest integer in
such that . It is easy to see that . Then we
can scale up and scale down simultaneously until either

or . Since is an increasing
function of when , and , this scaling
operation will not increase the cost. After this scaling operation
we can update and , and either is increased by one or

is decreased by one. Therefore, continue in this way, and
finally we will obtain a probability distribution
with density sequence such that (50), (51)
and (52) hold. This completes the proof.
Define has density sequence

satisfying (50) and (51) for some
Then due to Lemma 10,

Lemma 11: .
As , the probability density function of

will converge to a multidimensional staircase function. There-
fore, for and the cost function ,
then

(55)

This completes the proof of Theorem 1.
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